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Abstract — Chirping Alfvén eigenmodes were observed at the COMPASS tokamak. They are believed to be 
driven by runaway electrons (REs), and as such, they provide a unique opportunity to study the physics of 
nonlinear interaction between REs and electromagnetic instabilities, including important topics of RE 
mitigation and losses. On COMPASS, they can be detected from spectrograms of certain magnetic probes. 
So far, their detection has required much manual effort since they occur rarely. We strive to automate this 
process using machine learning techniques based on generative neural networks. We present two different 
models that are trained using a smaller, manually labeled database and a larger unlabeled database from 
COMPASS experiments. In a number of experiments, we demonstrate that our approach is a viable option 
for automated detection of rare instabilities in tokamak plasma.
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Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Alfvén eigenmodes (AEs) present a magnetic instabil
ity that appears during the experimental operation of toka
maks. The presence of fast energetic particles in tokamak 
plasmas can lead to destabilization of the shear Alfvén 
waves by resonance of particle velocity with Alfvén velo
city of the plasma. These Alfvénic instabilities can, in turn, 
degrade confinement of the energetic particles and thus 

lower plasma performance and possibly endanger plasma- 
facing components of the tokamak.1 Alfvén waves are 
typically excited by fast ions generated by auxiliary plasma 
heating or fusion reactions; however, magnetic measure
ments of the COMPASS tokamak2 and DIII-D tokamak3 

have recently revealed Alfvénic modes that are driven by 
runaway electrons (REs). Since the presence of REs con
stitutes a high risk for a fusion reactor, nonlinear interaction 
of REs and AEs may be of high interest for topics of RE 
mitigation and study of their losses. Moreover, the presence 
of AEs in the plasma offers a diagnostic opportunity. On 
JET, measurement of AEs is used to compute equilibrium 
parameters such as the safety factor.4

There are multiple types of AEs with different charac
teristics. A specific type of AE, driven by REs and with 
chirping characteristics, is believed to be present at 
COMPASS (Refs. 2, 5, and 6), and similar chirping modes 

*E-mail: skvara@ipp.cas.cz 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution-NonCommercial-NoDerivatives 
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits non-commercial re-use, distribution, and reproduction in 
any medium, provided the original work is properly cited, and is not 
altered, transformed, or built upon in any way. 

FUSION SCIENCE AND TECHNOLOGY
© 2020 EUROFusion. Published with license by Taylor & Francis Group, LLC. 
DOI: https://doi.org/10.1080/15361055.2020.1820805

1 

http://orcid.org/0000-0003-4165-7124
http://orcid.org/0000-0003-3027-6174
https://crossmark.crossref.org/dialog/?doi=10.1080/15361055.2020.1820805&domain=pdf&date_stamp=2020-10-31


were also observed on the DIII-D machine.3 In COMPASS 
(Ref. 7), the frequency of the detected modes is in the range 
0.5 to 2 MHz, scaling with the plasma density and its 
profile, safety factor, magnetic field, and shape of the 
plasma.2 The mode has a bursty character. It typically 
appears after a sawtooth crash, together with increased RE 
losses detected by measurement of hard-X-ray radiation.2 

The frequency chirp itself takes ,1 ms, and the frequency 
can chirp both up and down by ,0.1 MHz. A change of the 
RE distribution function during the frequency chirp was 
directly measured in DIII-D (Ref. 3).

Up to now, spectrograms of COMPASS were 
labeled manually by experts. However, the rate of occur
rence of chirping modes in COMPASS is relatively low 
(estimated to be on the order of 10� 3 in terms of shots), 
and there are multiple measurement probes from which 
a spectrogram can be computed. Therefore, many spec
trograms have to be combed through to find an experi
ment during which a chirping mode has occurred. This 
means that to collect enough experimental data for 
further analysis, a large amount of manual labor is 
required. In this work, we will try to use the available 
labeled spectrograms (both with and without a chirping 
mode) and the large unlabeled database (coming from 
over 15 000 COMPASS discharges) to train models that 
would enable automatic identification of spectrograms 
that contain a chirping AE.

