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Abstract

The problem of sequentially transferring a data-predictive probability distribution from a source to a target Bayesian filter is
addressed in this paper. In many practical settings, this transfer is incompletely modelled, since the stochastic dependence
structure between the filters typically cannot be fully specified. We therefore adopt fully probabilistic design to select the optimal
transfer mechanism. We relax the target observation model via a scale-mixing parameter, which proves vital in successfully
transferring the first and second moments of the source data predictor. This sensitivity to the transferred second moment ensures
that imprecise predictors are rejected, achieving robust transfer. Indeed, Student-t state and observation models are adopted
for both learning processes, in order to handle outliers in all hidden and observed variables. A recursive outlier-robust Bayesian
transfer learning algorithm is recovered via a local variational Bayes approximation. The outlier rejection and positive transfer
properties of the resulting algorithm are clearly demonstrated in a simulated planar position-velocity system, as is the key property
of imprecise knowledge rejection (robust transfer), unavailable in current Bayesian transfer algorithms. Performance comparison
with particle filter variants demonstrate the successful convergence of our robust variational Bayes transfer learning algorithm in
sequential processing.

Keywords: Bayesian transfer learning, Student-t filtering, Incomplete modelling, Fully probabilistic design, Variational
Bayes, Robust transfer

1. Introduction

Transfer learning [1] is one of the fundamental paradigms
of artificial intelligence, addressing knowledge transfer between
two (or more) learning tasks, known as the source task(s) and
the target task(s), respectively [2, 3]. This research direction is
of substantial interest in the statistical machine learning com-
munity [4, 5], and applications have been reported in protein
folding [6], self-driving cars [7], natural language processing
[8], biomedical image analysis [9], etc. This paper is specifi-
cally interested in Bayesian transfer learning—the transfer of
knowledge expressed as probability distributions—and in the
development of a consistent algorithm for networks of Bayesian
filtering nodes.

In Bayesian transfer learning [10], the challenge is to up-
date the pre-prior distribution, prescribed via Bayesian foun-
dations [11], by conditioning on a probability distribution made
available by the source learning task [12, 13] (Fig. 1c). Stan-
dard Bayesian calculus relies on a complete specification of the
stochastic dependence between the quantities of the target and
source tasks, which we refer to as complete modelling. This
may be practicable if the source knowledge takes the form of
raw, stochastically modelled, data (i.e. a random process real-
ization). Recently, an axiomatically justified approach based
on fully probabilistic design (FPD) [14, 15]—which is rooted in
the minimum cross-entropy principle for optimal prior design
[16]—has emerged. FPD provides a principled and optimal way
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for designing a probability distribution that conditions on an-
other probability distribution. This approach—in contrast to
complete modelling—facilitates transfer in the form of a prob-
ability distribution and thus admits more general expressions
of source knowledge. The main advantage lies in the fact that
there is no longer the need to specify dependence assumptions
between the target and source tasks (Fig. 1b). We refer to this
evolved setting as incomplete modelling.

Recent work on FPD-based Bayesian transfer learning has
been concerned with static [17, 18] and dynamic [19] knowl-
edge transfer between a pair of Kalman filters. However, the
fragile assumptions of Gaussianity adopted by the Kalman fil-
ter are rarely met in practical applications. We want to con-
sider scenarios where outliers are present (i.e. outlierness or
heavy-tailedness), so that the nominal noise values (inliers) of
the state and observation processes are additionally contami-
nated by large, impulsive, and occasional disturbances. This
happens, for example, in unreliable sensors or when tracking
quickly manoeuvring targets. The performance and stability
of the Kalman filter can be severely undermined in such sit-
uations. This has led to an increased interest in robustifying
the Kalman filter against outliers [20]. Most of the recently
proposed approaches rely on the heavy-tailed properties of the
Student-t distribution to model only the observation process,
involving optimization techniques that utilize expectation max-
imization [21] and variational approximations [22–27]. The de-
sign of filtering algorithms that adopt the Student-t distribu-
tion also to model the state process leads to tractability prob-
lems. However, ignoring such heavy-tailed state behaviours can
have a significantly negative impact on estimation performance,
in applications such as those mentioned above. To address this
challenge, maximum likelihood-based techniques were proposed
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Figure 1: (a) No interaction: an isolated Bayesian filter, with a complete dependence structure between the variables, (zi, xi); (b) complete
interaction model : a joint Bayesian filter, with complete modelling of all variables, (zS,i, xS,i, zi, xi); (c) incomplete interaction model : source
and target Bayesian filters, with isolated models of variables, (zS,i, xS,i) and (zi, xi), respectively. No stochastic interaction model is specified.
The source filter provides its observation predictive distribution, FS. The target filter utilizes this source knowledge to improve its performance.

in [28, 29]. More recently, heavy-tailed state process assump-
tions were imposed indirectly by modelling the one-step-ahead
state predictor as Student-t, rather than directly modelling the
state transitions as Student-t [30–32]. Alternatives to Student-t
modelling of heavy-tailed state and observation processes have
recently been proposed in [33].

Therefore, in this paper, we provide the following contribu-
tions:

1. We develop an online FPD-based static Bayesian transfer
learning algorithm that accepts knowledge in the form of
an observation predictor provided by a source filter.

2. Both the source and target filters are susceptible to out-
liers in both their state and observation processes. We
propose a novel robust Student-t filter that is based on
(i) modelling the heavy-tailed nature of both the state
and observation processes with infinite Gaussian scale
mixtures (consistent with Student-t modelling), and (ii)
performing approximate inference using the coordinate
ascent mean-field variational approach [34, 35], in order
to recover a recursive algorithm.

3. We show that the introduction of a suitable auxiliary
variable overcomes previous problems in achieving ro-
bust transfer, i.e. in rejecting imprecise source informa-
tion. This variable augmentation now successfully trans-
fers the second moment information of the source.

4. We provide extensive simulation results in the context
of a planar position-velocity system, demonstrating that
the reported Student-t transfer learning algorithm is more
resistant to outliers than its Gaussian counterparts.

5. We also implement particle filtering variants of our vari-
ational Student-t algorithm, as well as of the classical
measurement vector fusion (MF) algorithm [36]. This
allows us to demonstrate the close tracking of our varia-
tional algorithm and these expensive stochastic variants,
supporting the claims for convergence of our algorithm.

In reference to contribution 2 above, note that our method
shares similarities with [31, 33] but adopts a novel second-order
extension in order to avoid informal model adaptations necessi-
tated in that previous work. This leads to a new computational
flow for suppressing outliers in the state process. In our previ-
ous work [17, 19], we designed FPD-based static and dynamic
Bayesian transfer learning strategies between a pair of Kalman
filters. However, as stated in contribution 3, they could not
achieve robust transfer, and it is a key contribution of this cur-
rent work to design a robust transfer scheme.

