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Abstract—The paper deals with the task of modeling mixed
continuous Gaussian and discrete Poisson data observed on
a multimodal system. The proposed solution is based on re-
cursive algorithms of Bayesian mixture estimation. The main
contributions of the approach are: (i) the use of the discretized
information of normal variables in the form of their clusters
in order to keep the one-pass recursive estimation methodology
and (ii) the prediction of the multimodal Poisson variable.
Experiments with simulated and real data are presented.

Index Terms—mixed data, Poisson distribution, mixture based
clustering, passenger demand

I. INTRODUCTION

The analysis of mixed continuous and discrete data is highly
desired in many application fields, for example, medicine [1],
[2], transportation control [3], economics and finance [4], etc.
In the case of the multimodal behavior of an observed system,
mixtures of distributions, see, e.g., [5], [6], can be suitable
for the cluster analysis of the data. Various distributions can
be used for the mixture model depending on the nature of
modeled variables, e.g., normal [7]–[9], categorical [8], [10],
uniform [11], exponential [12], etc.

This paper focuses on modeling mixed continuous and
discrete data with a high number of possible nonnegative
realizations, which can be required in specific application
domains such as, e.g., queue theory [13], crash data [14],
passenger demand [15], [16], etc. In this paper, a mixture of
Gaussian distributions and Poisson models are used for the
description of the data.

In the discussed area, a series of papers devoted to similar
issues have been found. For example, the paper [17] proposed
a Gaussian-Poisson mixture model to detect the specific crowd
behavior. In the work [3], a Poisson inverse Gaussian model of
Belgian census data was used to predict an origin-destination
matrix. Poisson-gamma and Poisson log-normal models were
also discussed. The study [14] presented a Poisson inverse
Gaussian regression model for the crash data analysis in
Texas. The paper [16] dealt with a passenger flow model
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in a transportation system with both continuous and discrete
variables in a form of a Petri net.

Other nonlinear modeling approaches dealing with the prob-
lems close to the discussed field should be mentioned as
well; for example, the neural network based feature extraction
[18], the heuristic technique in the combination with Bayesian
methods [19], the fuzzy logic approach [20], iterative learning
control-based techniques [21], etc.

Despite the considerable amount of publications, none of
them completely cover the task of the online prediction of
the Poisson variable, which is the main emphasis of the
presented paper. The previous work [22] used the Poisson
regression for the prediction, which demonstrated a series of
drawbacks regarding processing the explanatory data online.
Here, the presented paper divides the considered task into the
learning and testing phases, using continuous data available
permanently and the discrete variable available only during the
learning phase. The proposed solution is based on recursive
algorithms of the mixture based clustering under Bayesian
methodology [8], [9], [24], where the Poisson models are
estimated on the detected clusters of the explanatory vari-
able. This allows us to apply the learned models with the
estimated parameters for finding clusters during the testing
phase and predict the Poisson variable using them. The main
contributions of the approach are: (i) the use of the discretized
information of normal variables in the form of their clusters
in order to avoid logistic regression and to keep the one-pass
recursive estimation methodology and (ii) the prediction of the
multimodal Poisson variable.

The practical application of the proposed solution is tailored
to the task of modeling passenger demand in the public
tram transportation, where the discrete variable represents the
number of boarding passenger at a station and the continuous
one represents the surroundings of the station.

The paper is organized in the following way. Section II
formulates the problem and introduces the specified models
with necessary assumptions. Section II-C describes the esti-
mation of the models, while Section II-D is devoted to the
prediction part. Experiments with simulated and real data from
a tram network are demonstrated in Section III along with the
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discussion. Conclusions can be found in Section IV.

II. MODELING OF MIXED DATA FOR POISSON PREDICTION

A. Problem Formulation

Let us observe the multimodal system, which generates the
continuous generally multidimensional variable xt and discrete
variable yt ∈ {1, 2, . . . , N} at discrete time instants denoted
by t. Realizations of the variable xt can be measured online
in real time, while the values of yt are available for a limited
period of time t ≤ T . We suppose that the modes of the system
behavior can be expressed by the unknown discrete variable
ct ∈ {1, 2, . . . , C}, which is called the pointer [8], [24].

Generally, the relationship of the variables yt and xt can be
presented as the probability function

f(yt = j|xt, λ), (1)

while the observed variable xt is described by the probability
density function (denoted by pdf, along with the probability
function also) existing for each value of ct, i.e.,

f(xt|ct = i,Θ), (2)

while the model of the pointer ct has the form of the pdf

f(ct = i|α), (3)

where j ∈ {1, 2, . . . , N} denotes realizations of the variable
yt, i ∈ {1, 2, . . . , C} is a value of the pointer indicating
the active system mode at time t, and λ,Θ, α are mutually
independent unknown parameters of the three introduced pdfs
respectively.

