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Abstract—Stochastic filtering estimates a time-
varying (multivariate) parameter (a hidden variable)
from noisy observations. It needs both observation
and parameter evolution models. The latter is often
missing or makes the estimation too complex. Then,
the axiomatic minimum relative entropy (MRE) prin-
ciple completes the posterior probability density (pd)
of the parameter. The MRE principle recommends
to modify a prior guess of the constructed pd to
the smallest extent enforced by new observations.
The MRE principle does not deal with a generic
uncertain prior guess. Such uncertainty arises, for
instance, when the MRE principle is used recursively.
The paper fills this gap. The proposed minimum ex-
pected relative entropy (MeRE) principle: (a) makes
Bayesian estimation less sensitive to the choice of the
prior pd; (b) provides a stabilised parameter tracking
with a data-dependent forgetting that copes with
abrupt parameter changes; (c) applies in all cases
exploiting MRE, for instance, in stochastic modelling.

Keywords minimum relative entropy principle; uncer-
tain prior probability; forgetting; fully probabilistic de-
sign; abrupt parameter changes;

I. Introduction
Stochastic filtering [1] evaluates posterior probability,

here given by probability density (pd). It is the sufficient
statistic for estimation of an unobserved, time-varying
parameter. Filtering exploits data while using observa-
tion and parameter evolution models. The former model
is always needed but filtering complexity often discards
the latter one. Then, the partially known posterior pd
is to be completed. The axiomatic [2], often discussed
[3], and used [4]–[6], minimum relative entropy (MRE)
principle serves to this purpose. The completed pd is
the minimiser of the relative entropy (RE, aka Kullback-
Leibler divergence, [7], cross entropy [2], [8], etc.) to its
prior guess. The minimisation runs over pds compatible
with the acquired knowledge.

The result of the MRE principle use depends on the
prior guess, which is often uncertain. For instance, if its
outcome serves as the prior guess in the next step of
recursive estimation. Such a guess can hardly be taken
as certain [9]. This case has motivated the paper.

The paper extends the MRE principle to the minimum
expected RE (MeRE1) principle. MeRE copes with the
uncertainty of the prior guess. The extension mimics the
derivation of the MRE principle in [10]. The derivation
relies on the axiomatic fully probabilistic design (FPD)

1The abbreviation stresses the added “expectation” and differ-
entiates itself from MERE used for something else.

[11] and it is believed to be simpler than a surely possible
extension of the way in [2].

Section II recalls FPD. Section III derives MeRE
principle. Section IV illustrates its use on parameter
estimation with uncertain prior pd and on tracking of a
varying parameter. The former case makes the estimation
robust with respect to the choice of the prior pd. It opens
an efficient way to the estimation of the model structure.
The latter case improves the stabilised forgetting [12],
which robustly tracks the varying parameter of a para-
metric model2. The ability to cope with abrupt changes is
an immediate contribution brought. Section V comments
the results and open problems.

II. Static FPD
FPD is a prescriptive framework for decision making

(DM) under uncertainty. FPD generalises the standard
Bayesian DM [13], [14]. Its static version suffices to the
solution of the treated problem.

The static DM uses the knowledge3 k ∈ {k} available
for choosing of an action a ∈ {a}. The action influ-
ences the considered but unavailable ignorance g ∈ {g}.
Practically, any part of the (closed-loop) behaviour b =
(g, a, k) ∈ {b} = {g}×{a}×{k} can be uncertain. The
FPD axiomatisation [11] shows that, for such a DM, the
behaviour b ∈ {b} is to be modelled as the multivariate
random variable. Its joint pd j(b) factorises [15]

j(b) = j(g, a, k) = m(g|a, k)r(a|k)k(k).

The individual factors have specific meanings motivating
their mnemonic names:

m models the environment relevant to the solved
DM task; it relates the action a ∈ {a} and the
knowledge k ∈ {k} to the ignorance g ∈ {g};

r is the optional randomised DM rule; it describes
the random choice of the action a ∈ {a} under
the given knowledge k ∈ {k};

k describes the knowledge k ∈ {k}; the static DM,
which selects single (multivariate) action, does
not needs this model.