To this end, two approaches based on generative 
neural networks have been implemented. Generative 
models based on the variational autoencoder (VAE) 
paradigm8 have been used because they are powerful 
estimators of high-dimensional distributions, suitable for 
modeling image data. They do not require labels for 
training, which is a limiting factor for classification 
neural networks that overfit when not supplied with 
enough labeled data. Also, VAEs possess an ability to 
produce a low-dimensional representation of target data, 
which proved to be useful for our task as well.

In the following section, the basics of probabilistic 
autoencoders will be given. Then, the details of experi
mental data, implementation, and network architecture 
will be described together with the details concerning 
the experimental setup. Finally, the experimental results 
will be shown, and their implications will be discussed.

II. CHIRPING MODES ON THE COMPASS TOKAMAK

Chirping modes on the COMPASS tokamak can be 
observed indirectly in spectrograms of a magnetic 
U-probe.9 The raw probe signal and its spectrogram are 
plotted in Fig. 1. A single spectrogram covers one experi
ment of average length of 0.3 s and frequency range of 0 
to 2.5 MHz. The spectrograms are of uneven size because 
every experiment has a different length. Also, the size of 

Fig. 1. COMPASS shot 10870. (a) Raw U-probe signal. (b) The corresponding spectrogram. (c) The score is the output of the 
proposed algorithm over the spectrogram at f0 ¼ 0:9 MHz. The highest peak around 1.1 s corresponds to a detected chirping 
mode. (d) A close-up of the spectrogram part containing the chirping mode as detected from the red part of the score plot. The 
size of the close-up is 128 � 311 pixels. 
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the whole spectrogram is too large for practical training 
of a neural network. Therefore, for labeling, training, and 
validation purposes, we have split spectrograms into 
square patches of the same size. We have chosen the 
size of a single spectrogram patch to be 128� 128 pixels, 
which covers 6.54 ms in the time axis and 0.62 MHz in 
the frequency axis and which is a feasible input size for 
current convolutional neural network architectures. It is 
also enough to capture most of a typical chirping mode as 
can be seen in Fig. 1d. For all future purposes, positively 
labeled data are those spectrogram patches that were 
labeled as containing a chirping mode while negatively 
labeled patches do not.

III. MODEL STRUCTURE

This section contains a brief theoretical background 
on VAEs and their variants. This theory will be used in 
the construction of two types of models, i.e., one class 
and two stage, that differ in the way the VAE model is 
trained and used. In the former, the VAE log likelihood is 
used to detect out-of-distribution samples while in the 
latter, a classifier is trained on the latent space of the 
autoencoder.

The VAE neural network is a generative model. The 
purpose of a generative model is to enable sampling from 
a data distribution of interest pðxÞ, where x 2 X is 
a sample from the data distribution. Since the data 
space X is usually high-dimensional (e.g., it represents 
images of high definition) and all that is available for 
training is a finite set of samples from pðxÞ, we cannot 
express it in a closed form and sample from it directly. 
Therefore, the problem of sampling is moved to a latent 
space Z on which we define a prior distribution pðzÞ
from which we can easily sample [e.g., Nð0; 1Þ]. 
A generative model then serves the purpose of approx
imating the mapping f : Z ! X such that 
f ðpðzÞÞ � pðxÞ; i.e., sampling in the latent space is 
equivalent to that in the data space. Also, it provides us 
with an approximation of pðxÞ that can be used to test for 
out-of-distribution samples. In our case, pðxÞ that is to be 
approximated is the distribution of the 128� 128 spec
trogram patches.

III.A. Generative Autoencoders

A generative autoencoder consists of two main parts, 
i.e., an encoder and a decoder, that are two neural net
works that can be denoted as mappings eϕ : X ! Z and 
dθ : Z ! X , where fϕ; θg are trainable parameters 

(weights) of the neural network. The decoder parame
terizes the generative distribution pθðxjzÞ, which means 
that it is used to compute the parameters (e.g., mean and 
variance) of pθðxjzÞ as a function of z. Likewise, the 
encoder parameterizes the encoding distribution qϕðzjxÞ.