The rest of this paper is organized as follows: Section 2
specifies the Bayesian transfer learning problem, and its gen-
eral solution via the FPD-based framework, which transfers the
source observation predictive distribution to the target Bayesian
filter in incompletely modelled scenarios. Section 3 instantiates
Section 2 in the Student-t filtering context, introducing a novel
solution for handling outliers in the state process, and the es-
sential scale-mixture relaxation which ensures robust transfer
learning. Tractable and recursive processing is recovered via a
local variational Bayes approximation at each step. Section 4
studies the key aspects of the proposed approach via a simu-
lated planar position-velocity system, focusing on the robust-
ness of the transfer, and its rejection of outliers. Detailed ex-
perimental comparisons with particle filter variants reveal the
convergence properties of our sequential variational Bayesian
transfer learning algorithm. Section 5 discusses the mechanism
behind robust transfer learning and provides more comments
on the newly developed Student-t filter. Section 6 offers con-
cluding remarks.

2. Static FPD transfer of an observation predictor
between a pair of Bayesian filters

We consider a state-space model of the form

xi ∼ F(xi|xi−1), (1a)

zi ∼ F(zi|xi), (1b)

where the state variable xi ∈ x ⊆ Rnx is indirectly (noisily)
measured through the observation variable zi ∈ z ⊆ Rnz , with
i = 1, . . . , n being the discrete-time index (and x0 ≡ ∅ in the
condition). The model (1) is specified by the state transition
and observation probability distributions (1a) and (1b), respec-
tively. The initial state variable is distributed according to
x1 ∼ F(·). All probability models are assumed to be expressed
by distributions in this work. We use F to denote fixed-form
(specified) distributions, and M and Q to denote variational
(unspecified) distributions.

The fundamental and complete inferential object required
to devise inference algorithms for the state-space model (1) is
the joint model

F(zi, xi, xi−1|zi−1) = F(zi|xi)F(xi|xi−1)F(xi−1|zi−1)

= F(zi|xi)F(xi, xi−1|zi−1), (2)

where F(xi−1|zi−1) is the posterior distribution at the previ-
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ous time step and zi−1 = (z1, . . . , zi−1) is the past observation
record with z0 ≡ ∅. The central aim of this paper is to de-
sign an algorithm for transferring knowledge from a source to
a target Bayesian filter, see Fig. 1c. In line with Bayesian prin-
ciples, we assume that the source filter provides knowledge in
the form of a probability distribution, FS. Therefore, the tar-
get filter does not have access to the source observations, zS,i,
themselves. The inferential objective is to extend the basic set-
ting (2) of the (isolated) target filter to condition also on this
source distribution, FS, i.e. to elicit the distribution,

M(zi, xi, xi−1|FS, zi−1). (3)

The approach (3) provides notable benefits, including the fol-
lowing: (i) there is no need to specify explicit—and hard to
elicit—dependence assumptions between the source (zS,i, xS,i)
and target (zi, xi) quantities; (ii) FS facilitates more general
expressions of the source knowledge beyond crisp realizations,
zS,n; and (iii) the degrees-of-freedom (dofs) of FS—i.e. its suffi-
cient statistics—are independent of n in dimension (and typi-
cally low-dimensional) in conjugate Bayesian systems [11]. The
form of (3) is unknown in the absence of a complete model, and
we therefore need to adopt a mechanism for conditioning (2)
on FS in this case.

In this paper, we transfer the observation predictor, FS, of
the source filter. This is achieved by restricting the functional
form of the unknown joint model (3) according to

M(zi, xi, xi−1|FS, zi−1) ≡
FS(zi|zS,i−1)M(xi, xi−1|FS, zi−1), (4)

where “≡” denotes “is defined to be equal to”. More specifi-
cally, we constrain the FS-conditioned model of the target ob-
servations to be the observation predictor of the source filter
evaluated at (target) zi ∈ z:

M(zi|xi, xi−1,FS, zi−1) ≡ FS(zS,i|zS,i−1)
∣∣
zS,i=zi

.

Fixing the transferred FS(zi|zS,i−1) in (4), and admitting M(xi,
xi−1|FS, zi−1) as the only variational quantity, the knowledge-
constrained set of admissible models is defined to be

M ∈M ≡ {models (4) with FS(zi|zS,i−1) fixed

and M(xi, xi−1|FS, zi−1) variational}. (5)

The joint model (2) is the complete knowledge specification for
the selected (target) filter in the absence of knowledge transfer.
Therefore, we choose it as the ideal (reference) model,

MI(zi, xi, xi−1|zi−1) ≡ F(zi, xi, xi−1|zi−1). (6)

FPD chooses the optimal model, Mo, for an unknown model,
M, by searching for it within the knowledge-constrained set,
M ∈ M (5), and expressing preferences about M via the (pre-
specified) ideal model, MI (6). Specifically, the FPD-optimal
design, Mo ∈M, is chosen as the distribution that is closest to
MI in the minimum Kullback-Leibler divergence (KLD) sense:

Mo(zi, xi, xi−1|FS, zi−1) ≡ argmin
M∈M

D(M||MI), (7)

where the KLD from M to MI is given by

D(M||MI) = EM

[
log

(
M

MI

)]
,

and EM denotes the expected value under M.

Proposition 1. If the unknown augmented model is a member
of the knowledge constrained set, M ∈ M (5), and the ideal
augmented model, MI, is given by (6), then the FPD-optimal
augmented model—and the solution of (7)—is

Mo(zi, xi, xi−1|FS, zi−1) =

FS(zi|zS,i−1)Mo(xi, xi−1|FS, zi−1), (8)

where

Mo(xi, xi−1|FS, zi−1) ∝ F(xi, xi−1|zi−1)

× exp

{∫
log F(zi|xi)FS(zi|zS,i−1)dzi

}
. (9)

Proof. See Appendix A.

The FPD-optimal second-order state prior (9) processes the
source observation predictor in the incompletely modelled case.
It is the optimal update from the pre-prior F(xi, xi−1|zi−1) to
the prior Mo(xi, xi−1|FS, zi−1), and is subsequently adopted by
the target filter in (2) by assigning

F(xi, xi−1|FS, zi−1) ≡ Mo(xi, xi−1|FS, zi−1).

The FPD-optimal source-knowledge-constrained variant of (2)
then becomes

F(zi, xi, xi−1|FS, zi−1) ≡
F(zi|xi)Mo(xi, xi−1|FS, zi−1). (10)

The joint augmented model (10) is now sufficient for designing
the target filter.