The action choice is purposeful. FPD expresses DM
aims by an ideal joint pd ji(b) of behaviours b ∈ {b}.
The ideal joint pd assigns high values to the desired

2It coincides with the observation model of the stochastic filter-
ing.

3{k} denotes a set of ks. The sets are defined only when needed.
San serif fonts mark mappings, predominantly pds. Caligraphic
fonts mark functionals. Mathfrak indices o, i, and p concern op-
timal, ideal and prior objects, respectively.
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behaviours and small ones to undesired b ∈ {b}. FPD
takes the minimiser of the relative entropy R(j||ji) as the
optimal DM rule

ro ∈ Arg min
r∈{r}

R(j||ji) = Arg min
r∈{r}

∫
{b}

j(b) ln
( j(b)

ji(b)

)
db.

The optimal DM rule ro can be found explicitly, [16],
[17], using: (a) Fubini theorem on multiple integration
[18]; (b) the facts that R(f||g) ≥ 0 while R(f||g) = 0 iff
f = g; and (c) the factorisation of the ideal joint pd
ji(b) = mi(g|a, k)ri(a|k)ki(k). The pd mi is called the
ideal environment model and ri is the ideal DM rule.
It holds

ro(a|k) ∝ ri(a|k) exp[−R(m||mi)]. (1)

R(m||mi) in (1) is evaluated for the action a and the
knowledge k in ro(a|k) conditioning the pds m(g|a, k),
mi(g|a, k).

The solution of the inspected problem chooses its ideal
DM rule in the leave-to-the-fate way (LTF, [17]). LTF
suits whenever no demand is put on the optimal DM
rule (except its domain). LTF identifies the ideal DM
rule with the optimised DM rule, ri = r. Under LTF, the
FPD-optimal DM rule ro selects the optimal action ao
[17]

ao ∈ Arg min
a∈{a}

R(m||mi). (2)

Again, the conditional RE is used as in (1). The choice
(2) reveals that FPD under LTF reduces to the Bayesian
DM [13] with the loss function ln(m/mi).

III. Minimum Expected RE Principle
The addressed completion of a partially described pd

is a meta-DM problem. It chooses a “best” completion
among considered ones. This meta-DM problem is here
formulated and solved as an FPD task. Its constituents
are denoted by capital counterparts of the DM symbols
introduced in Section II.

The knowledge K of the meta-DM task, used for the
action A choice, is:
• an underlying DM task to which the completion

serves; the underlying DM task operates on be-
haviours b ∈ {b}, modelled by a pd j;

• the known set {j} has the cardinality |{j}| > 1,
i.e. the joint pd j ∈ {j} of behaviours b ∈ {b} is
incompletely known;

• the set {jp}p∈{p} of prior guesses jp of the pd j is
available: the set {jp}p∈{p} contains more members,
|{p}| > 1; this assumption differentiates the solved
problem from its predecessors [2], [10]; the set {p}
of pointers to pds in {jp} is at most countable;

• a pd q on {p} is given; q(jp) = q(p) quantifies the
belief that jp ∈ {jp} is the best prior model of b ∈
{b}.

The opted action A of the meta-DM is a pd in {j}. The
chosen join pd serves as a complete description of the
uncertain behaviour b ∈ {b}. The action is generated by

a DM rule selected among DM rules acting on the joint
pds {j} under the given K. The FPD-optimal DM rule
is searched for.

The ignorance G of the meta-DM reads

G = (b, j, jp) ∈ {G} = {b}× {j}× {jp} (3)

as neither behaviour b, nor its complete description j(b)
nor the prior guess jp(b) are known when choosing A ∈
{j}.

