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Abstract

Deep Ensembles proved to be a one of the most accurate representation

of uncertainty for deep neural networks. Their accuracy is bene�cial in

the task of active learning where unknown samples are selected for label-

ing based on the uncertainty of their prediction. Underestimation of the

predictive uncertainty leads to poor exploration of the method. The main

issue of deep ensembles is their computational cost since multiple complex

networks have to be computed in parallel. In this paper, we propose to

address this issue by taking advantage of the recursive nature of active

learning. Speci�cally, we propose several methods how to generate initial

values of an ensemble based of the previous ensemble. We provide com-

parison of the proposed strategies with existing methods on benchmark

problems from Bayesian optimization and active classi�cation. Practical

bene�ts of the approach is demonstrated on example of learning ID of an

IoT device from structured data using deep-set based networks.

1 Introduction

Representation of uncertainty of prediction of a neural network is a long studied
topic with many available methods. While exact methods such as Hamiltonian
Monte Carlo [10] are available, they are too computationaly expensive to run on
deep neural networks. Therefore, more a�ordable approximations in the form
of Dropout MC [6], Stochastic Gradient Descent with Langevine Dynamics [14],
and many other alternatives have been proposed. However, recent empirical
evidence [1, 11, 5] suggests that most of them su�er from underestimation of
uncertainty. One of the most attractive option for uncertainty representation
thus remain the deep ensemble approach [8] which uses di�erent networks to
approximate di�erent local minima. Diversity of the ensemble is obtained by
starting from di�erent initial estimates. This simple approach has a drawback in
higher computational cost compared to its simpler alternatives such as dropout.
This issue has been addressed by rank-1 approximation

2 Recursive Uncertainty estimation in Active Learn-
ing

We are concerned with the task of active learning [2] as an extension of semi-
supervised learning. We start with the set of pairs of input dataD0 = {xi, yi}n0

i=1,
where xi is a feature vector and yi is response variable (continuous in the case
of regression and discrete in the case of classi�cation) and the set of feature
vectors U0 = {xj}nj=1 for which we can potentially obtain the response variable
yj if we ask a human expert or perform an experiment. Each of such requests
comes with a signi�cant cost, therefore we aim to learn the model with as low
number of requests as possible. The selection of the point x∗1, where a new
response is requested, is thus formulated as an optimization task. When a new
y∗1 is obtained, it is added to the training set D1 = D0 ∪ d∗1, d∗1 = {x∗1, y∗1} and
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the feature vector removed from the unlabeled set U1 = U0\x∗1. This procedure
is repeated forming a sequence of supervised learning tasks with growing set
D0 ⊂ D1 ⊂ D2 · · ·Dn.

Formally, the task is rather simple. We choose a parametric model (such as
deep NN) with parameter θ, evaluate its posterior probability p(θ|Dk), de�ne
acquisition function a(x), typically in the form of an expected value,

ak(x) =

∫
l(x, θ)p(θ|Dk)dθ, (1)

where l(x, θ) is a chosen loss function. The feature vector for which we request
a response is found as the maximum of the acquisition function

x∗k = arg max
x∈Uk

ak(x).

Di�culty with this approach arises in the evaluation of the posterior distribution
p(θ|Dk) and the expectation (1). Despite recent advances in Bayesian neural
networks, it is still a complicated task, requiring substantial computational ef-
fort. While techniques such as HMC [13], SGLD [14] and many updated versions
exist, they are quite expensive to run repeatedly. Moreover, increasing evidence
suggests that most of them still underestimate uncertainty and the best choice
remains to be the ensemble of models [snoek].

We note that the use of uncertainty in active learning is rather speci�c.
Once the new data point is selected, the data set is modi�ed and the estimation
procedure has to be repeated. The existing ensemble techniques are not designed
to take advantage of the incremental nature of the Bayes' rule used in active
learning:

p(θ|Dk) ∝ p(x∗k, y∗k|θ)p(θ|Dk−1). (2)

Recursive evaluation of incremental data (2) is known as recursive estimation
or Bayesian �ltering. While there is a number of available techniques, their
systematic use in active deep learning is not explored in detail.

3 Ensemble Filter

The basic idea of Ensemble methods is to approximate the posterior distribution
p(θ|Dk) by an ensemble, i.e. a set of samples:

p(θ|Dk) ≈ pδ(θ|Dk) =
1

N

∑N
i=1δ(θ − θ

(i)
k ), (3)

where N is the number of ensemble members. Various techniques di�er in a
way how to generate the samples, ranging from di�erent initial conditions [8],
to Monte Carlo estimates such as [14] or [9]. To our best knowledge methods
combing deep ensembles with importance sampling have not been investigate
despite a number of advanced importance sampling methods [3].
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Under the importance sampling procedure the ensemble weights are not
uniform

p(θ|Dk) ≈ pδ(θ|Dk) =
∑N
i=1w

(i)
k δ(θ − θ(i)k ),

∑
i

w
(i)
k = 1. (4)