3. Static FPD transfer of an observation predictor
between a pair of Student-t filters

Outliers are defined as sudden disturbances or anomalies
that are inconsistent with the assumed process model. Outlier-
ness can be modelled via a linear mixture of the (clean) process
model and another component with large variance. Examples
include the ε-contamination model [30] and the spike-and-slab
model [23]. In this paper, we opt to use the Student-t distri-
bution, St(·;µ,Σ, η), which models the outliers via tails that
are heavier than those of the standard Gaussian distribution,
N (·;µ,Σ). Here, µ is the mean vector, Σ is the scale ma-
trix (or covariance matrix for the Gaussian distribution), and
η > 0 is the dof parameter. The tails of the Student-t dis-
tribution are tuned by the degrees-of-freedom (dof) parame-
ter, η. If η = 1, the tails are heavy, thus modelling large
outliers. For increasing η, the tails become lighter. Indeed,
limη→∞ St(·;µ,Σ, η) = N (·;µ,Σ), in which case outlierness is
not explicitly modelled.

The conventional Kalman filter adopts a state-space model
(1) in Gaussian form [37], and thus fails to model outlierness,
significantly undermining its performance in outlier-present en-
vironments. In order to increase robustness to outliers, we relax
N (·;µ,Σ) to its Student-t generalization, St(·;µ,Σ, η), via the
following specification of the state-space model (1):

F(xi|xi−1) ≡ St(xi;Axi−1, Q, ω), (11a)

F(zi|xi) ≡ St(zi;Cxi, R, ν), (11b)
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where A, Q, and ω are, respectively, the state transition ma-
trix, state noise scale matrix, and state dof parameter; and C,
R, and ν are, respectively, the observation matrix, observation
noise scale matrix, and observation dof parameter. It is typ-
ical for observation processes to contain outliers when using
poor-quality sensors, sensors with sudden short-time failures,
or sensors that interfere with a nearby device. Specific out-
lier contexts include multipath fading in satellite positioning
applications [22] and electromagnetic wave reflections in radar
applications [38]. Separately, the state process is susceptible to
outliers in contexts such as the tracking a rapidly manoeuvring
target or the processing corrupted observations from an inertial
measurement unit [27, 39].

We ensure, by construction, that the posterior state distribution—
i.e. the filtering distribution—at time i− 1 is

F(xi−1|zi−1) ≡ N (xi−1;xi−1|i−1, Pi−1|i−1), (12)

where N (·;µ,Σ) denotes the Gaussian distribution with mean
vector, µ, and covariance matrix, Σ. Specifically, xi−1|i−1 and
Pi−1|i−1 are the state estimate and covariance matrix at step
i − 1, respectively. It was shown in [31] that (12) enhances
estimation performance in the context of (11), when compared
to adoption of a Student-t distribution.

The conditional and marginal distributions of the joint model
(10) are intractable under (11) and (12), as there is no closed-
form expression for a joint distribution constructed either from
Student-t distributions with different dof parameters [40], or
from a combination of Student-t and Gaussian distributions.
To simplify the subsequent design of the (approximate) infer-
ence algorithm, we use the fact that (11) can alternatively be
expressed as infinite Gaussian scale mixtures:

F(xi|xi−1) =

∫ ∞
0

N
(
xi;Axi−1, ξQ

)
iG
(
ξ; ω

2
, ω

2

)
dξ, (13a)

F(zi|xi) =

∫ ∞
0

N
(
zi;Cxi, λR

)
iG
(
λ; ν

2
, ν

2

)
dλ, (13b)

where iG
(
·; a, b

)
denotes the inverse-Gamma distribution with

shape and scale parameters, a and b, receptively; and ξ and λ
are scalar mixing variables. This allows us to reformulate the
state-space model (11) hierarchically as follows:

F(xi|ξ, xi−1) ≡ N
(
xi;Axi−1, ξQ

)
, (14a)

F(ξ) ≡ iG
(
ξ; ω

2
, ω

2

)
, (14b)

F(zi|λ, xi) ≡ N
(
zi;Cxi, λR

)
, (14c)

F(λ) ≡ iG
(
λ; ν

2
, ν

2

)
. (14d)

For the purposes of robust knowledge transfer, we augment
the conditional observation model (14c) with the further aux-
iliary variable, κ, as follows:

F(zi, λ, κ|xi) ≡ F(zi|κ, xi)F(λ)F(κ),

F(zi|κ, xi) ≡ N
(
zi;Cxi, κR

)
,

F(κ) ≡ iG
(
κ; α

2
, β

2

)
, (15)

and F(λ) is given by (14d). Consequently, the joint model (10)
is augmented in the following way:

F(zi, λ, κ, ξ, xi, xi−1|FS, zi−1) ≡
F(zi|λ, xi)Mo(λ, κ, ξ, xi, xi−1|FS, zi−1), (16)

where

Mo(λ, κ, ξ, xi, xi−1|FS, zi−1) ∝ F(λ, κ, ξ, xi, xi−1|zi−1)

× exp

{∫
log F(zi|κ, xi)FS(zi|zS,i−1)dzi

}
. (17)

The central inference objective of this paper is to compute
the joint augmented posterior model

F(λ, κ, ξ, xi|FS, zi). (18)

The normalizing constant of (18) is analytically intractable,
which prevents us from finding an exact closed-form expression
for computing (18). Therefore, we are forced to rely on ap-
proximate inference techniques. We adopt coordinate ascent
mean-field variational inference (variational Bayes) [35] as a lo-
cal approximation in each step of Bayesian filtering, since—as
we shall see—it recovers a computationally efficient recursive
filtering algorithm with good performance. In our current ap-
proach, we opt to approximate the second-order model,

F(λ, κ, ξ, xi, xi−1|FS, zi), (19)

which is proportional to (16). This extension will engender
second-order interactions in the resulting approximate distri-
bution, which will prove vital in outlier suppression. We will
discuss this point further in Section 5. Specifically, we seek an
optimal posterior distribution from the mean-field variational
class, as follows:

Q(λ, κ, ξ, xi, xi−1|FS, zi) ≡ Q(κ|FS, zi)

× Q(λ|FS, zi)Q(ξ|FS, zi)Q(xi, xi−1|FS, zi). (20)

The joint factor, Q(xi, xi−1|FS, zi), is the key element in cor-
rectly handling the outliers in the state process. After marginal-
izing xi−1, it yields the required FS-conditioned state filtering
factor, Q(xi|FS, zi).