The whole process of passing a sample x through the 
network during training is as follows: z is sampled from 
encoding distribution qϕðzjxÞ whose parameters are obtained 
from eϕðxÞ. This is then passed to the decoder dθðzÞ; which 
produces parameters of pθðxjzÞ from which a reconstruction ̂x 
is sampled. Through this, the generative autoencoder max
imizes the probability of each sample obtained through the 
generative process with respect to the available data:

pθðxÞ ¼
ð

Z

pθðxjzÞpðzÞdz : ð1Þ

The general expression for the training loss that mini
mizes Eq. (1) can be expressed in accordance with Refs. 
10 and 11 as

Lðx; θ; ϕÞ ¼ inf
qϕðzjxÞ

Ex,pðxÞEz,qϕðzjxÞ ln pθðxjzÞÞ½ �

þ λΓðpðzÞ; qϕðzÞÞ ; ð2Þ

where 

Ep :½ � = expected value
λ > 0 = scaling parameter (or hyper

para-meter)
Γð:; :Þ = divergence measure between 

two probability distributions
qϕðzÞ ¼ Ex,pðxÞ qϕðzjxÞ

� �
= encoding distribution marginal.

The first term forces the reconstruction x̂ to be as 
close to x as possible so that the generated samples 
resemble the training data. The second term pushes the 
encoder distribution close to the prior. This has the effect 
that after training, one can generate new data by passing 
the sample from the prior (instead from the encoder) to 
the decoder. This generated sample will have a high 
probability under pðxÞ (look realistic) if the prior and 
encoding distributions are indeed close.

In our models, we will use Gaussian encoding and gen
erating distributions, that is, qϕðzjxÞ ¼ N ðzjμϕðxÞ;ΣϕðxÞÞ
and pθðxjzÞ ¼ N xjμθðzÞ;ΣθðzÞð Þ. Different choices of Γ 
and the resulting optimization objectives are explored here. 
During training, objective (2) is minimized with respect to 
parameters θ; ϕ using backpropagation and a standard opti
mization algorithm, e.g., the Adam algorithm.14 A schematic 
diagram of a convolutional autoencoder is in Fig. 2.
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Kullback-Leibler Divergence. The use of Kullback- 
Leibler divergence (KLD) DKLðqϕðzjxÞjjpðzÞÞ results in the 
well-known VAE model,8 where the prior pðzÞ ¼ N ð0; 1Þ is 
used in order to obtain an analytical expression of the opti
mization objective.

Maximum Mean Discrepancy. The maximum mean dis
crepancy (MMD) divergence MMDkðqϕðzjxÞ; pðzÞÞ can be 
also used, which requires a kernel k. For details, see Ref. 11. 
Its optimization requires sampling from both latent distribu
tions, which means that any prior that can be sampled from 
can be used, even a mixture prior, whose probability density 
pðzÞ consists of several modes. In our work, we have used the 
Variational Mixture of Posteriors prior15 (VampPrior), which 
enables optimization of the parameters of the components of 
the latent mixture, thus giving more flexibility to the overall 
model.

Jensen-Shannon Divergence. The Jensen-Shannon 
divergence (JSD) DJSðqϕðzjxÞjjpðzÞÞ is a symmetric form 
of KLD. Its use was again demonstrated in Ref. 11, where 
it was shown that it leads to the adversarial loss used in 
the Adversarial Autoencoder (AAE) model.16 It requires 
an additional network, i.e., a discriminator dη : Z !
½0; 1� that tries to recognize between z sampled from the 
prior and that sampled from the encoding distribution. 
The output of the network is a probability that the input 
comes from the prior pðzÞ. The discriminator is trained in 
tandem with the encoder so that they both improve in 
their tasks and the encoder learns to map the data x so 
that they resemble samples from the prior. Again, here we 
have used VampPrior.

A form of the adversarial loss is commonly used in 
generative adversarial networks (GANs), and although it 
leads to generated samples of better quality, its use is known 
to destabilize the training process.17 This holds for AAE 
models as well. For this reason, we have used 
a combination of the MMD and the GAN loss in order to 
stabilize the training of the encoder and the distribution it 
produces.

