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Abstract. Nonlinear dependence on a probability measure begins to appear (last
time) in a stochastic optimization rather often. Namely, the corresponding type
of problems corresponds to many situations in applications. The nonlinear de-
pendence can appear as in the objective functions so in a constraints set. We plan
to consider the case of static (one-objective) problems in which nonlinear de-
pendence appears in the objective function with a few types of constraints sets.
In details we consider constraints sets “deterministic”, depending nonlinearly on
the probability measure, constraints set determined by second order stochastic
dominance and the sets given by mean-risk problems. The last case means that
the constraints set corresponds to solutions those guarantee an acceptable value
in both criteria. To introduce corresponding assertions we employ the stability
results based on the Wasserstein metric and £1 norm. Moreover, we try to deal
also with the case when all results have to be obtained (estimated) on the data
base.
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1 Introduction

Optimization problems with nonlinear dependence on a probability measure begin to appear (in a stochastic
literature) (see, e.g., [2], [3], [6], [7])- This type of problems corresponds to many situations from practice.

To introduce the above mentioned type of the problems let (€2, S, P) be a probability space; £ (:= &(w) =
(&1(w), ..., &(w)) an s-dimensional random vector defined on (€2, S, P); F(:= F¢(z),z € R®) the distribution
function of ¢; Pr, Z the probability measure and a support corresponding to F; Xp C X C R" a nonempty
set generally depending on F; X C R" a nonempty “deterministic” set. If go(:= go(x,2,y)) is a real-valued
function defined on R" x R x R™; h(:= h(x,z)) = (h1(x,2),...,hn,(x,2)) is an m;-dimensional vector
function defined on R" x R, then stochastic (static) optimization problem with a nonlinear dependence on
the probability measure can be introduced in the form:
Find

@(F, XF) = inf{EFgg(X7 &, EFh(X, E))|X € XF}. (D
Evidently a nonlinear dependence can appear as in the objective function so in the constraints set. We con-
sider a few types of X :

a. XF = X7
b. Xp = {X cX: Epgi(X, f, Eph(X, f)) <0,i=1,..., m}, (2)

where gi(x,z,y),i=1,..., m aredefinedon R" X R®x R™.

Of course it is assumed that all finite mathematical expectation in the relations (1), (2) exist.

Problem (1) covers a classical problem with linear dependence in the form:

Find
(,O(F, XF) = inf{EFQO(Xa 5)‘)( € XF}7 (3)
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with go(x, z, y) := go(x, 2), Xr = X; go(:= go(x,2z)) areal-valued function defined on R" x R®.

To introduce the next type of X we have first to recall a notion of second order stochastic dominance. If
V= V(€), Y := Y(£) are random values for which there exist finite ErV(£), EFY(§) and if

FroW = [ Frowdr. Fow= [ Frob.

then V(&) dominates in second order Y(&) (V(§) =, Y(£))if
FZV(g)(U) < Ffl(f)(u) for every u e R

To define second order stochastic dominance constraints set Xr, let g(x, &) (defined on R" x R®) be for every
x € X arandom variable with distribution function Fy(x, ¢)- Let, moreover, for every x € X there exists finite
EFg(X, 5)7 EFY<§> and

u u
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then rather general second order stochastic dominance constraints set Xy can be defined by

c.
Xr={xeX: F;(X’ ou) < Ff,(g)(u) forevery uc R'}, 4

equivalently by

Xp={x€X: Ep(u—g(x,6)" < Ep(u—Y(¢))" forevery uecR'}. (5)

(The equivalence of the constraints sets (4) and (5) can be found in [10]. For definitions of the stochastic
dominance of others orders see, e.g., [9].)