Coordinate ascent mean-field variational inference seeks a
local optimum of the variational objective function—the evi-
dence lower bound [35]—by iteratively optimizing every inde-
pendent (free) factor,

Qo(θj) ∝ exp
{
E-θj [log F(Θ)]

}
, (21)

while keeping the complementary ones,

Qo
-θj =

∏
l 6=j

Qo(θl), (22)

fixed. Here, Θ ≡ (θ1, . . . , θm), and E-θj denotes the expected
value with respect to the complementary factors (22).

Proposition 2. If the joint augmented model (16) is specified
by (14) and (15), and the source observation predictor is

FS(zi|zS,i−1) ≡ Qo
S(zi|zS,i−1) = N (zi; zS,i|i−1, RS,i|i−1), (23)

then the optimal variational factors of (20) are

Qo(ξ|FS, zi) = iG
(
ξ;
aξ
2
,
bξ
2

)
, (24a)

Qo(λ|FS, zi) = iG
(
λ; aλ

2
, bλ

2

)
, (24b)

Qo(κ|FS, zi) = iG
(
κ; aκ

2
, bκ

2

)
, (24c)

Qo(xi, xi−1|FS, zi) =
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N

([
xi
xi−1

]
;

[
xi|i
xi−1|i

]
,

[
Pi|i Pi|iL

>

LPi|i LPi|iL
> + Pi−1|i

])
, (24d)

and, specifically, the FPD-optimal state predictor is

Qo(xi|FS, zi−1) = N (xi; x̄i|i−1, P̄i|i−1). (25)

The shape and scale hyperparameters of (24a-24c) are:

aξ = ω + nx,

bξ = ω + tr
{
E
[
(xi −Axi−1)(xi −Axi−1)>

]
Q−1}, (26)

aλ = ν + nz,

bλ = ν + tr
{
E
[
(zi − Cxi)(zi − Cxi)>

]
R−1}, (27)

aκ = α+ nz,

bκ = β + tr
{(
RS,i|i−1 + E

[
(zS,i|i−1 − Cxi)

× (zS,i|i−1 − Cxi)>
])
R−1}. (28)

The shaping parameters of (24d) and (25) are given by

xi−1|i = xi−1|i−1 + L(xi|i − xi|i−1),

Pi−1|i = (Inx − LA)Pi−1|i−1,
(29)

xi|i = x̄i|i−1 +K(zi − z̄i|i−1),

Pi|i = (Inx −KC)P̄i|i−1,
(30)

x̄i|i−1 = xi|i−1 +M(zS,i|i−1 − zi|i−1),

P̄i|i−1 = (Inx −MC)Pi|i−1.
(31)

Furthermore, the gain terms are

K = P̄i|i−1C
>R̄−1

i|i−1,

L = Pi−|i−1A
>P−1

i|i−1,

M = Pi|i−1C
>R−1

i|i−1. (32)

The remaining statistics are

xi|i−1 = Axi−1|i−1,

Pi|i−1 = APi−1|i−1A
> + E[ξ−1]−1Q, (33)

z̄i|i−1 = Cx̄i|i−1,

R̄i|i−1 = CP̄i|i−1C
> + E[λ−1]−1R,

zi|i−1 = Cxi|i−1,

Ri|i−1 = CPi|i−1C
> + E[κ−1]−1R.

Proof. See Appendix B.

The shaping parameters of the variational factors (24) are
coupled, and so there is no closed-form algebraic solution to up-
date them directly. Instead, the computation of these factors is
performed using a fixed-point iterative approach with N con-
secutive iterations per filtering step. Having expressed the re-
quired expected values in Proposition 2 in terms of the induced
statistics, we obtain the iterative variational Bayes scheme sum-
marized in Algorithm 1. Notice that (26, 29), (27, 30), and (28,
31) are represented by the same algebraic structure, which we
therefore encode via the subroutine B. The latter is invoked
three times per iteration for each step of the algorithm, namely
the time-and-smoothing step, the transfer learning step, and
the data step.

Algorithm 1: Student-t static variational Bayesian

transfer learning
Input: xi−1|i−1, Pi−1|i−1, zi, zS,i|i−1, RS,i|i−1, A, C, Q,

R, ω, ν, α, β, N

1 Initialize x
(0)
i|i = xi−1|i−1, P

(0)
i|i = Pi−1|i−1,

x
(0)
i−1|i = xi−2|i−1, P

(0)
i−1|i = xi−2|i−1

2 for k = 0, . . . , N − 1 do

3 Time-and-smoothing step:

4 Σ = (Inx −AL)P
(k)
i|i (Inx −AL)> +AP

(k)
i−1|iA

>

5 (x
(k+1)
i−1|i , P

(k+1)
i−1|i , xi|i−1, Pi|i−1)=B(ω, ω, x

(k)
i|i , A, Q,

x
(k)
i−1|i, Σ, xi−1|i−1, Pi−1|i−1, nx)

6 Transfer learning step:

7 Σ = CP
(k)
i|i C

> +RS,i|i−1

8 (x̄i|i−1, P̄i|i−1, z̄i|i−1, R̄i|i−1)=B(α, β, zS,i|i−1, C, R,

x
(k)
i|i , Σ, xi|i−1, Pi|i−1, nz)

9 Data step:

10 Σ = CP
(k)
i|i C

>

11 (x
(k+1)
i|i , P

(k+1)
i|i , zi|i−1, Ri|i−1)=B(ν, ν, zi, C, R, x

(k)
i|i , Σ,

x̄i|i−1, P̄i|i−1, nz)

12 Set xi|i=x
(N)
i|i , Pi|i=P

(N)
i|i , xi−1|i=x

(N)
i−1|i, Pi−1|i=P

(N)
i−1|i

Output: xi|i, Pi|i

(x̂, P̂ , ŷ, Ŝ)=B(c, d, y, H, S, µ, Σ, x, P , n)

13 a = c+ n

14 b = d+ tr
{

[(y −Hµ)(y −Hµ)> + Σ]S−1
}

15 ŷ = Hx

16 Ŝ = HPH> + b
a
S

17 N = PH>Ŝ−1

18 x̂ = x+N(y − ŷ)

19 P̂ = P −NŜN>

Remark 1. The isolated Student-t filter is obtained by approx-
imating the second-order model, F(λ, ξ, xi, xi−1|zi), c.f. (19),
via an optimal posterior distribution from the mean-field vari-
ational class,

Q(λ, ξ, xi, xi−1|zi) ≡ QS(λ|zi)Q(ξ|zi)Q(xi, xi−1|zi).

This is accomplished by a simple adaptation of the proof of
Proposition 2 (which we do not present here for brevity). The
isolated source Student-t filter (Fig. 1c) is designed in exactly
the same way. Consequently, the source filter provides the ob-
servation predictor, FS, in the Gaussian form (23).