We have used a plain autoencoder18 as a baseline, 
which optimizes the mean-squared error (MSE) between 
input x and the reconstruction x̂:

LAEðx; θ; ϕÞ ¼ jjx � dθðeϕðxÞÞjj2 : ð3Þ

III.B. One-Class Model

In the first model, we will use a convolutional gen
erative autoencoder as a one-class estimator. This is an 
approach well known in the anomaly/outlier detection 
setting.19,20 A model of choice learns a representation 
of one class of data and can, therefore, be used to detect 
out-of-class samples. It is trained either with labeled data 
belonging to the class of interest or with unlabeled data 
that are believed to contain so little out-of-class examples 
that the model is robust enough to ignore them.

A generative autoencoder can be readily used for this 
task if we set pθðxÞ � pðxÞ to be the distribution of the 
class of our interest. Then, there are two modes of train
ing the autoencoder. In the first mode, we model the 
distribution of patches that contain a chirping mode. 
Then, the autoencoder is trained with the positively 
labeled data. However, this is a bit problematic since 
there are very few labeled patches available; therefore, 
the neural network will very likely overfit. In the second 
mode, we can choose the class of interest to be of the 
patches that do not contain a chirping mode. This is 
closer to an anomaly detection formulation of the pro
blem, as the relatively rare chirping modes are considered 
to be anomalous. Also, the autoencoder can be trained 
with unlabeled data due to the sparse occurrence of 
chirping modes and robustness of probabilistic neural 
networks,21,22 hugely increasing the number of training 
samples and thus the representative power of the neural 
network.

Fig. 2. A schematic diagram of the convolutional autoencoder used for our experiments. Spectrogram patches are encoded 
through several convolutional,12 maxpooling,13 and dense (fully connected) layers into d-dimensional vectors (here d ¼ 2) and 
then decoded back with transposed convolutions and upscaling layers. 

4 ŠKVÁRA et al. · DETECTION OF ALFVÉN EIGENMODES ON COMPASS

FUSION SCIENCE AND TECHNOLOGY · VOLUME 00 · XXXX 2020



To decide whether a sample x is in class or out of 
class, we can compute its negative log likelihood under 
the generative distribution

� EqϕðzjxÞ ln pθðxjzÞ½ � ð4Þ

or its approximation, the MSE between x and its 
(sampled) reconstruction x̂. In our experiments, we use 
log likelihood (4) since it better captures the uncertainty 
in the reconstruction.

III.C. Two-Stage Model

The second model is designed to make the most use of 
both labeled and unlabeled data. It exploits the ability of 
generative autoencoders to produce a low-dimensional 
uncorrelated representation of high-dimensional image data. 
It consists of two stages. The first stage is a convolutional 
generative autoencoder trained with unlabeled data. Its task is 
to learn the general topology of the input space and encode 
input data. The second stage is a classifier that is trained on 
encoded labeled data. Through the use of MMD or JSD 
measures and VampPrior, we can enforce separation of the 
encoded data into clusters that contain similar inputs, which 
makes the task of the classifier easier. Two different classi
fiers were tested:

1. K-nearest neighbors (kNN): The kNN algorithm 
for classification23 was trained using the labeled 
training data. In this setting, an unlabeled sample is 
given a score based on the average label of its 
kNN. The more the neighboring training samples 
are labeled as positive, the higher is the score.

2. Gaussian mixture model (GMM): A GMM (Ref. 
24) with M components was fitted on the latent 
representations of both labeled and unlabeled 
training data. Afterward, we determined one or 
more components of the mixture into which the 
positively labeled training samples are most likely 
to be projected via the encoder. Then, for a new 
sample, the score is the (average) log likelihood of 
the sample in the anomalous components.

IV. EXPERIMENTAL SETUP

IV.A. Data

Every spectrogram was divided into patches of size 
128� 128 pixels. Out of 40 preprocessed spectrograms, 
370 nonoverlapping patches were extracted and labeled. 

