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Abstract—The paper deals with an output-feedback model
predictive control (MPC) for discrete-time systems influenced
by bounded disturbances. The proposed MPC combines a state-
space design and a state estimation. The state estimates are
obtained by a specific uniform Bayesian filter. It provides an
evident disturbance attenuation in the estimated state. The MPC
design considers a quadratic cost function that incorporates
penalties on the tracking error, on the actuation effort and on the
system output increments. The theoretical results are completed
by illustrative examples using a dynamic model of a parallel
kinematic machine as a controlled system.

Index Terms—control design, output feedback, position con-
trol, robot control, state estimation, linear systems, Bayes meth-
ods, recursive estimation, uncertainty, stochastic systems

I. INTRODUCTION

The state-space based model predictive control (MPC) [1]
is frequently used in industrial applications. There, states are
often unmeasurable. It leads to the output-feedback MPC and
the need for a state estimator. Further, the control process is
frequently influenced by disturbances that are related to the
model inaccuracy and to unmeasured noises. The mentioned
disturbances are often bounded. MPC is not naturally robust
against disturbances. This problem can be solved using a suit-
able state estimator.

There are enough papers that address the output-feedback
MPC with bounded disturbances. A representative sample is
presented below. In the paper [2], a robust MPC controller
is proposed. A robustness is guaranteed through a specific
robust Kalman filter. The robustness of the control is tunable.
The controller is tested on a servomechanism system. In the
paper [3], a robust MPC for a linear polytopic uncertain
system with bounded disturbance is proposed. The control law
is based on the pre-specified state estimator using the esti-
mation error bound. The paper [4] combines MPC and set-
membership state estimation techniques for controlling linear
systems with unknown but bounded disturbances subject to
hard input and state constraints. The paper [5] proposes
an output-feedback MPC scheme for the case of stabilising
control for linear discrete-time systems incorporating a set-
valued estimator based on a fixed finite number of recent
measurements. The proposed MPC scheme is illustrated by
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a numerical example. The paper [6] proposes a controller that
consists of a state estimator and a tube based robust predictive
control law. A single tube directly bounds the worst case
difference between the real and predicted behaviour.

The given overview is a motivation for our research oriented
to the output-feedback MPC for a specific class of mechanical
systems where bounded disturbances occur frequently. Consid-
ering a class of industrial stationary robots-manipulators, i.e.
mechanical systems, a measurement of their outputs is usually
influenced by disturbances having physically bounded uncer-
tainties. The outputs are predominantly positions both lon-
gitudinal and angular. Corresponding velocities are incor-
porated in unmeasurable states, complemented possibly by
accelerations and jerks. Thus, considering that only system
outputs are available instead of full measurement of the system
state in the combination of high-dynamic systems such as
robots or generally mechatronic systems, the output-feedback
MPC is proposed as a powerful and flexible way that is
computationally-achievable in real time.

In the previous paper of authors, [7], an output-feedback
MPC for motion control of the mentioned robotic systems was
proposed. A time-varying state-space robot model influenced
by a bounded uncertainty with unknown bounds was consid-
ered. The state and noise parameter estimation was performed
on a moving window. Estimated states were used for updating
state-dependent elements in the robot model and for control
design itself. Estimated noise parameters are employed in
advanced tuning of control parameters, namely penalisation
matrices.

In this paper, we aim to improve the results of [7] with
respect to the smoother control actions and a better output
stabilisation. To achieve this aim, we propose an output-
feedback MPC scheme that uses an alternative state estimator
and an extended cost function for control design.

The paper is organized as follows. In Section II, the
control problem is formulated including the used theoreti-
cal background and notation. The proposed output-feedback
MPC design is explained in Section III. In Section IV, a
dynamic model of the considered robotic system is presented.
The model is used as a controlled system for the proposed
MPC scheme in several illustrative experiments. Section V
concludes the paper.
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II. PROBLEM SETUP

This section explains the used notation, introduces a state-
space model with uniform disturbances and the Bayesian state
estimation, and formulates an output-feedback MPC problem.

A. Notation

Throughout the paper, we consider column vectors and
denote them by lowercase letters, e.g. z. Then, zk denotes
the value of a vector variable z at a discrete-time instant
t ∈

{
1, · · · , t

}
; zt;i is the i-th entry of zt; z and z are lower

and upper bounds on z, respectively. ẑ denotes an estimate of
z. The symbol f(·|·) denotes a conditional probability density
function (pdf); names of arguments distinguish respective pdfs;
no formal distinction is made between a random variable, its
realisation and an argument of the pdf. Uz(z, z) denotes a
multivariate uniform distribution of z, z ≤ z ≤ z, inequalities
are meant entrywise.