The LTF specification of the ideal DM rule is adopted.
It leads to the deterministic FPD-optimal DM rule pro-
viding the optimal action, cf. (2),

jo = Ao ∈ Arg min
A∈{j}

R(M||Mi). (4)

The evaluation of the optimal completion (4) needs the
model M(G|A,K) and its ideal counterpart Mi(G|A,K).
The used description of M, Mi and the next formal
operations assume that the cardinality of {b} is finite.
This:
• allows us to avoid the measure theory as the joint

pds in {j} {jp}p∈{p} are probabilistic vectors;
• imposes no practical constraint as any DM with

numerically expressed preferences is to operate on
separable spaces [19];

• leads to the result valid without this assumption.
The next model M unambiguously respects the formu-

lated meta-DM problem

M(G|A,K) = M(b, j, jp|A,K)
= M(b|j, jp, A,K)M(j|jp, A,K)M(jp|A,K)
= j(b)δ(j−A)q(jp). (5)

In (5), the first equality uses the ignorance definition (3).
The second one is just the chain rule for pds [15]. The
last key equality respects that:

j models behaviours b ∈ {b};
A uniquely selects j; it is formalised by Dirac’s symbol

δ, a pd of the measure concentrated on zero, and
q quantifies the prior, A independent, belief in the

prior guesses {jp}p∈{p} of the best model of b ∈ {b}.
The ideal model Mi expressing the meta-DM aim is
similar

Mi(G|A,K) = jp(b)δ(j−A)q(jp). (6)

The only difference is the use of jp as the model of
b ∈ {b}. Mi says that the selected Ao = jo ∈ {j}
should deviate from the pd jp only if the used knowledge
demands it.

The minimised RE (4) with models (5), (6) reads

R(M||Mi)

=
∫

{jp}
q(jp)

{∫
{j}
δ(j−A)

[∫
{b}

j(b) ln
( j(b)

jp(b)

)
db
]

dj
}

djp

=
∑

p∈{p}

q(p)R(A||jp) = E [R(A||jp)].
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The expectation E is taken over the uncertain jp ∈ {jp}.
Thus, the optimal choice Ao = jo (4) for (5) and

(6) specialises to the minimum expected relative entropy
(MeRE) principle

jo ∈ Arg min
j∈{j}

E [R(j||jp)]. (7)

A simple algebra maps (7) to the form4

jo ∈ Arg min
j∈{j}

R(j||j{p}) with j{p} ∝
∏

p∈{p}

jq(p)
p . (8)

Thus, the MeRE principle is the MRE principle that uses
the weighted geometric mean (aka logarithmic pool [20])
of the prior guesses as the prior guess of the constructed
pd.

This simple result could be expected. However, the use
of the weighted arithmetic mean (aka linear pool [20])
as the representative of prior guesses also sound as a
good solution. The fact that the result follows from the
axiomatic FPD under explicit applicability conditions
makes the recommendation (8) well grounded.

IV. Use of MeRE Principle in Estimation
This section shows the use of the MeRE principle (8).
The inspected cases support underlying DM tasks,

which operate on the ignorance g ∈ {g} made of an un-
used observation o ∈ {o} and of an unknown parameter
θ ∈ {θ}, g = (o, θ) ∈ {g} = {o} × {θ}. Both o and θ
can be multivariate. The knowledge k consists of a prior
knowledge enriched by a collection {o, a} of observations
o made after applying actions a. The action a ∈ {a} is
generated by an informationally causal, randomised DM
rule r ∈ {r}. The parameter θ ∈ {θ} is unknown to it,
cf. natural conditions of control in [15],

r(a|θ, k) = r(a|k)⇔ p(θ|a, k) = p(θ|k). (9)

There, the posterior pd p(θ|k) models θ ∈ {θ}.
The joint pd j(b) of b ∈ {b} = {o}× {θ}× {a}× {k}

is

j(o, θ, a, k) = m(o|θ, a, k)p(θ|k)r(a|k)k(k). (10)

The known parametric model m relates observations o ∈
{o} to an unknown parameter θ ∈ {θ}, to an action
a ∈ {a} and to the knowledge k ∈ {k} modelled by
k(k).