This results in a labeled training data set Xl; Yf g;Xl ¼

xif gi; xi 2 R 128�128�1; Y ¼ yif g; yi 2 0; 1f g of samples Xl 
and labels Y , where Y ¼ 1 if a patch contains a chirping 
mode. Also, an unlabeled database Xu of 330 000 patches 
coming from 2000 spectrograms was created.

Training of the one-class model was done both with 
labeled positive spectrograms and on the large unlabeled 
data set. In the first case, the 50% of positive spectro
grams was used for training, and the rest together with the 
unlabeled ones was used for testing. Also, training 
patches were randomly shifted, and noise was added to 
them so that there was a total of 104 training samples. In 
the second case, all of the labeled data were used only for 
testing. Ten different training and testing data sets were 
created this way for cross-validation purposes.

For training of the two-stage model, we have split the 
labeled data set into training/testing subsets with the ratio 80/ 
20. Again, this splitting was done randomly a total of ten 
times.

IV.B. Model Architecture and Hyperparameters

Regarding the one-class model, the architecture for the 
one-class encoder was two or three convolutional layers with 
(32, 64) or (32, 32, 64) channels and kernel size of 5. Each 
convolutional layer was followed by a maxpooling layer that 
downscaled the image by a factor of 2. Then, a dense layer 
produced the final encoding into a d-dimensional latent 
space. The decoder mirrored the encoder architecture with 
transposed convolutions in place of maxpooling layers. 
Residual nets25 (ResNets) types of residual blocks were 
used to speed up and stabilize the training. The hyperpara
meter values over which we have optimized trained models 
are in Table I. Parameter γ denotes the scaling parameter of 
the inverse multiquadratics (IMQ) kernel.26

Regarding the two-stage model, the basic encoder 
architecture was as follows: three convolutional layers 
with (16, 16, 32) channels and kernel size of 3, (2, 2, 1) 
downscaling ratios via maxpooling, followed by two dense 
layers of width (256, d), where d is the dimension of the 
latent space. The decoder mirrored this architecture. Also, 
batch normalization27 was used. The hyperparameter values 
over which we have optimized are in Table I. The number of 
components in the used prior is denoted by N.

The base architecture of the two models is slightly 
different. We have experimented with different architec
tures prior to the hyperparameter optimization and found 
that for the different tasks, different architectures provide 
better results. This is probably because both models have 
a different objective: The one-class model requires 
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precise reconstruction, while the two-stage model is eval
uated based on the shape of latent space. Ideally, we 
would include architectures as a tunable parameter, but 
that would require a level of computational power that 
was not available to us.

Both models use rectified linear unit28 (ReLu) activa
tion and were optimized with the RMSProp optimizer with 
learning rate 10� 4. For a single optimization iteration, 
batches of 128 patches were used. We have implemented 
all the models in the Julia language29 and trained them on 
TITAN V Nvidia GPU with 12 Gbytes of memory.

V. RESULTS

In this section, the results of the experiments with the 
one-class and two-stage models are examined and compared. 

Also, we discuss the importance of an appropriate train/test 
splitting strategy that was used in our experiments in order 
not to obtain overly optimistic model performance estimates.

V.A. Output Evaluation

In case our framework was implemented in 
a production environment, the working scenario would 
be the following. A set of experiments to be analyzed 
would be selected. Then, the needed signals would be 
extracted, and spectrograms would be computed and 
divided into patches of appropriate size. These would be 
fed to a trained model that would produce scores to 
enable ranking of the patches. Since this would produce 
hundreds, maybe thousands, of patches and scores, the 
operator would ideally want to go through only a few 
with the highest score. In Fig. 3 we show the output of 
such procedure: four patches with the highest score, out 
of which three contain a chirping mode. It illustrates that 
even though the neural network encoding might be 
powerful, it is still basically a black box model, and we 
need to be very careful in its evaluation. Because of this, 
we evaluate the model performance by computing the 
area under the receiver operating curve (AUC), which is 
a standard measure for binary classification problems and 
also by precision@k score, which is the precision at the 
k-highest scoring samples.