To introduce the last considered type of the set Xr we start with classical mean-risk problem:
Find

max Ergo(x, ), minpp(go(x, §)) st. x€X; p(-):=pr(-) denotes arisk measure. (6)

Evidently to optimize simultaneously both objectives is mostly impossible. However it can happen that there
exist two real-valued acceptable constants v,, v and Xy € X such that

EFgO(X07 E) Z vy, PF(gO(Xm 5)) S V. (7)
If furthermore the function go and risk measure pr follow the following definition:

Definition. [4] The mean-risk model (6) is called consistent with the second order stochastic dominance
if for every x € Xand x’ € X,

go(x, &) =2 go(x', §) = Epgo(x, §) > Ergo(x, §) and pr(go(x, €)) < pr(go(¥', €));  (8)
then we can define the set Xr(x) by
Xr(x0) = {x € X, x #x0 : Er(u — go(x, £))" < Er(u — go(x0, £))T forevery u e R'}. 9)
In the case when Xr(xo) is a nonempty set, then according to the relation (8) we can see that

x € Xp(Xo) == Ergo(x, &) > Ergo(xo, §) and simultaneously pr(go(x, §)) < pr(go(xo; §))-

Evidently, we can set

d. XF = XF(X()).
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2 Some Definitions and Auxiliary Assertions

In this section we recall some auxiliary assertions suitable for stability and empirical estimates of the prob-
lems (1), (3) with constraints sets a., b., ¢, d. To this end, first, let P(R°) denote the set of all (Borel) probabi-
lity measures on R® and let the system M} (R®) be defined by the relation:

-1 denotes £; normin R’

Mi(R) = {v e P(R) : /IIZHldV(Z) <oo}, |

We introduce the system of the assumptions:

Al
1. go(x,z)is for x € X a Lipschitz function of z € R® with the Lipschitz constant L (corresponding to
the £1 norm) not depending on x,
2. go(x,z) is either a uniformly continuous function on X x R® or there exists € > 0 such that g, (x, z)
is a convex bounded function on X(¢); (X(¢) denotes the e-neighborhood of the setX),

B.1 For Pp, P; € ML(R®), there exist e > 0 such that

1. go(x, z, y)is for x € X(¢), z € R® a Lipschitz function of y € Y(e) with a Lips. constant L,; Y(¢) =
{yeR™ .:y=nh(x,z) forsome xe€ X(e),z€e R}, Erh(x, &), Egh(x, &) € Y(e),

2. for every x € X(e),y € Y(e) there exist finite mathematical expectations, Ergo(x, &, Erh(x, £)),
EFgO(Xa 3 E(;h(X, 5))’ EGgO(X7 3 EFh(X’ 5))? EGgU(X7 3 EGh(X’ 6))7

3. hi(x,z),i=1, ..., my are for every x € X(e) Lipschitz functions of z with the Lipschitz constants
L}, (corresponding to L1),

4. go(x, z,y)is forevery x € X(¢), y € Y(e) a Lipschitz function of z € R® with the Lipschitz constant
L, (corresponding to £; norm),

B.2  Epgo(x,&, Erh(x,€)), Ecgo(x, &, Ech(x,£)) are continuous functions on X.

If Fi(z;),Gi(z), i =1, ..., s are one dimensional marginal distributions corresponding to F, G, then we can
recall

Proposition 1. [7]. Let Pr, P; € M}(R®) and let X be a compact set. If
1. Assumption A.1 1 is fulfilled, then for x € X it holds

s to©
Ergo(x.€) ~ Ergo(x.&)| <L [ Fla) — Giz)ldzn (10)
i=1_"
If moreover A.1 2 is fulfilled, then also
S JrOO
PR, 0~ G0 <L [ IFi) - Gilanlda. (11)
=1

2. Assumptions B.1 are fulfilled, then there exist C > 0 such that forx € X

s oo
|Ergo(x, &, Erh(x, £)) — Ecgo(x, &, Ech(x,£))| < CY / |Fi(zi) — Gi(z)|dz. (12)
1:17C>o
If moreover B.2 is fulfilled, then also
s oo
PR, 20~ 6. 0| < €Y [ IF@) - Gilzn)da. (13)
i=1_"
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To complete auxiliary assertions we recall a very useful inequalities. To this end let Pr, P; € M2 (R®) and let
problems (1), (3) be well defined, then on employing the triangular inequality we can obtain

|SO(F7 XF) - (P(G, XG)| S |(p(F7 XF) - @(Ga XF)| + |<,0(G, XF) - @(Ga XG)|7

B(F, Xp) — @(G, X5)| < |@(F, Xe) — (G, Xe)| + |(G, Xr) — (G, X5)|. (14)

Evidently, employing the assertion of Proposition 1 and the relations (14) we can bounded the gaps between
optimal values of the problems (1), (3) with different distributions F and G. However to this end it is reason-
able, first, to define for ¢ € R! the sets X5 by

Xp={x€X: Egg1(x, &, Erh(x, £)) < e} inthe case of constraints set b. with m =1, (15)

Xe = {xeX:Ep(u—g(x &))" —Ep(u—Y(£)T <e forevery uc R}

. . (16)
in the case of constraint set c.