The generally formulated task is (i) to estimate the pointer
ct at time t, which means detecting clusters on the space of
the data xt labeled by the pointer value and (ii) predict the
value of yt for the time t > T .

B. Model Specification

The main idea of the proposed solution is to estimate the
model (1) on clusters detected on the space of the data xt.
This allows us to avoid using the logistic regression with the
following assumption: the knowledge on the clusters of xt is
supposed to enter (1) via the pointer estimates only, i.e., the
model (1) takes the form

f(yt = j|ct = i, λ) ∼ Poi(λi), (4)

which is (in this paper) the Poisson distribution with the
parameter λi under condition that ct = i.

The pdf (2) is here represented as the multivariate normal
distribution existing ∀i in the form

f(xt|ct = i,Θ) ∼ N (θi, ri), (5)

where Θ = {Θi}Ci=1 = {θi, ri}Ci=1 is the set of parameters of
all the normal pdfs and Θi = {θi, ri} are the expectation and
the covariance matrix of the i-th pdf corresponding to ct = i.

The pointer model (3) is specified in this paper as follows

f(ct = i|α) ≡ (6)

ct ct = 1 ct = 2 . . . ct = C
f(ct = i|α) α1 α2 . . . αC

where αi are probabilities of the value i of the pointer ct.
The formulated task of the clustering and prediction requires

to have all of the unknown variables estimated, which includes
the parameters of the normal pdfs {θi, ri}Ci=1 ≡ {Θi}Ci=1,
the parameters of the Poisson pdfs {λi}Ci=1 as well as of the
pointer model α = {αi}Ci=1 along with the pointer value ct.

The solution is proposed in the phases of learning and
testing, where the first of them covers the task of clustering
and constructing the predictive model, while the second one
is aimed at predicting yt based on the data xt only.

C. Learning Phase

1) Clustering: Here, this part of the solution first focuses
on clustering the data xt, which requires the estimation of
ct along with Θ and α. The derivations of the estimation
algorithm are based on the Bayes and chain rules [25], and the
Bayesian recursive estimation methodology [8], [24] applied
in the following way:

f(Θ, α, ct = i|x(t)) ∝ f(xt,Θ, α, ct = i|x(t− 1)) (7)

= f(xt|ct = i,Θ)︸ ︷︷ ︸
(5)

f(Θ|x(t− 1))︸ ︷︷ ︸
prior pdf of Θ

f (ct = i|α)︸ ︷︷ ︸
(6)

f(α|x(t− 1))︸ ︷︷ ︸
prior pdf of α

,

where the denotation x(t) means all the data xt measured
up to the time t. Using (7), the posterior pdf for the pointer
estimation is obtained via integrals of the joint pdf of the
unknown variables on their entire definite space

f(ct = i|x(t)) =

∫ ∫
f(Θ, α, ct = i|x(t))dαdΘ. (8)

According to [24], [25], the conjugate Gauss-inverse-Wishart
(GiW) prior pdf is used for the normal models (5), while the
Dirichlet prior pdf is taken for the pointer model (6), see [8].

2) Estimation of the Poisson Predictive Model: Due to the
introduced assumptions in Section II-B, the Poisson model
(4) is estimated for each i-th cluster indicated by ct = i. The
estimation is derived similarly using the corresponding joint
pdf of the variables unknown in this phase, i.e.,

f(λ|ct = i, y(t)) ∝ f(yt = j, λ|ct = i, y(t− 1)) (9)

= f(yt = j|λ, ct = i, y(t− 1))f(λ|ct = i, y(t− 1)).

Here, the Gamma prior pdf can be used for the parameter es-
timation [26]. However, it is not necessary, and the maximum
likelihood (ML) estimation of the Poisson distribution [27] can
be used directly for the current value of ct.

Finally, the learning phase is summarized as the following
algorithm, which runs recursively at each time t after the
initialization of the pdf statistics and the number of clusters.
Algorithm 1 (Learning phase):
For the time t = 1, 2, . . . , T
1) Measure data xt, yt.
2) Substitute the data item xt and previous-time parameter
point estimates θ̂i;t−1 and r̂i;t−1 into the i-th normal pdf (5)
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∀i, which gives the proximity of the data item to the clusters
[9], [11]

mi = Nxt(θ̂i;t−1, r̂i;t−1). (10)

3) Obtain the weighting vector wt = [w1;t, . . . , wC;t]
′ multi-

plying the vector of all proximities m and the previous point
estimate of the parameter α [8]

wt = m. ∗ α̂t−1, (11)

where .∗ means multiplying by entries.
4) Update the statistics of the GiW pdfs for the normal models
[24], [25]