B. State-Space Model with Uniform Disturbances

We introduce a linear state space model with uniform
disturbances (LSU model) in the form

xt = Axt−1 +But−1︸ ︷︷ ︸
x̃t

+ νt, νt ∼ Uν(−ρ, ρ) (1)

yt = Cxt︸ ︷︷ ︸
ỹt

+ nt, nt ∼ Un(−r, r)

where yt is an observable output, ut is a control input,
xt is an unobservable system state, A, B, C are the known
model matrices, x̃t and ỹt correspond to the mean values of
x and y; νt and nt are independent and identically distributed
state and observation disturbances, they are uniformly dis-
tributed with known parameters ρ and r, respectively.

C. Bayesian Filtering

Within the considered Bayesian framework [8], a controlled
system is described by:

prior pdf: f (x0) (2)
time evolution model: f (xt|xt−1, ut−1) (3)

observation model: f (yt|xt) (4)

Bayesian filtering consists of the evolution of the posterior
pdf f(xt|d(t)) where d(t) is a sequence of observed data
records dt = (yt, ut), d0 ≡ u0. The evolution of f(xt|d(t)) is
described by a two-steps recursion that starts from the prior
pdf f(x0|u0) ≡ f(x0):

– time update that reflects the evolution xt−1 → xt:

f(xt|d(t− 1))=

∫
x?
t−1

f(xt|ut−1, xt−1)f(xt−1|d(t− 1)) dxt−1 (5)

– data update that incorporates information about data dt:

f(xt|d(t)) =
f(yt|xt)f(xt|d(t− 1))∫

x?
t

f(yt|xt)f(xt|d(t− 1))dxt
(6)

D. MPC Problem

In this paper, an output-feedback MPC problem is consid-
ered. The problem includes a state estimation with bounded
disturbances and a specific state-based MPC design, [1].
A consideration of bounded disturbances enables MPC design
to use state estimates close to real physical bounds which is
difficult when an unbounded normal distribution is used. The
state estimates serve, besides MPC design itself, also for the
updating elements in the model of controlled system repre-
senting nonlinear dynamics of considered robot, see details in
Section IV-A. Resulting implementation (algorithm sequence)
of indicated MPC problem is described in Section III-C.

III. MAIN RESULTS

A. Bayesian Filtering of LSU model

The LSU model (1) defined in Subsection II-B can be
equivalently described, using pdf notation (3) and (4), as
follows

f(xt|ut−1, xt−1) = Ux(x̃t − ρ, x̃t + ρ) (7)
f(yt|xt) = Uy(ỹt − r, ỹt + r). (8)

State estimation of LSU model (7), (8) with the prior pdf (2)
using (5) and (6) leads to a very complex form of posterior pdf.
In [9], an approximate Bayesian state estimation of this model
is proposed. The presented algorithm provides the evolution
of the uniformly distributed posterior pdf f(xt|d(t)) in two
sequential steps:

1. Time update – The time update (5) starts at t = 1
with f(xt−1|d(t − 1)) = f(x0) = Ux0

(x0, x0). Being χ the
indicator function, it holds

f(xt|d(t− 1)) ≈
∏̀
i=1

χ(mt;i − ρi ≤ xt;i ≤ mt;i + ρi)

mt;i −mt;i + 2ρi
=

=
∏̀
i=1

Uxt;i
(mt;i− ρi,mt;i + ρi) = Uxt

(mt− ρ,mt + ρ), (9)

where mt = [mt;1, . . . , mt;`]
′, mt = [mt;1, . . . , mt;`]

′,

mt;i =
∑̀
j=1

min(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1),

(10)

mt;i =
∑̀
j=1

max(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1),

Aij means the term on the i-th row and the j-th column of
A, ` is the size of x.

2. Data update – According to (6), we process the observa-
tion yt as yt − r ≤ Cxt ≤ yt + r (see (8)) by the Bayes rule
together with the prior (9) from the time update. The resulting
uniform pdf posses a support in the form of polytope. It is
approximated by a uniform pdf with an orthotopic support

f(xt|d(t)) ≈ Uxt
(xt, xt). (11)

The proposed approximation is based on a minimising of
Kullback-Leibler divergence of two pdfs [9].
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The point state estimate x̂t corresponds to the centre of the
orthotope in (11)

x̂t =
xt + xt

2
. (12)