4. Experiments

This section presents an extended simulation context in or-
der to demonstrate the main features of the proposed method:
(i) convergence of the local—variational Bayes—approximate
inference scheme, (ii) robust and versatile transfer learning
properties in the outlier-free setting, (iii) resistance to outliers
of varying intensity, and (iv) estimation performance for vari-
ous qualities of source knowledge in outlier-present settings. In
all our experiments, we consider the linear state-space model
with the following structure:

xi+1 = Axi + wi, wi ∼ St(wi;0, Q, ω),
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Algorithm Description
Student-t filter with No Transfer (SNT) Remark 2
Student-t Static Bayesian Transfer learning (SST) Remark 3
Student-t Measurement vector Fusion (SMF) Remark 4
Gaussian filter with No Transfer (GNT) [41]
Gaussian Static Bayesian Transfer learning (GST) [17]
Gaussian Measurement vector Fusion (GMF) [36] adapted with [17]
Particle filter with No Transfer (PNT) [42]
Particle Static Bayesian Transfer learning (PST) Remark 5
Particle Measurement vector Fusion (PMF) Remark 6

Table 1: The list of algorithms compared in the simulation study.
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Figure 2: The position MNE versus the number of iterations, N , for the NT filters (left), MF filters (middle), and ST filters (right). The results
are averaged over 100 independent simulation runs, with the solid line being the median and the shaded area delineating the interquartile
range.

zi = Cxi + vi, vi ∼ St(vi;0, R, ν),

zS,i = Cxi + vS,i, vS,i ∼ St(vS,i;0, RS, νS), (34)

where wi ∈ x, vi ∈ z, and vS,i ∈ z are the target state, tar-
get observation, and source observation noise variables, respec-
tively. We study the position-velocity model for tracking a
highly manoeuvring target in the plane (R2). The parameters
of (34) are therefore specified as [43]:

A =

[
1 ∆
0 1

]
⊗ I2, Q = q

[
∆3

3
∆2

2
∆2

2
∆

]
⊗ I2,

C =
[
I2 O2

]
, R = rI2, RS = rSI2.

Here, the state vector is xi ≡ (px,i, py,i, vx,i, vy,i), where px,i
and py,i are position coordinates in the x and y axes, respec-
tively, and vx,i and vy,i are the velocities in the x and y axes,
respectively. Only the positional states are (noisily) observed.
The matrices of this model result from the discretization of the
standard kinematic equations (see, for example, Section 6.2
[44]). We set the sampling period, state noise power spectral
density, source observation variance, and target observation
variance as ∆ = 0.1s, q = 1m2/s3, rS = 10m2 and r = 100m2,
respectively. The initial posterior state estimate and covariance
matrix are x1|0 = 0 and P1|0 = I4, respectively. The dof pa-
rameters of the target filter (14) are taken as ω = 4, ν = 1, and
the associated parameters of the inverse gamma prior (15) as
α→ 0, β → 0. The dof parameters of the source filter are (also)
taken as ωS = 4 and νS = 1. Note that the correct parameter
values are adopted in the generative model (34), and so we do
not allow any model misspecification in these simulations. (34)

implies that the common state process, xi, is observed (with
outlierness) via the conditionally independent source and tar-
get observation processes, zS,i and zi, respectively. The state
estimation performance is evaluated via the mean-norm error
(MNE) between the true state and its posterior estimate, i.e.
MNE = 1

n

∑n
i=1 ||xi − xi|i||, where || · || is the Euclidean norm

and n = 100. We compare the algorithms listed in Table 1.

Remark 2. The (target) SNT filter is the isolated Student-
t filter (Fig. 1a) without any source information (Remark 1).
It can readily be obtained from Algorithm 1 by omitting the
transfer learning step (lines 6-8) and setting x̄i|i−1 ≡ xi|i−1

and P̄i|i−1 ≡ Pi|i−1 in the data step. This filter acts as the
datum for all the transfer learning algorithms.

Remark 3. The SST filter (Algorithm 1) receives the source
observation predictor, FS (23), of the isolated source SNT filter
(Fig. 1c). FS is an inference from learning the hidden state
process from the history, zS,i, of the source observation process,
and so validly constitutes ‘transfer learning’, i.e. we learn about
the state process via the source task and use this knowledge to
enhance the target task.

Remark 4. The SMF filter is the implied Student-t version
of the measurement vector fusion (MF) algorithm [36], being a
specific case of Fig. 1b. It is obtained by applying (the prod-
uct of) the observation models (34) in the target SNT filter
(Remark 2). The algorithm then follows from a simple adap-
tation of the proof of Proposition 2. The main disadvantage
of this classical MF approach is the requirement for complete
specification of the explicit dependence assumptions between the
source and target tasks (i.e. complete modelling), which is—
importantly—not required by our SST filter (see Section 1).
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Figure 3: The position MNE versus the source observation variance, rS for α and β varying (left), and α fixed and β varying (right).
The results are averaged over 1000 independent simulation runs, with the solid line being the median and the shaded area delineating the
interquartile range.

Remark 5. The PST filter follows from an application of se-
quential importance sampling and resampling [42] in the con-
text of Proposition 1. We directly use the Student-t state-space
model (11) without its scale mixture decomposition. To imple-
ment the exponential term in (9), the PST filter receives the
source observation predictor, FS, in the form of an empirical
distribution provided by the isolated source PNT filter.

Remark 6. The PMF filter follows from application of sequen-
tial importance sampling and resampling [42] in the MF context
described in Remark 4.

4.1. Convergence properties

Although rigorous treatment of the convergence properties
of non-sequential variational Bayes methods has recently been
proposed [45], similar results on sequential variational Bayesian
filtering are still elusive. On the other hand, particle filters [42]
constitute a theoretically well supported stochastic approxima-
tion for the sequential Bayesian filtering problem. The essen-
tial feature of particle filters is that—with certain regularity
assumptions—the approximation of the expected value of an
unbounded function under the filtering distribution converges
in the Lp-norm (for p ≥ 2) to the exact solution as the number
of particles approaches infinity [46]. We adopt particle filters
in our current simulation study in order to analyse the conver-
gence properties of our proposed algorithm, whose tractability
has been arranged via sequential local variational Bayes ap-
proximation at each step.

In Fig. 2, we present the position MNE of the SNT, SMF,
and SST filters as the function of the number of (variational
Bayes) iterations, N . The PNT, PMF, and PST filters run with
500 particles, the bootstrap proposal distribution, and multi-
nomial resampling [42], delineating a sufficient lower MNE level
in the present example. Increasing the number of particles ex-
tends this level only insignificantly, since the state-space model
does not contain nonlinearities. The GNT, GMF, and GST
filters provide an upper MNE level, which we seek to outper-
form. We see that the proposed Student-t filters indeed have
lower MNEs than the upper MNE of the Gaussian filters, for
as little as N = 1. Moreover, when increasing the number of it-
erations, the Student-t filters converge close to the lower MNE
of the particle filters with no further improvements for N > 16.