A. Uncertain Prior Pd
This case deals with an uncertain prior pd p =

(p(θ))θ∈{θ} of the unknown parameter θ ∈ {θ}. The a
priori considered instances of p ∈ {pp}p∈{p} with |{p}| >
1 are qualified by prior beliefs5 q on {p}. Obviously, the
posterior pd p(θ|k) is uncertain, too, even when the pds
m, r and k in (10) are assumed to be given.

4∝ denotes proportionality. The pd j{p} represents {jp}p∈{p}.
5The choice based on Laplace’s insufficient reasons is often used.

It recommends uniform q(p) = u(p) = constant on {p}.

This choice of the joint pd j represents frequent cases
in which its multiple prior guesses jp ∈ {jp} differ only in
a marginal pd, here, operating on the parameter θ ∈ {θ},

{jp} = {jp(b) = m(o|a, θ, k)r(a|k)pp(θ|k)k(k)}p∈{p}.
(11)

The product mrk of pds is the common factor of the prior
guesses in (11). The MeRE principle (8) needs

p{p}(θ|k) ∝
∏

p∈{p}

pq(p|k)
p (θ|k). (12)

Bayes’ rule provides

pp(θ|k) = l(θ|k)pp(θ)
fp

, p ∈ {p}, where (13)

l(θ|k) is the likelihood, i.e. the product of parametric
models6 with the inserted collection of the observed
{o, a} enriching the prior knowledge;

fp is the normalising factor, called evidence; it is the
likelihood l(θ|k) multiplied by the prior pd pp(θ)
with θ ∈ {θ} integrated out.

Bayes’ rule also updates prior beliefs q(p) to the posterior
beliefs q(p|k), p ∈ {p}. It only uses the evidences

q(p|k) ∝ fpq(p), p ∈ {p}. (14)

The final outcome of the MeRE principle simply reads

jo(b) ∝ m(o|θ, a, k)r(a|k)
∏

p∈{p}

pq(p|k)
p (θ|k)k(k). (15)

It is (10) for p(θ|k) = p{p}(θ|k) ∝ l(θ)
∏

p∈{p} pq(p|k)
p (θ).

Formally, it assigns the posterior belief q(p|k) to prior
pds pp(θ).
Commentary
• The posterior beliefs q(p|k) (14) into the uncertain

posterior pds pp(θ|k) reflect the predictive abilities
fp induced by the respective prior pds pp(θ) on the
observed collection {o, a}.

• It is practically important that the likelihood l(θ|k)
(13) is evaluated just once when computing jo (15).

• The pd q(p|k) asymptotically points to a single
prior pp(θ) (and thus posterior pp(θ|k)) pd if the
observed collection {o, a} is informative and the
model identifiable. This statement reflects Sanov’s
type analysis [21], [22] extended to closed DM loops
in [23].

• Altogether, the use of multiple prior pds {pp} is
computationally cheap whenever evidences {fp} are
cheaply gained. This makes the Bayesian estimation
robust with respect to a bad choice of a candidate
prior pd. It cannot help if all prior pds are bad.

• The simple result (15) is extremely useful in struc-
ture estimation tasks, i.e. estimation of model order,
time delay, importance of regressors etc. It suffices
to exploit that the likelihood evaluated for the most

6The product of DM rules does not enter it due to (9).
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rich structure often cheaply provides likelihoods of
embedded models. Then, the structure estimation
becomes a simple search for maxima [24].

• Let us stress that the combination of priors pds
belongs to repeatedly addressed problem of the pd
pooling [20]. Weighted geometric and arithmetic
means (aka logarithmic and linear pools) are the
main “pooling competitors”. The geometric one has
appeared as preferable in the MeRE scenario.

• The support of p{p} (12) lies in the intersection of
supports of pds {pp}. This property of logarithmic
pooling makes no real harm in the discussed case.
It suffices to replace the prior pds pp by αpp + (1−
α)p. There α approaches 1 from below and with an
optional “background” p has the support covering
the union of supports of pds in {pp}. This avoids
the troubles with the support of p{p}. It (practically)
preserves the evidences fp, which decide on influence
of the pds in {pp} on the final outcome.