B. Model Predictive Control Design
• Cost function and equations of predictions – The behaviour
of a control process is influenced by the choice of the
cost function. In this paper, considering positional predictive
algorithm, a quadratic cost function balances control errors,
i.e. differences between predicted outputs ŷt+j and given ref-
erences wt+j , against amount of input energy given by control
vector ut+j−1 and, in additon, against the output increments
∆y = ŷt+j−ŷt+j−1. The used cost function has the following
form:

Jt =
N∑
j=1

{
‖Qyw(ŷt+j − wt+j)‖22

+‖Q∆y(ŷt+j − ŷt+j−1)‖22 + ‖Quut+j−1‖22
}

=
{
(Ŷt+1−Wt+1)TQTYWQYW (Ŷt+1−Wt+1)

+∆ŶTt+1Q
T
∆YQ∆Y ∆Ŷt+1 + UTt Q

T
UQUUt

}
(13)

where N is the prediction horizon that equals to the control
horizon, ‖.‖22 means the squared quadratic norm; Ŷt+1 are
predictions with respect to unknown overall vector Ut of
control actions ut+j−1:

Ŷt+1 =
[
ŷTt+1, · · · , ŷTt+N

]T
= Fx̂t +GUt (14)

Ut =
[
uTt , · · · , uTt+N−1

]T
(15)

F =


CA

...
CAN−1

CAN

, G =


CB 0 · · · 0

...
. . . . . .

...
CAN−2B · · · CB 0
CAN−1B · · · CAB CB

 (16)

and ∆Ŷt+1 uses the state-space model (1) as follows:

x̂t+1 − x̂t = ∆x̂t+1 = A(x̂t − x̂t−1) +B(ut − ut−1)

∆ŷt+1 = C∆x̂t+1 = CAx̂t + CBut − Cx̂t
∆ŷt+2 = ŷt+2 − ŷt+1 = (CA2 − CA)x̂t

+ (CAB − CB)ut + CBut+1

...

∆ŷt+N = (CAN − CAN−1)x̂t + · · ·
+ (CAB − CB)ut+N−2 + CBut+N−1

Thus

∆Ŷt+1 =
[
∆ŷTt+1, · · · ,∆ŷTt+N

]T
= F∆ x̂t +G∆ Ut (17)

F∆ =


CA − C

...
CAN−1 − CAN−2

CAN − CAN−1

 (18)

G∆ =


CB 0 · · · 0

...
. . . . . .

...
CAN−2B − CAN−3B · · · CB 0
CAN−1B − CAN−2B · · · CAB − CB CB



Furthermore Wt+1 represents a sequence of references

Wt+1 =
[
wTt+1, · · · , wTt+N

]T
(19)

and QYW , Q∆Y and QU are penalisation matrices defined
as follows

QT�Q� =

Q
T
∗
Q

∗
0

. . .
0 QT

∗
Q

∗


∣∣∣∣∣∣

subscripts �, ∗ :
� ∈ {YW, ∆Y, U}
∗ ∈ {yw, ∆y, u}

(20)

• Minimization Procedure – Optimality criterion is generally
defined as follows

min
Ut

Jt (Ŷt+1,Wt+1, Ut) (21)

s. t. state space model (1)
state estimates x̂t

The involved quadratic cost function Jt (13) can be written
in square-root form:

Jt = JTt Jt (22)

where square-root Jt of the cost function Jt is as follows

Jt =

 QYW 0 0
0 Q∆Y 0
0 0 QU

 Ŷt+1 −Wt+1

∆Y
Ut


=

 QYWFx̂t +QYWGUt −QYWWt+1

Q∆Y F∆ x̂t +Q∆YG∆ Ut
QUUt

 . (23)
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Considering minimization of the square-root Jt as a specific
solution of least-squares problem then let us take into account
the following system of algebraic equations: QYW G

Q∆Y G∆

QU

Ut =

 QYW (Wt+1 − Fx̂t)
Q∆Y (−F∆ x̂t)

0

 (24)

or QYW G QYW (Wt+1 − Fx̂t)
Q∆Y G∆ Q∆Y (−F∆ x̂t)
QU 0

[ Ut
−I

]
= 0

(25)

The over-determined system (24) or (25) respectively can be
written in condensed general form (26). It can be transformed
to another form (27) by orthogonal-triangular decomposition
[10] and solved for unknown Ut

AUt = b (26)

QTAUt = QT b assuming that A = Q R

R1Ut = c1 (27)

where QT is an orthogonal matrix that transforms ma-
trix A into upper triangle R1.