This is a consequence of not sampling p(θ|Dk) but an (almost) arbitrary proposal
density q(θ|Dk) and compensating for mismatch between p and q by weighting

w̃
(i)
k ∝

p(Dk|θ(i)k )p(θ = θ
(i)
k )

q(θ
(i)
k |Dk)

, wk =
w̃

(i)
k∑
i w̃

(i)
k

, (5)

where the second equality is a normalization required for (4) being normalized.
Quality of approximation of the posterior greatly depends on proximity of

the proposal function q() to the true posterior. Since it is problematic to de�ne
on general problems, importance sampling is less popular than Monte Carlo
counterparts. The most obvious exception is the recursive estimation, where
availability of posterior distribution from the previous step, p(θ|Dk−1) in our
case, provides a lead for design of e�cient proposals as demonstrated by success
of sequential Monte Carlo methods for Bayesian �ltering [4]. While our prob-
lem di�ers from conventional SMC problem since θ does not change with the
data (i.e. it is a parameter not a state [7]), we will use ideas from the �lter-
ing literature. Therefore, we call the proposed method Deep Ensemble Filter
(DEnFi).

3.1 Deep Ensemble Filter (DEnFi)

The core idea of the proposed �lter is a novel way how to design a proposal
function. The traditional �bootstrap� �lter introduce a kernel around the latest

ensemble members i.e. q(θ|Dk) =
∑
iN (θ

(i)
k−1, σkI). However, this is known to

require too many samples. An alternative is to adapt each ensemble member

to the new data point θ̂
(i)
k = arg max p(Dk|θ) starting from θ

(i)
k−1 and to use

proposal

q(θ|Dk) =
∑
i

N (θ̂
(i)
k , σkI), (6)

this is reminiscent of the auxiliary particle �lter [Pitt]. However, due to special
features of the probability landscape of deep models [Fort], we conjecture, that
it is unable to escape from the local minima. Therefore, we propose a two stage
approach:

1. Sample initial point of, θ̃
(i)
k ∼ N (θ

(i)
k−1, Q

(i)
k ),

2. Estimate centroids of the proposal components

θ̂
(i)
k = arg max p(Dk|θ),

starting from θ̃k.
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3. Sample from the proposal q(θ|Dk) =
∑
iN (θ̂

(i)
k , R

(i)
k )

4. Compute importance weights (5) and resample.

Consider distribution p(θ|Dk−1) to be in the form (3) with ensemble members

Θk−1 = {θ(i)k−1}Ni=1. The resampling operation is required to prevent degenera-
tion of the weights to zero. The resampling operation generates ensemble with
equal weights such that it matches the cumulative density of the weighted en-
semble as close as possible []. In essence it duplicates samples with high weight
and removes those with low weight. The number of samples in step three can dif-
fer from the number of ensemble members. In that case, the resapling operation
is generating only the N ensemble members.

3.1.1 Covariance structure

The most simple proposal is constant variance Q = qI and R = rI where q and
r are hyperparameter of the method.

A more complex proposal is to make diagonal covariance structure Q =
diag(g), R = diag(r), where each element is a function the proposal centroids,
such as relative variance

g
(i)
j = q log(θ̂

(i)
j ) r

(i)
j = r log(θ̂

(i)
j ) (7)

in this case, the importance sampling q() can not be neglected.

4 Experiments

We show the behavior of DEnFi on two arti�cial problems. First one is a

Bayesian optimization task of minimization of function f(x) = cos(4.3x)
|x|+1 + x

20

on bounded interval (−4, 4). The other one is the active classi�cation task on
(0, 1)×(0, 1) square with two classes separated by the diagonal with added noise
on squares at both ends of the diagonal. More detailed initial con�guration of
both problems is shown in Figure 1.

For the �rst problem we performed 100 independent runs each one consisting
of 50 iterations of Bayesian optimization, i.e 50 requests of the function value.
The speci�cs of the setup are given in Section B. Statistical comparison of
the proposed method with SGLD [14] and deep ensembles (DE) [12] in terms of
absolute distance from the true minimum is provided in Figure 2. The proposed
method provides most reliable discovery of the minima. In Section B we provide
execution time comparison.

For the second problem we performed 100 independent runs of active clas-
si�cation each one consisting of 200 requests. Since DE was originally designed
for optimization purposes, we can compare only with the SGLD method. The
estimated classi�ers were compared in terms of AUC of the resulting classi�-
cations as a function of the number of requests in Figure 3. Note much lower
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Figure 1: Experimental data. Left: Bayesian optimization. Red circles denote
D0, solid blue line denotes set U0, .i.e. the ground truth function with minimum
denoted by the green diamond. Right: Active classi�cation. The grayed areas
contain data from the initial set D0 with known labels. Data points outside
of the grayed areas belong to U0 set and the labels have to be requested. The
yellowed areas contain data with noise.

random noise of the proposed DEnFi method. This is due to the use of non-
in�ated ensemble for prediction. The contours of the predicted classes are given
in Section B.
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Figure 2: Comparison of DEnFi with SGLD and DE for Bayesian Optimization.
The green line shows the true minimum, the blue line denotes the median across
100 runs and the red lines are 10% and 90% quantiles.