B. Robust Tracking of Varying Parameter
This case deals the unknown parameter θ of the

parametric model m(o|θ, a, k) (10), which varies during
estimation while the model of variations is unavailable.
This old problem is typically, and often successfully,
solved by forgetting [12]. Multitude variants exist mo-
tivated by differing adopted methodologies as well as
by requirements on the acceptable solution [25]. MeRE
offers a prescriptive methodology. A specific version is
obtained by the choice of the set of the prior guesses
{pp}p∈{p} and their beliefs q(p), p ∈ {p}. Our quite
general version follows.
Requirements on and choices of {pp}p∈{p} and q(p)

a) Tracking must be robust with respect to long
periods of processing non-informative data: The use of
the very prior, guaranteed-knowledge quantifying, pd
p0 ∈ {pp} assures this. The stabilised forgetting, see [12]
and the recent survey in [25], requires exactly this.

b) Tracking must cope both with slow and abrupt
parameter changes: This is the requirement uncovered
by the stabilised forgetting. Its use thus requires extra
measures based on a change detection [26]. MeRE just
needs to keep permanently q(0|k) > 0.

c) Computational overhead has to be kept low: It
means that a few pds {pp} can be stored. The low
computational effort is also required for gaining the set
of pds {pp} with their beliefs q(p), p ∈ {p}. The simplest
case with two stored posterior pds is considered; p0(θ),
with the belief q(0), and a pd p1(θ), with the belief
q(1) = 1− q(0).

d) The quality of the estimation, consisting of data
updating and approximation, is uncertain: 7 The outcome

7Generally, the outcome of Bayes’ rule (13) has to be projected
into the class of feasible pds on {θ} [9]. Here, the need is left implicit
for the presentation simplicity sake. It changes neither concept nor
subsequent evaluations.

of this updating must be built in p{p} (12) according its,
locally judged, performance.

For this, a cheaply gained, additional member of the
set {pp} = {p0(θ), p1(θ), p2(θ)} is considered before
processing the new data record. The updating, see Sub-
section IV-A, requires assigning them the relevant beliefs
q(0), q(1), q(2). MRE principle offers to re-distribute the
belief on the extended set p ∈ {0, . . . , 2}. This problem
of an extending set of hypotheses is addressed [27]. Its
version used here is presented.

A given pd q(p) with p ∈ {0, 1, . . . , χ − 1}, χ ≥ 2
determines the set of pds qκ(p) ∈ {qκ(p)} with p ∈
{0, . . . , χ}

{qκ} = {qκ(p) = κq(p), p ∈ {0, . . . , χ−1}, qκ(χ) = 1−κ}.
(16)

The optional κ ∈ (0, 1] determines its members. The
extensions in {qκ} preserve mutual relations of the given
beliefs q(p) on p ∈ {0, 1, . . . , χ − 1}. MRE selects the
optimal extension within the set {qκ}. The admission
of abrupt changes, see the requirement b), implies in-
evitability to use Laplace’s insufficient reasons for the
uniform choice u of the prior guess of the best extension
in {qκ}. Simple evaluations imply that the MRE-optimal
qo = qκo

with

κo = 1
1 + 1

χ−1 exp[R(q||u)]
. (17)

The re-distributed prior belief qo(p), p ∈ {0, 1, 2} allows
us to process a new data record {o, a} = {o, a} and to use
evidences fp needed for their updating. The requirement
a) insists on preservation of p0. Thus, the new p2(θ|o, a)
may only replace p1(θ|o, a) if it got higher belief q(2|o, a)
than q(1|o, a). Otherwise, it is discarded. New beliefs
into the new considered pair p0(θ), p1(θ|o, a) are simply
re-normalised the corresponding beliefs in q(p|o, a), p ∈
{0, 1, 2}.
Commentary
• The belief into the fixed safe prior pd p0(θ) may

fall numerically to zero when no abrupt changes
occur for a long time. This should be counteracted
by adding the condition qκ(0) ≥ ν > 0, with ν
bigger than numerical zero, to the definition of the
set {qκ} (16), see the requirement a). It is omitted
for simplicity and respected in the numerical imple-
mentation.