This experiment illustrates that our variational Student-t al-
gorithm converges close to the stable solution provided by the
particle filters, as the number of iterations, N , increases.

4.2. Robust transfer learning

The key feature of any transfer learning algorithm is its
ability to reject poor-quality source knowledge, i.e. to achieve
robust transfer. We demonstrate that the proposed method
not only provides robust transfer but also allows us to tune the
amount of transferred knowledge when processing high-quality
source knowledge. We show this in the important special case of
transfer between Kalman filters, and so we consider the outlier-
free regime with the dof parameters of the source and target
filters set to ω →∞ and ν →∞ (14b,14d). Under this setting,
the tails of the Student-t distributions (34) correspond to the
tails of the Gaussian distributions. Our earlier treatments of
this situation—without the κ augmentation—failed to reject
high-variance source knowledge [17, 19].

Fig. 3 illustrates how the MNE of the target filter depends
on the quality of the source knowledge, by fixing the target ob-
servation variance, r, and varying the source observation vari-
ance, rS. The GNT filter is isolated (i.e. it does not accept
any source knowledge), and therefore it delineates the baseline
MNE performance. The GST and SST filters accept source
knowledge, and their MNE thus depends on the ratio of r to
rS. We say that these filters deliver positive or negative knowl-
edge transfer if their MNE is below or above the performance
level of the GNT filter, respectively. We see that the GST fil-
ter developed in [17] yields positive transfer for rS < 10, but
negative transfer for rS > 10. Accordingly, since the MNE of
the GST filter does not saturate at the baseline MNE level of
the GNT filter, we say that the GST filter is not robust, i.e. it
does not reject poor-quality source knowledge.

Fig. 3 (left) shows how different values of α = β = δ (15)
influence the transfer learning properties of the developed SST
filter for poor-quality source knowledge (rS > 10). We observe
that, for δ →∞, the SST filter recovers the performance of the
GST filter. A key result is that—as δ decreases—the ability to
reject poor-quality source knowledge improves. Specifically, for
δ = 1, the SST filter provides positive transfer for rS < 10 and
robust transfer for rS > 10. This investigation demonstrates
that δ can be set by the modeller to enable any amount of
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Figure 4: The position MNE versus the outlier intensity in the common states (left), source observations (middle), and target observations
(right). The results are averaged over 1000 independent simulation runs, with the solid line being the median and the shaded area delineating
the interquartile range.

rejection of poor-quality source knowledge, via δ → ∞ (no
rejection) to δ = 1 (complete rejection), respectively.

Fig. 3 (right) demonstrates how the parameters α and β of
(15) influence the transfer learning properties of the developed
SST filter in the interval of high-quality source knowledge, rS <
10. Specifically, we set α = 10−8 and change β from 10−8 to
108. This allows us to utilize all, or no, available high-quality
source information, for β = 10−8, or β = 108, respectively.
For rS > 10, and for any setting of β, the SST filter achieves
robust transfer. Importantly, for β → 0, the proposed SST
filter surpasses the GST filter. We offer more comments on
these regimes in Section 5.

4.3. Robustness to state and observation outliers

Another principal purpose of the developed Student-t-based
transfer learning algorithm—apart from robust transfer (above)—
is to provide improved estimation performance in applications
that suffer from outliers. Therefore, we compare the Student-t
filters with the Gaussian filters when changing the outlier in-
tensity (the dof parameters) in the state, source observation,
and target observation noise variables (34).

Fig. 4 (left) shows the position MNE versus the state dof
parameter, ω. The source and target observation dof parame-
ters are set to νS →∞ and ν →∞. In this case, the Student-t
source and target observation distributions approach the Gaus-
sian distribution (Section 3). For ω = 1—corresponding to sub-
stantial outlier intensity—the difference between the Student-t
and Gaussian filters is significant. When increasing ω (i.e. ap-
proaching Gaussianity), the MNE of the Student-t filters ap-
proaches the MNE of the Gaussian filters, eventually reaching
the same values as ω →∞.

To assess how the outliers affect the transfer learning prop-
erties of the proposed SST filter, we present Fig. 4 (middle)
which depicts the position MNE while changing the source ob-
servation dof parameter, νS. The target state and observa-
tion dof parameters are set to ω → ∞ and ν → ∞. In this
case, there is obviously no difference between the GNT and
SNT filters, since they are not influenced by the source knowl-
edge, and—as before—the Student-t noise distributions coin-
cide with the Gaussian noise distributions. For large outliers
in the source observations, νS = 1, we see that the Student-t
filters offer increased performance compared to the Gaussian

filters. Again, as the source observation dof parameter ap-
proaches infinity, νS →∞, we obtain a performance equivalent
to the Gaussian filters.

The results in Fig. 4 (right)—where ω →∞ and νS →∞—
demonstrate that all methods behave in a similar way compared
to Fig. 4 (left). Overall, the results in Fig. 4 confirm that the
Student-t filters provide a lower MNE than the Gaussian fil-
ters when there are (even small) departures from the Gaussian
modelling assumptions. Since the source and target observa-
tion variances, r and rS, are set differently, we can notice the
performance differences between the filters with and without
transfer learning abilities.

4.4. Influence of source observation variance, rS, on trans-
fer

Fig. 5 illustrates the contrast between filters with and with-
out the heavy-tailed assumptions on the state and observation
processes while considering the presence of outliers and chang-
ing the quality of the source knowledge, controlled by rS. Sim-
ilarly as before, the GNT and SNT filters do not, of course,
receive source knowledge, but they do provide a reference MNE
level against which the transfer-based Gaussian and Student-t
filters, respectively, can be compared. The clear difference be-
tween these two MNE levels demonstrates that the SNT filter
provides increased resistance to outliers. The performance of
the remaining filters depends on the ratio of r to rS. The filters
deliver positive or negative knowledge transfer whenever their
MNE falls below or rises above the reference level, respectively.
In particular, the GST filter offers positive transfer for rS < 10,
but negative transfer for rS > 10 since the MNE does not satu-
rate at the reference level of the GNT filter and thus does not
reject imprecise source knowledge (i.e. it is not robust). The
SST filter, on the other hand, provides positive transfer for
rS < 10 and successfully rejects imprecise source knowledge by
staying at the reference level of the SNT filter for rS > 10 (i.e.
it is robust). Similarly, both the GMF and SMF filters—which
imply a completely specified stochastic dependence structure
between source and target processes—provide positive transfer
and reject imprecise source knowledge (again, robust transfer).
An overall look at the MNE and the associated interquartile
ranges in Fig. 5 shows that the Gaussian filters are significantly
more prone to outliers than the Student-t filters.
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Figure 5: The MNE of the target filter versus the observation variance rS of the source filter for position (left) and velocity (right). The results
are averaged over 1000 independent simulation runs, with the solid line being the median and the shaded area delineating the interquartile
range.