(Vt)i = (Vt−1)i + wi;t[xt 1]′[xt 1], (12)
(κt)i = (κt−1)i + wi;t (13)

as well as of the Dirichlet pdf the pointer model [8]

ν′t = ν′t−1 + wt. (14)

5) ∀i, re-compute the point estimates θ̂i;t, r̂i;t with the help
of partitioning the information matrix (Vt)i according to [24],
[25] and the point estimates of the pointer model α̂t by the
normalization of the statistics νt [8].
6) Obtain the point estimate of ct according to the index of
the maximum entry of the weighting vector wt, see, e.g., [24].
7) For the i-th cluster indicated by the point estimate of the
pointer ct, update the statistics of the Poisson pdf (4) that can
be easily derived from the ML estimation, see, e.g., [27], [28]

(St)i = (St−1)i + wi;tyt, (15)
(Kt)i = (Kt−1)i + wi;t. (16)

8) Re-compute the point estimate of the parameter λi of the
Poisson pdf (4) [27], [28]

(λ̂t)i =
(St)i
(Kt)i

. (17)

In this way, the parameters of all of the models (4), (5), and
(6) are estimated. The constructed predictive model (4) can be
used for the prediction in the testing phase.

D. Testing Phase

The learned models (4) and (5) are used for the testing
phase, where yt is no longer measured for the time t > T
and should be predicted based on the permanently available
data xt. The data xt can still be used for clustering with
the estimated model (5). Recalling the assumptions from
Section II-B, the model (4) with the substituted parameter
point estimate provides the required prediction on the detected
clusters. The prediction algorithm includes the following steps.
Algorithm 2 (Testing phase):
For the time t = T + 1, T + 2, . . .
1) Measure data xt.
2) ∀i, substitute the data item xt along with θi;T , r̂i;T into the
i-th normal estimated pdf and obtain the proximity of xt to
each cluster via (10).
3) Obtain the actual weighting vector according to (11) using
this proximity and the last point estimate α̂T .

4) Determine the cluster i corresponding to the data item
according to the index of the maximum entry of the weighting
vector, i.e., using the point estimate of ct.
5) Use the last point estimate (λ̂T )i of the model (4) from
(17) to obtain the predicted expectation of yt.
6) Use the i-th model (4) with the substituted point estimate
(λ̂T )i for generating the predicted values of yt.

The validation of the approach in a free and open source
environment Scilab (www.scilab.org) is discussed below.

III. EXPERIMENTS

A. Experiments with Simulated Data
The aim of this part of the study was to verify whether

the proposed clustering and prediction work correctly with
the help of simulated values of the pointer ct along with the
variables xt and yt. Three possible realizations of the pointer,
i.e., C = 3, have been used for the simulation. Using them,
3000 values of yt and xt were generated from the Poisson and
normal distributions respectively. Here, the scalar explanatory
variable xt was used. The following figures demonstrate the
results of testing the proposed approach.

The clusters detected on the data space of the variable
xt according to Algorithm 1 are shown in Figure 1, where
the values of xt and yt are plotted against each other. Three
clusters, which represent the discretized information about the
data xt to enter the Poisson model (4), can be seen.

Fig. 1. Clusters of simulated data used for learning

Results of Algorithm 2, where the estimated models are
used for predicting yt under condition of the availability of
xt are provided in subsequent figures. Figure 2 compares
histograms of the original values of yt and their predictions.
Three Poisson distributions can be seen in both the histograms.
The predicted values correspond to the original ones.

The mean values of the prediction, which are the point
estimates of the parameters λi are compared with simulated
data used for the testing phase in Figure 3. This plot shows that
with the exception of fragments around 70, 132, and 194 time
periods, the testing data items were classified unambiguously.

The evolution of the pointer estimates during the testing
phase is displayed in Figure 4. The three pointer realizations
are regularly switching, which confirms the model fitting.
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Fig. 2. The comparison of histograms of simulated data and predictions

Fig. 3. The predicted mean value of the classified Poisson distributions

B. Experiments with Real Data

One of the application fields of the presented approach is
the passenger demand prediction for the tram transportation. In
this area, the critical task is to predict the number of boarding
and/or disembarking passengers at each station, which can
only be measured for a limited period of time until t = T , i.e.,
it is the variable yt. Using the identical approach for modeling
both of them, we suppose that they can be described by the
Poisson distributions, which change at each station depending
on the time of day [22]. Each station has the surroundings xt,
which comprise, e.g., tram delay, time between lines, number

Fig. 4. The pointer evolution during the testing phase

of transfers, distance to a subway station, etc. The surround-
ings variable xt is available in real time. Using the model of
yt depending on xt, the passenger demand at a station of a
tram line can be recursively calculated from its value at the
previous station by subtracting the number of disembarking
passengers and adding the number of boarding passengers at
the current station [22]. However, working directly with the
point estimates of yt brings limitations primarily from the
prediction accuracy point of view. To take into account the
uncertainty influencing the passenger behavior, the mixture of
pdfs represented by histograms can be used for the passenger
demand prediction via, e.g., the interval analysis [29]. Thus,
the predictive pdfs are the main focus of this part of the work.