• The Bayes’ updated p0 and/or storing more possible
realisations pp of p are surely possible whenever the
additional computational load is acceptable.

• Stabilised forgetting, improved by the above solu-
tion, used a pair of pds, typically, the safe fixed p0
and p1 ∝ (l(θ|k)p0)φp1−φ

0 , φ ∈ [0, 1]. It is algorithmi-
cally quite close to our solution with φ corresponding
to q(1). As said, it requires a detection of abrupt
parameter changes [26].
Even when the parameter vary slowly the critical
choice of the forgetting factor φ is to be addressed
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in classical solutions. Two options prevail.
? The choice φ is left to the user of the tracking

algorithm. She is given a chance introduce her
intuition about the nature of changes at her de-
liberation cost. This usual “academic” solution
is flexible but hard to apply.

?? Under slow changes of the parameter the ap-
propriate forgetting factor is expected to vary
slowly, too, and can be learnt in Bayesian way.
This often works but the Bayes’ rule should use
a “second layer forgetting”. Otherwise φ, sooner
or later, converges [23], mostly to zero or unity
when the tracking ability is lost.
The choice of the second layer forgetting might
be less critical and the option ? can be used.
The decreased deliberation costs and the danger
of significant user’s error together with a built-
in detection of abrupt parameter changes are
relatively strong arguments for the proposed
solution.

• A single application of Bayes’ rule updates the
posterior pd on a subspace of {θ}. Assuming that
non-negligible parameter changes happen at most in
this subspace, the forgetting should be applied to it
only. This makes forgetting “directional” [28].

1) Illustrative Example: The example is similar to
numerous illustrations of stabilised forgetting. Linear
Gaussian second order model was simulated with abrupt
parameter changes and a period of insufficiently excit-
ing actions. The estimation reduces to the algorithmic
equivalent of recursive least squares. It determines the
self-reproducing Gauss-inverse-Wishart posterior pd of
the unknown regression coefficient θ and of the unknown
environment-noise variance8 r [15], [17]. The fixed prior
p0 delimited the units as the range of θ, r0.5 around
zero. It was modified by one data vector ot, ot−1, ot−1, at.
Results as well as the remaining specific details are in
Figures 1 – 7. They just confirm theoretical expectations.
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Fig. 1. Observations made on the environment ot = θtψt + r0.5et,
for θt see caption of Figure 5, r Figure 4; ψt = [ot−1, ot−2, at, 1]′,
et is white, zero-mean Gaussian sequence with unit variance.

V. Concluding Remarks
The paper derives the minimum expected relative

entropy principle and indicates its application width.

8In this example, θ, r replaces θ of the general discussion.
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Fig. 2. Actions applied to the simulated environment, at =
−0.9ot−1−1+0.10.5εt for t ≤ 250, at = −1 for 250 < t ≤ 400 (poor
excitation period) and at = −0.6ot−1 − 1 + 0.20.5εt for 400 < t.
εt is white, zero-mean Gaussian sequence with unit variance. It is
independent of the noise et, see caption of Figure 1.
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Fig. 3. Prediction errors ot − θ̂t−1ψt with θ̂t−1 being the newest
point estimate of the regression coefficients θt, see Figures 1, 5.

A reader naturally expects an extensive experimental
study. Our experience and space are limited but we feel
that the presented simple idea is so useful that it makes
sense to “sell” it as it is. We are aware that a future
research should:
• make the said extensive experiments;
• elaborate details of the mentioned structure estima-

tion, which is expected to bridge the approximate
maximisation of the posterior likelihood over the
space of competitive structures [24] with the popular
automatic relevance determination [29];

• verify hypothesis that the proposed parameter
tracking can practically cope well with slow parame-
ter changes combined with more rare abrupt changes
[30];

• apply the MeRE principle in areas relying now on
the standard MRE principle as [4];

• apply the MeRE principle to the completion of the
preference-describing ideal pd: this is a significant
part of preference elicitation [31], [32].

We invite the interested readers to join or replace us.
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