V.B. One-Class Model Optimization

The hyperparameter optimization routine resulted in 
hundreds of trained models. To select the best one, the 
AUC and precision@50 measures were computed on 
a testing data set. Then, for a set of fixed hyperparameter 
values, these were averaged over ten cross-validation 
test-train splits. The best results for a combination of 
target class and used divergence based on these measures 

TABLE I. 

Overview of Model Hyperparameters* 

Parameter Values

One-Class Model

γ 100; 10� 1; 10� 2� �

λ;λ1;λ2 101; 100; 10� 1� �

d 8; 128; 256f g

Two-Stage Model

First stage N 1; 2; 4; 8f g

γ 100; 10� 1; 10� 2� �

λ;λ1;λ2 101; 100; 10� 1� �

d 2; 16; 32; 64f g

Second stage k 1; 3; . . . ; 31f g

M 2; 4; 6; 8f g

*The terms λ1 and λ2 are scaling parameters for the combina
tion of MMD and adversarial loss. 

Fig. 3. Examples of spectrogram patches identified as containing a chirping mode. 
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are reported in Table II. Clearly, it seems that modeling 
the distribution of chirping mode spectrograms is more 
difficult than vice versa with the exception of KLD, 
which completely fails. Also, the precision in the top 
samples is very low in the Alfvén target class. 
Surprisingly, a plain autoencoder achieves results almost 
comparable to the other models. In Fig. 4 are the receiver 
operating characteristic30 (ROC) and precision-recall31 

(PR) curves of the single best-performing one-class mod
els as well as the two-stage models.

V.C. Two-Stage Model

Here, we evaluate the performance of the two- 
stage model. The methodology of hyperparameter 
optimization via cross-validation is similar to that 
used for the one-class model. The best average results 
across ten splits for different combinations of stage 
one divergences and stage two classifiers are reported 
in Table III. The simple kNN model is superior to the 
GMM approach. Also, MMD regularization seems to 

produce the best results. We might speculate that this 
might be due to the improved ability to produce 
a well-separated encoding enforced by the used 
prior. Again, in Fig. 4, see the ROC and PR curves 
for the single best two-stage models.

A question one might ask is whether the autoencod
ing is truly necessary. In the end, we are doing 
a projection from d ¼ 128� 128 ¼ 16384 dimensional 
picture space into at most d ¼ 64 dimensional latent 
space, which must naturally lead to a loss of informa
tion. As shown in Fig. 5, where d ¼ 8, the autoencoder 
is able to identify the difficult nonlinear correlations and 
improve the performance of a subsequent second-stage 
kNN model. The compression is clearly necessary for 
overcoming the curse of dimensionality, which implies 
that L2 distance degenerates in large dimensions. An 
alternative approach to overcoming the issue of large 
input dimension might be to train a classification con
volutional neural network, which does the compression 
by its nature. However, we have not chosen to go this 
path since we believe that such a network would be 

TABLE II 

Results of Optimization of the One-Class Model* 

Divergence Target Class AUC precision@50

— Alfvén 0.57 � 0.04 0.24 � 0.05
KLD Alfvén 0.74 � 0.06 0.44 � 0.13
MMD Alfvén 0.77 � 0.03 0.49 � 0.06
JSD Alfvén 0.69 � 0.07 0.42 � 0.08
MMD + JSD Alfvén 0.72 � 0.09 0.37 � 0.03
— Non-Alfvén 0.82 � 0.03 0.86 � 0.06
KLD Non-Alfvén 0.46 � 0.05 0.50 � 0.14
MMD Non-Alfvén 0.84 � 0.03 0.90 � 0.06
JSD Non-Alfvén 0.84 � 0.05 0.83 � 0.10
MMD + JSD Non-Alfvén 0.84 � 0.01 0.87 � 0.01

*Target class differences are described in Sec. IV, “Experimental Setup.” No divergence is a plain autoencoder with MSE training 
objective. 

Fig. 4. The ROC and PR curves of selected models. 
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highly susceptible to overfitting since it requires much 
labeled data that are not available to us. Instead, we have 
tried to overcome this in the two-stage model by learn
ing the compression from all the available unlabeled 
data.