5. Discussion

Recall that the principal objective of the current paper is to
achieve robust Bayesian knowledge transfer, i.e. the rejection of
imprecise external knowledge. This was previously done only
by an informal adaptation of FPD-optimal algorithms in the
context of Kalman filters [17, 19]. The non-robustness is seen
in the GST filter performance in Fig. 5. The problem arises
from the fact that the FPD-optimal transfer is insensitive to
the second moment of the source observation predictor in the
Gaussian case [47]. The informal adaptation which was necessi-
tated in order to achieve robust Gaussian transfer is obviated in
the formal approach of this paper. The key progression in the
current work has been the introduction of the auxiliary vari-
able, κ (15). This allows the successful transfer of the source
predictive covariance, RS,i|i−1, as seen in (28). Equivalently,
in the resulting Algorithm 1, Σ in line 7 successfully processes
this second-order source statistics, entering the subroutine B as
the seventh input variable. The framework reported in the cur-
rent paper generalizes the hyperparameter-based relaxation for
FPD-optimal robust transfer between Kalman filters [47], by
allowing for Student-t outlierness in all the involved processes.
Technically, the framework in the current paper specializes to
[47] by setting ω → ∞ and ν → ∞ in (26) and (27), respec-
tively.

We have shown that the prior relaxation of κ via (15) is
vital to the success of transferring higher-order moments of the
source observation predictor, in that the transfer fails at high δ
(Fig. 3). In this regime, bκ approaches δ (28) and the sensitivity
on RS,i|i−1 is lost.

This augmentation—at the cost of tractability in the ex-
act FPD-optimal transfer learning algorithm—fails to preserve
fixed functional forms sequentially. We have shown that the
variational Bayes approximation, introduced as a local approx-
imation at each time i, achieves functional closure of the para-
metric classes proposed in (23,24,25), recovering the recursive
Algorithm 1. Note, however, that there are no guarantees in
respect of the distributional accuracy achieved after sequen-
tial application of a local approximation such as variational
Bayes [48].

The local variational Bayes approximation has previously
been applied in Bayesian filtering [48], and, specifically, in fil-
tering with outlier robust Student-t models [31, 33]. In the

latter, the variational Bayes approximation proves to be in-
tractable, and the authors overcome this problem via an infor-
mal adaptation of the one-step-ahead state predictor. We have
circumvented this requirement in the current paper by approxi-
mating the second-order model (19), rather than the first-order
model (18) which was adopted in [31, 33]. The resulting benefit
for our algorithm is best seen in (33), where the dependence
on state auxiliary variable ξ (13a) is engendered in the second
term on the right-hand side, effectively modulating the nominal
state-noise scale matrix, Q, instead of the covariance matrix of
the one-step-ahead state predictor, Pi|i−1, as in [31, 33].

6. Conclusion

The sequential FPD-optimal Bayesian transfer learning al-
gorithm developed in this paper has provided an important ad-
vance beyond previously available variants. The scale-mixture
relaxation of the target observation process has allowed the
transfer of higher-order moments of the source distribution,
and we have seen that this ensures robust transfer. The re-
ported framework explicitly models outliers in the source and
target processes via the heavy-tailed Student-t distribution. In
this respect, we proposed a novel and formal approach for deal-
ing with outliers in the state process, which was previously un-
available in the literature. The simulation results in Section 4.4
show clearly that the algorithm rejects state and observation
outliers when the isolated Kalman filter cannot.

The comparisons with MF-based algorithms reveal that the
latter can still outperform our FPD-optimal Bayesian trans-
fer, but they require a complete model of the dependence be-
tween the source and target state processes, which ours does
not. Real-process environments that depart from these assump-
tions—which, anyway, are hard to elicit in practice—will un-
dermine the MF performance. These problems are resisted by
our FPD-optimal approach, which is, intrinsically, an optimal
model completion strategy, and so does not depend on these
fragile assumptions.
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Appendix

A. Proof of Proposition 1

Applying (4) and (6) in (7) leads to

D(M||MI) =

∫
FS(zi|zS,i−1)M(xi, xi−1|FS, zi−1)

× log

(
FS(zi|zS,i−1)M(xi, xi−1|FS, zi−1)

F(zi|xi)F(xi, xi−1|zi−1)

)
× dzidxidxi−1

=

∫
M(xi, xi−1|FS, zi−1)

×
(

log
M(xi, xi−1|FS, zi−1)

F(xi, xi−1|zi−1)
− EFS [log F(zi|xi)]

)
× dzidxidxi−1 −HFS

=

∫
M(xi, xi−1|FS, zi−1)

×
(

log
M(xi, xi−1|FS, zi−1)

F(xi, xi−1|zi−1) exp {EFS [log F(zi|xi)]}

)
× dzidxidxi−1 −HFS + log cMo − log cMo

=

∫
M(xi, xi−1|FS, zi−1)

× log

(
M(xi, xi−1|FS, zi−1)

Mo(xi, xi−1|FS, zi−1)

)
dxidxi−1

−HFS − log cMo ,

where

HFS = −
∫

FS(zi|zS,i−1) log FS(zi|zS,i−1)dzi

is the differential entropy of FS, and

cMo =

∫
F(xi, xi−1|zi−1)

× exp {EFS [log F(zi|xi)]} dxidxi−1

is the normalizing constant.

B. Proof of Proposition 2

We start the proof by finding an expression for the logarithm
of (16), which—under (14) and (15)—yields

log F(zi, λ, κ, ξ, xi, xi−1|FS, zi−1) =

− nz
2

log λ− 1

2
(zi − Cxi)>λ−1R−1(zi − Cxi)

− ν + 2

2
log λ− ν

2λ

− nz
2

log κ− 1

2
(zS,i|i−1 − Cxi)>κ−1R−1(zS,i|i−1 − Cxi)

− α+ 2

2
log κ− β

2κ
− 1

2
tr{RS,i|i−1κ

−1R−1}

− nx
2

log ξ − 1

2
(xi −Axi−1)>ξ−1Q−1(xi −Axi−1)

− ω + 2

2
log ξ − ω

2ξ

− 1

2
(xi−1 − xi−1|i−1)>P−1

i−1|i−1(xi−1 − xi−1|i−1) + c, (B.1)

where c contains the constant terms.