It is indicated by the following equation diagram

A Ut = b

⇒

@
@
@@

R1

0

Ut = c1

cz

(28)

Vector cz represents a loss vector, Euclidean norm ||cz||
of which equals to the square-root of the optimal cost function
minimum, i.e. scalar value

√
Jt, where Jt = cTz cz . For

control, only the first elements corresponding to ut are used
from computed vector Ut, i.e. ut = MUt, where matrix M
is defined as M = [Inu , 0nu , · · · , 0nu ], nu is dimension of
vector of control actions ut.

C. Output-Feedback MPC under Uniform Disturbances

This subsection summarises the proposed output-feedback
MPC scheme. We assume that the model of a controlled
system, generally nonlinear, can be converted into a linear state

output
y

MPC system
model

state
estimatior

m
at

ric
es

state
estimate  x

reference w
control
input
u

disturbances
v      n

ˆ

controller

A
B

Fig. 1. Block diagram of output-feedback MPC.
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vt = 0
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vt  0

1s

2s

3s

4s

5s
6s

7s

0s

Fig. 2. Robot wireframe and used testing trajectory

space model with the state-dependent model matrices and that
the state estimation uses the model (1). The corresponding
block diagram is shown in Fig. 1. Note that the mentioned
nonlinear model and its conversion is described in Sec. IV-A.
The data flow in Fig. 1 considering this specific model is
indicated by the following algorithm sequence:
Initialisation:

i. assign the initial state x̂0 and control u0

ii. set t := 1, t ≥ 1

iii. load the reference trajectory w1, w2, . . . , wt

iv. initialise nonlinear continuous model (29)

v. set r and ρ for LSU model (1)

vi. set N , Qyw, Q∆y and Qu in (13)

On-line phase:

1. update the model matrices At, Bt in (30)

2. compute the control input ut (see Sec. III-B)

3. simulate a new state of model (29) in t+ 1

4. set time t := t+ 1

5. measure disturbed system output yt

6. estimate the state x̂t (see Sec. III-A)

7. if t < t, go to 1.

End, result evaluation.

IV. EXPERIMENTS

This section demonstrates the proposed output-feedback
MPC applied to the motion control of a parallel kinematic
machine (PKM) represented by the model of the machine
dynamics.

A. Description of Controlled System

The selected PKM represents the planar parallel robot-
manipulator [11] with four inputs (torques) and three outputs
(tool center point (TCP) positions xTCP and yTCP and rotation
angle ψTCP of robot movable platform around axis z), see the
left part of Fig. 2.
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Fig. 3. Experiment (I): Comparison of a zoomed part of control input u2 (on the left) and u4 (on the right) for WIN & StCF (cyan), WIN & InCF (blue),
UBF & StCF (green) and UBF & InCF (red)

The ideal mathematical-physical dynamic model of PKM,

ÿ = f(y, ẏ) + g(y)u (29)

is derived using Lagrange equations [12]. It can be transformed
into the discrete-time linear-like state-space model

xt+1 = At xt + Bt ut (30)
yt = C xt

The transformation uses a specific decomposition technique,
keeping A(x)x = [ẏT, f(y, ẏ)T ]T and B(x) = [0, g(y)T ]T .
The elements of model matrices At and Bt of a discretized
model depend on a current system state xt = [yTt , ẏ

T
t ]T . This

state corresponds to the system output y and its time derivative
ẏ in the discrete time instants τ = t Ts, where Ts is a sampling
period, t = 1, 2, . . . i.e. xt = x(τ)|τ=t Ts

: A(xt)→At and
B(xt)→Bt. The update of nonlinear model of robot dynamics
(29), decomposition and discretisation (30) are repeated in
each time instant t.

In the proposed MPC design, the matrices At and Bt are
considered to be constant i.e., At→A and Bt→B, within one
optimisation step, see (16) and (18).

Further, we consider that the states and outputs are influ-
enced by additive bounded disturbances.

Under above mentioned assumptions, the deterministic
model (30) converts into the stochastic model (1) whose
matrices A and B are updated in each time step. That model is
subsequently used for the state filtering as described in Section
III-A. The respective state estimates (12) are then utilised both
for the control design (see Sec. III-B) and for the next update
of At, Bt during the transformation of (29).

B. Experiment Setup

The controlled system is simulated by (29) and a uniform
noise is added to the output. The state estimates x̂t are
obtained by (12) using the model (1) with the noise bounds
set as follows: ρ = 10−6[m,m, rad,m s−1,m s−1, rad s−1]T ,

r = 10−3[m,m, rad]T . The control parameters in (13) are
set as follows: N = 10; Qyw = I , Q∆y = c I , c ∈ {0; 3},
Qu = 10−2 I , I is the identity matrix of the appropriate order.