Here, a data set from a real tram network was used.
2300 data items were used for learning the models and 200
randomly chosen values were taken for the testing phase.
For this paper, values of the number of boarding passengers
only were used as realizations of the variable yt. Results of
its prediction for a single station and a station belonging to
a tram line of two stations are compared. For one station,
the surroundings xt are the delay of the tram at the station.
For a line of two stations, the surroundings of the previous
station naturally influence the behavior of passengers at the
neighboring station, i.e., the vector [xt;s, xt;s−1]′ should be
considered, where the subscript s corresponds to a station. In
the case of more stations, the surroundings of previous stations
can be used with a forgetting factor. Three values of the pointer
ct initialized from the data set express the morning rush hour,
midday calm traffic, and afternoon rush hour.

1) Boarding Number Prediction: Figure 5 compares his-
tograms of the original and predicted number of boarding
passengers at a single station and a tram line of two stations.
The top plot shows the histogram of original data, while the
middle and bottom plots demonstrate the histograms of the
prediction. It can be seen that the mixture of pdfs in the
Figure 5 (bottom) obtained for a station of a tram line is
closer to the original one in the top plot than that for a
single station in the middle plot. The mean values of the three
distributions about 4, 16, and 22 passengers can be guessed in
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both these figures. Unlike them, the histogram in the middle
plot is closer to a mixture of normal pdfs, which indicates that
the information from the surroundings of the previous station
is beneficial for the model and the stations should be described
in the connection with other stations as a line.

Fig. 5. Histograms of the original data (top) and their prediction for a single
station (middle) and a tram line of two stations (bottom)

The data prediction comparison presented in Figure 6 con-
firms the advantages of modeling the station as a part of a
tram line, where the top plot shows a worse quality of the
prediction than the bottom plot. However, the outliers were
not caught by either of them.

2) Clusters: The influence of the time of the day on the
passenger behavior expressed by the pointer estimation can be
presented by means of clusters detected on the data space of
the surroundings. Figure 7 shows two-dimensional clusters of

Fig. 6. The data prediction for one station (top) and a tram line (bottom)

the number of boarding passengers measured at a single station
for the learning phase and its prediction at the previous station
that can be also used in the surroundings vector. Three clusters
are clearly outlined in the figure. The first cluster denoted by
’∗’ corresponds to a calm time of a day, while the second
denoted by ’o’ and the third one with ’x’ express the number
of boardings for rush hours. The clustering at each time instant
of the testing phase can be also demonstrated by plotting the
pointer evolution, but it is not shown here to save space. All of
the three pointer values are regularly switching, which means
that the initialized number of clusters is adequate.

C. Discussion

To summarize the obtained results, the main aim of the
study, i.e., modeling the discrete variable based on continuous
explanatory variables using the information from their cluste-
ring, was successfully achieved. Due to the adopted metho-
dology of the one-pass estimation, the recursive algorithms
free of iterative computations have been used for clustering
the explanatory data and predicting the Poisson variable yt.

The data prediction should be obviously improved. Howe-
ver, the predictive pdfs represented by the histograms are
suitable for the subsequent passenger demand prediction as
it was mentioned in the beginning of Section III-B.

Due to two phases of the algorithm, the efficiency and preci-
sion evaluation can be treated twofold. As regards the precision
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Fig. 7. Clusters at a station of a tram line

of the clustering phase, the clusters can be validated using the
cluster validity indices or by verifying the results with the help
of reliable theoretical counterparts. The prediction quality can
be evaluated with the help of the prediction error using the
available measurements.

IV. CONCLUSION

The paper described the approach of predicting the discrete
variable using the discretized knowledge from clusters of
continuous variables, which are obtained with the help of
the recursive Bayesian mixture estimation theory. The learned
models are used for the prediction based on continuous vari-
ables available in real time. The validation results obtained on
simulations and real data look promising.

The potential application of the approach is not limited by
the discussed specific case. Learning the dependent variable
on clusters of the explanatory ones for the aim of its predic-
tion can be considered for other suitable distributions under
condition of the multimodality of the observed system. In the
case of nonnegative data, one of the candidates is the Rayleigh
distribution, which has a shape of the pdf close to the Poisson
distribution. Their comparison will be demonstrated elsewhere.
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