After using (21) with (B.1), we gather the ξ-dependent terms
as

logQo(ξ|FS, zi) =

− nx
2

log ξ − 1

2ξ
tr{E-ξ[(xi −Axi−1)(xi −Axi−1)>]Q−1}

− ω + 2

2
log ξ − ω

2ξ
+ cξ,

with cξ being a ξ-independent constant. This can be rearranged
as

logQo(ξ|FS, zi) =
aξ + 2

2
log ξ − bξ

2ξ
+ cξ

= log iG
(
ξ;
aξ
2
,
bξ
2

)
+ cξ,

where the shaping parameters are given by (26).

Applying (21) and (B.1) allows us to gather the λ-dependent
terms as

logQo(λ|FS, zi) =

− nz
2

log λ− 1

2λ
tr{E-λ[(zi − Cxi)(zi − Cxi)>]R−1}

− ν + 2

2
log λ− ν

2λ
+ cλ,

where cλ is a λ-independent constant. This leads to

logQo(λ|FS, zi) =
aλ + 2

2
log λ− bλ

2λ
+ cλ

= log iG
(
λ; aλ

2
, bλ

2

)
+ cλ,

where the shaping parameters are presented in (27).

Utilizing (21) with (B.1) reveals the κ-dependent terms

logQo(κ|FS, zi) =

− nz
2

log κ− 1

2κ
tr{E-κ[(zS,i|i−1 − Cxi)(zS,i|i−1 − Cxi)>]R−1}

− α+ 2

2
log κ− β

2κ
− 1

2κ
tr{RS,i|i−1R

−1}+ cκ,

with cκ being a κ-independent constant. Hence:

logQo(κ|FS, zi) =
aκ + 2

2
log κ− bκ

2κ
+ cκ

= log iG
(
κ; aκ

2
, bκ

2

)
+ cκ,

where the shaping parameters are summarized by (28).

Adopting (21) and (B.1), the (xi, xi−1)-dependent terms are

logQo(xi, xi−1|FS, zi) =

− 1

2
(zi − Cxi)>E-x[λ−1]R−1(zi − Cxi)

− 1

2
(zS,i|i−1 − Cxi)>E-x[κ−1]R−1(zS,i|i−1 − Cxi)

− 1

2
(xi −Axi−1)>E-x[ξ−1]Q−1(xi −Axi−1)

− 1

2
(xi−1 − xi−1|i−1)>P−1

i−1|i−1(xi−1 − xi−1|i−1) + cx,

(B.2)

where x ≡ (xi, xi−1). It can be seen that (B.2) is—up to the
additive constant cx—equivalent to the logarithm of the joint
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density of the variables (zi, xi, xi−1). Therefore, we have

Qo(zi, xi, xi−1|FS, zi−1) = N (zi;Cxi,E[λ−1]−1R)

×N (zS,i|i−1;Cxi,E[κ−1]−1R)N (xi;Axi−1,E[ξ−1]−1Q)

×N (xi−1;xi−1|i−1, Pi−1|i−1). (B.3)

To find a closed-form expression for the FS-conditioned joint
smoothing density, we invoke the chain rule:

Qo(xi, xi−1|FS, zi) = Qo(xi−1|xi,FS, zi−1)Qo(xi|FS, zi). (B.4)

The filtering density in (B.4) is derived using

Qo(xi|FS, zi) ∝ Qo(zi|xi)Qo(xi|FS, zi−1). (B.5)

After marginalizing xi−1 in (B.3), we choose

Qo(zi|xi)=N (zi;Cxi,E[λ−1]−1R)

Qo(xi|FS, zi−1)≡N (zS,i|i−1;Cxi,E[κ−1]−1R)N (xi;xi|i−1, Pi|i−1)

=N (xi; x̄i|i−1, P̄i|i−1),

where {xi|i−1, Pi|i−1} and {x̄i|i−1, P̄i|i−1} are given in (33) and
(31), respectively. Using these distributions, (B.5) leads to

Qo(xi|FS, zi) = N (xi;xi|i, Pi|i), (B.6)

where {xi|i, Pi|i} is given in (30).

The backward transition kernel in (B.4) is computed as

Qo(xi−1|xi,FS, zi−1) ∝ Qo(xi|xi−1)Qo(xi−1|FS, zi−1).

From (B.3), taking

Qo(xi|xi−1) = N (xi;Axi−1,E[ξ−1]−1Q),

Qo(xi−1|FS, zi−1) = N (xi−1;xi−1|i−1, Pi−1|i−1),

we can write

Qo(xi−1|xi,FS, zi−1) = N (xi−1; x̃i−1|i, Pi−1|i), (B.7)

where

x̃i−1|i = xi−1|i−1 + L(xi − xi|i−1),

Pi−1|i = Pi−1|i−1 − LPi|i−1L
>,

with L given in (32). Finally, inserting (B.6) and (B.7) in (B.4)
yields (24d).
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48. Šmidl V, Quinn A. Variational Bayesian filtering. IEEE Trans-
actions on Signal Processing 2008;56(10):5020–30. doi:10.
1109/TSP.2008.928969.

12

http://dx.doi.org/10.1007/s00034-018-0972-8
http://dx.doi.org/10.1007/s00034-018-0972-8
http://dx.doi.org/10.1109/TSP.2009.2039731
http://dx.doi.org/10.1109/TSP.2009.2039731
http://dx.doi.org/10.1109/ICASSP.2013.6638770
http://dx.doi.org/10.1109/TAES.2017.2651684
http://dx.doi.org/10.1109/TAES.2017.2651684
http://dx.doi.org/10.1016/j.sigpro.2018.06.014
http://dx.doi.org/10.1016/j.sigpro.2018.06.014
http://dx.doi.org/10.1109/TSMC.2017.2778269
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1109/CDC.1976.267794
http://dx.doi.org/10.2514/1.51000
http://dx.doi.org/10.1109/ACCESS.2017.2726519
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/TAES.2003.1261132
http://dx.doi.org/10.1109/TAES.2003.1261132
http://dx.doi.org/10.1080/01621459.2018.1473776
http://dx.doi.org/10.1109/TSP.2011.2135349
http://dx.doi.org/10.1109/MLSP.2019.8918783
http://dx.doi.org/10.1109/TSP.2008.928969
http://dx.doi.org/10.1109/TSP.2008.928969

	Introduction
	Static FPD transfer of an observation predictor between a pair of Bayesian filters
	Static FPD transfer of an observation predictor between a pair of Student-t filters
	Experiments
	Convergence properties
	Robust transfer learning
	Robustness to state and observation outliers
	Influence of source observation variance, rS, on transfer

	Discussion
	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2