In the presented experiments, we compare the performance
of the proposed MPC scheme—the state estimation by uniform
Bayesian filter (UBF) from Sec. III-A and the incremental cost
function (13) with Qyw, Qu and Q∆y , shortly (InCF)—with
the performance of the MPC scheme presented in [7] where the
state estimation is performed on a moving window (WIN) [13]
and the standard cost function (StCF) is used that correspond
to (13) with Q∆y = 0. Also, the combinations of UBF with
StCF and WIN with InCF are examined.

The quality of the control process is evaluated by the visual
comparison of the results and by the using a root mean square
error (RMSE) between outputs yt and references wt:

RMSEi =

√√√√1

t

t∑
t=1

(yt;i − wt;i)2
, i = {1, 2, 3}. (31)

We perform the following experiments: (I) the robot moves
along the whole reference trajectory as depicted in Figure 2
and (II) the robot moves from the start point to the first turning
point, then stops and it is required to stay in this position.

C. Results and Discussion

The experiments show that the proposed MPC with UBF
outperforms the previously proposed MPC with WIN from the
control inputs point of view, see Fig. 3. There, the behaviour
of two control inputs is demonstrated. Using UBF filter,
the control action are significantly smoother. Note that the
remaining two control inputs behaves in a similar way.

The numerical comparison of RMSEi values for experi-
ment (I) is presented in Table I. The results for both UBF and
WIN filter are comparable. The InCF brings the bigger values
for both filters.

The results of experiment (II) show that the UBF filter (both
with InCF and StCF) provides a better output stabilisation,
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Fig. 4. Experiment (II): Comparison of a zoomed part of output y1 (on the left) and y2 (on the right) for WIN & StCF (cyan), WIN & InCF (blue), UBF
& StCF (green) and UBF & InCF (red) with the reference (magenta).

TABLE I
EXPERIMENT (I): RMSEi (31) FOR THE VARIOUS COMBINATION OF

FILTERS AND COST FUNCTIONS.

i UBF&InCF UBF& StCF WIN& InCF WIN& StCF
1 1, 01.10−3 0, 69.10−3 1, 05.10−3 0, 73.10−3

2 0, 94.10−3 0, 71.10−3 0, 96.10−3 0, 72.10−3

3 0, 71.10−3 0, 71.10−3 0, 64.10−3 0, 66.10−3

see Fig. 4, comparing to MPC with WIN filter. This is
important e.g. when the PKM has to stop.

V. CONCLUSION

The paper proposes a novel solution to the output-feedback
MPC considering bounded state and output disturbances. The
proposed filter provides the state estimates that are used both
for control design and also for the update of state dependent
model matrices. The cost function (13) could be reduced fur-
ther in (21), if parallel observations of a related state sequence
are available, such as in a multi-sensor environment. Bayesian
knowledge transfer between such uniformly modelled state-
space processes has been reported recently in [14].

Comparing to the previous work of authors [7], the proposed
control scheme with UBF estimator provides significantly
smoother control actions and a better output stabilisation. The
adding of penalties of the output increment does not influ-
ence the control process significantly. Nevertheless, the WIN
estimator [13] would be useful in cases when the disturbance
bounds are unknown as it provides not only the state estimates
but also the estimates of the noise bounds.

The proposed solution considers an unconstrained positional
MPC. The overshoot of possible constraints is prevented by
the appropriate design of reference trajectory and its suitable
time parametrisation [15].

The following research will concentrate on a deeper analysis
of a proposed control scheme. An alternative choice of the
point state estimate will be investigated. Namely, the proposed

UBF provides state estimates in the form of uniform distribu-
tion (11), with only its mean (12) processed in the current
control design. However, the fully Bayesian state inference
(11) provides the opportunity for fully probabilistic design
of the control, based possibly on optimal transfer between
multiple filters [14]. REFERENCES

[1] A. Ordis and D. Clarke, “A state-space description for GPC controllers,”
Int. J. Systems SCI., vol. 24, no. 9, pp. 1727–1744, 1993.

[2] A. Zenere and M. Zorzi, “Model Predictive Control meets robust Kalman
filtering,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3774–3779, 2017.

[3] B. Ding and H. Pan, “Output feedback robust MPC with one free
control move for the linear polytopic uncertain system with bounded
disturbance,” Automatica, vol. 50, no. 11, pp. 2929 – 2935, 2014.

[4] A. Bemporad and A. Garulli, “Output-feedback predictive control of
constrained linear systems via set-membership state estimation,” Inter-
national Journal of Control, vol. 73, no. 8, pp. 655–665, 2000.

[5] F. Brunner, M. Müller, and F. Allgöwer, “Enhancing output feedback
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