0 50 100 150 200
0.85

0.90

0.95

1.00

1.05
SGLD

Requests

A
U

C

0 50 100 150 200
0.85

0.90

0.95

1.00

1.05
DEnFi

Requests

A
U

C

Figure 3: Comparison of DEnFi with SGLD for Active Classi�cation. The blue
line denotes the median across 100 runs and the red lines are 10% and 90%
quantiles.
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A Discussion

It may seem that optimization with di�erent initialization is redundant and
it will ultimately converge to the same result. However, after in�ation, the
resulting ensemble members represent various local minima in the solution. This
is illustrated in Figure 4 left. This is possible if the network has excessive
capacity to model the data well and the redundant parameters are used to
explore the space between the known data points.

To demonstrate the importance of the in�ation step we again performed 100
independent runs of DEnFi with covariance matrix Λ = λI, varying the value
of λ. The results of the Bayesian optimization after 50 requests are displayed
in Figure 4 right. Note that without in�ation step. i.e. λ = 0, the optimization
is stuck at local optimum without exploring the space. With increasing value
of λ DEnFi �nds the correct minimum with higher probability. For λ > 0.3 the
performance slightly deteriorates but never reaching that without in�ation.

The choice of the number of iterations I1 and I2 is also important. The
number of iterations I2 for training the in�ation ensemble is relatively small,
because even after the prediction step the loss decreases relatively fast. On the
other hand, the original ensemble requires more training iterations I1 > I2.
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Figure 4: Analysis of Bayesian optimization. Left: convergence of mean abso-
lute distance to the true function independently for 10 ensemble members after
in�ation. Right: sensitivity of the distance to minimum after 50 requests as a
function of the hyper-parameter λ of the in�ation covariance matrix.
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Full description of DEnFi is provided in Algorithm 1

Algorithm 1 Update algorithm of Deep Ensemble Filter (DEnFi)

� Initialize with: input data D0 = {xi, yi}n0

i=1, number of calls NC , covari-
ance matrix Λ, structure and initial parameters of the ensemble members,
number of training iterations for both steps I1 and I2, iteration index
k = 0.

� While k < K

1. Train each member of the ensemble independently on Dk for I1
epochs, yielding θ

(i)
k .

2. Evaluate predictive probability using θk.

3. Perform in�ation of the ensemble (??).

4. Train each member of the in�ated ensemble independently on Dk for
I2 epochs.

5. Find x∗k+1 = arg maxx∈Uk
ak(x) and request the value of y∗k+1.

6. Expand training set: Dk+1 = Dk ∪ {x∗k+1, y
∗
k+1}.

7. Increase k.

B Experiment details

B.1 Setup for the Bayesian optimization task

We started with �ve initial points at x = {−4,−2, 0, 2, 4}. Both ensembles
consisted of 20 members. We used NNs with three layers with 16, 8 and 2
neurons respectively connected with swish functions. Same structure was used
for SGLD and DE. The in�ation parameter λ was set as 0.2. ADAM was used as
the optimization algorithm to minimize the MSE loss function. Training epochs
were set as I2 = 100, I1 = 200.

B.2 Execution time comparison

The nature of DEnFi allows for very simple implementation of parallel training.
The same, however, cannot be said about SGLD nor DE. To alleviate this
disadvantage, we ran all 100 runs, each consisting of 50 requests, in parallel
instead. The execution time of DEnFi was aproximately 65 minutes, of SGLD
119 minutes and of DE 148 minutes.

B.3 Setup for the Active Classi�cation task

We provided the initial labels for data in squares (0.35, 0.65) × (0, 0.3) and
(0.35, 0.65) × (0.7, 1). Both ensembles consisted of 20 members. The ensemble
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NNs for DEnFi and SGLD had four layers with 16, 10, 6 and 2 neurons respec-
tively connected with swish functions. The in�ation parameter λ was set as
0.2. As an optimization algorithm we used ADAM with the crossentropy loss
function. Training epochs were set as I2 = 250, I1 = 500.

B.4 Classi�er after 200 requests

The results of the predicted classes of each point in the considered domain after
50�200 requests are displayed in Figure 5. Note that DEnFi provides better
estimates of class uncertainty in the areas of mixed classes (bottom-left and
top-right) than SGLD.
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Figure 5: Comparison of DEnFi with SGLD for Active classi�cation in terms of
predictive probability of the class after 50, 100, 150, 200 requests from top to
bottom respectively.
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