V.D. Influence of the Train/Test Splitting Methodology

At first, the splitting of testing and training labeled 
patches was done on the level of patches, without any 
regard for the spectrogram/experiment that the patch 
came from. It was assumed that the labeled chirping 
modes are homogeneous across the spectrograms. 
However, this turned out not to be true. Therefore, the 
train/test splits were done on the level of spectrograms, 
which were then subsequently divided into patches. See 

Fig. 5a, where the AUC curves for different values of k 
of the kNN model are for the case when the data split 
was done on the level of patches. The blue line that is 
the result of kNN fit peaks at k ¼ 3. On the other hand, 
there is no such peak in Fig. 5b, where splitting was 
done on the level of spectrograms. This indicates that 
the positively labeled patches in a single spectrogram 
are much more similar to each other than to those in 
different spectrograms, as only a relatively low number 
of neighbors are sufficient for optimal performance. 
Also, the variance of Fig. 5a is much higher, again 
indicating larger differences across spectrograms. If we 
continued with the splitting on the level of patches, we 
would have a biased and too optimistic estimate of 
performance before putting the framework into 
production.

TABLE III 

Results of Hyperparameter Tuning of the Two-Stage Model Across Ten Cross-Validation Splits 

S1 Divergence S2 Model AUC precision@50

— kNN 0.80 � 0.07 0.88 � 0.10
KLD kNN 0.80 � 0.08 0.85 � 0.11
MMD kNN 0.91 � 0.06 0.94 � 0.05
JSD kNN 0.83 � 0.07 0.87 � 0.10
MMD + JSD kNN 0.86 � 0.07 0.91 � 0.10
— GMM 0.75 � 0.06 0.80 � 0.10
KLD GMM 0.74 � 0.06 0.83 � 0.11
MMD GMM 0.66 � 0.12 0.72 � 0.12
JSD GMM 0.74 � 0.06 0.82 � 0.11
MMD + JSD GMM 0.76 � 0.06 0.84 � 0.10

Fig. 5. The kNN fits for different values of k. The red line and band show the mean and 1σ bands of the resulting AUC values 
when kNN is fitted to the original vectorized images. The input space dimensionality is d ¼ 16384. The blue dashed line and band 
are the same quantities for a d ¼ 8 dimensional representation by a first-stage model. (a) The training and testing splits were done 
on the level of individual patches, leading to better performance and less variance. (b) The split was done on the level of the 
original spectrograms, which is a more realistic scenario. The standard deviation and mean were computed from ten random 
splits. 

8 ŠKVÁRA et al. · DETECTION OF ALFVÉN EIGENMODES ON COMPASS

FUSION SCIENCE AND TECHNOLOGY · VOLUME 00 · XXXX 2020



VI. CONCLUSION

Our task was identification of anomalous phenomena, 
i.e., chirping AEs, in graphical representations of signals 
measured during the operation of a tokamak. To this end, 
we have proposed two models based on generative autoenco
ders. The first model learned the distribution of normal data 
and identified chirping modes as out-of-class samples of this 
distribution. The second model implemented a two-stage 
learning approach. A regularized convolutional VAE trained 
on unlabeled data was successfully combined with a classifier 
trained with a smaller labeled data set. It has been shown that 
both models are viable options in chirping mode identifica
tion, although the latter one proved to be superior.

We have also shown the need for proper cross- 
validation splitting of data in the evaluation phase and out
lined the need for careful evaluation in order for the model 
to be useful in real-world application. However, this is still 
work in progress. We mentioned the need to use a more 
appropriate evaluation measure that reflects the operational 
conditions. Furthermore, so far we have used spectrograms 
only from a single U-probe, but there are about 40 more 
magnetic diagnostics that could be potentially used for this 
task; e.g., their spectrograms/correlograms could be added 
as an additional input channel. Finally, a more thorough 
evaluation of the contemporary experimental results is 
needed for the understanding of the framework behavior 
and to be applicable to COMPASS operation, most likely 
through the expansion of the labeled data set.
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