Employing the last relations, assumptions of Proposition 1 and the approach of the work [8] we can obtain:

1. in the case of constraint b. with m = 1 and the function g, fulfilling the assumption B.1 that
s T
Xt XX with 6eR, c=CY / IF(z) — Gi(z:)\dz, (17)
i=1_7

2. in the case of constraint set c; g(x, z), Y(z) to be for every x € X Lipschitz functions of z € R with the
Lipschitz constant L, not depending on x € X, that

N +oo
Xy CXpCXptt with JeR, e=2Ly Y / \Fi(z) — Gi(z;)|dz. (18)
i=1

— 00

Evidently, the analysis and the results of this section can be employed in the case when the distribution
function G is replaced by empirical one.

3 Empirical Estimates

First, in this section, we introduce a new system of the assumptions.

A2

o {&}%°, is an independent random sequence corresponding to F,

o F"isan empirical distribution function determined by {¢'}Y | . N=1,2,...,
A3 Pp,i=1,...,sare absolutely continuous w.r. t. the Lebesgue measure on R'.

Empirical problem, corresponding to the “underlying” problem (1), can be introduced in the form:
Find
@(FN7 XFN) = inf{EF"’gO (Xv ga EFNh(Xa 5))|X € XFN}' (19)

Employing the idea of the paper [8], we can obtain.

Proposition 2. Let Xbe anonempty compactset, Pr € M1 (R®), Xrbe defined by the relation (5); Xr, Xpv, N =
1, ... be nonempty compact sets. Let, moreover, g(x, z), Y(z) be for every x € X Lipschitz functions of z € Zg
with the Lipschitz constant Ly not depending on x € X. If
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1. Assumptions B.1, B.2, A.2 are fulfilled,

2. Ergo(x, &, Eph(x, &)) is a Lipschitz function on X,

3. there exists ¢y > 0 such that X; (defined by the relation (15)) are nonempty compact sets for every
e € (—ep, €0) and, moreover, there exists a constant C > 0 such that

/

AnX;, Xi] <Cle—€| for e& € (—ep, &),

then
P{w: |@(F, Xp) — @(F", Xp)| —n—so0 0} = 1. (20)

(A[-, -] := Au[+, -] denotes the Hausdorff distance in the subsets of n-dimensional Euclidean space; for defi-
nition see, e.g., [11].)
Proposition 3. Let Xbe anonempty compactset, Pr € M1 (R®), Xrbe defined by the relation (2); Xr, Xpv, N =
1, ... be nonempty compact sets.

1. functions gy, g1 fulfil Assumptions B.1, B.2; Assumption A.2 is fulfilled,

2. Epgo(x, &, Eph(x, &)) is a Lipschitz function on X,

3. there exists ¢y > 0 such that X} (defined by the relation (15)) are nonempty compact sets for every

e € (—ey, €0) and, moreover, there exists a constant C > 0 such that

/

AXe, Xi] <Cle—¢| for e, € (—zo, o),

then
P{w : |@(F, Xp) — @(F", Xpv)| —*N—s00 0} = 1. (21)

Remark. In the both cases (Proposition 2, Proposition 3) @(F", X ) is a consistent estimate of @(F, X).
Evidently, it is possible also to prove results about the rate of convergence for this estimates. However to
present the corresponding assertion is beyond the scope of this contribution.

It remains to deal with an analysis of the constraints set Xy corresponding to the case d. If we can assume
that constants v;, v fulfill condition (7) with some xy € X, then we can replace distribution function F by
FV and try to find x} and Xpv(x))N such thatfor N = 1,2, ...

Ergo(d, ) > 12 = o prlgolel ) v+ 7.
Xpv(xgn) = {x € X,x # XN : Ep(u — go(x,€))" < Er(u — go(x),£))™ for everyu € R'} (22)

Let X be a compact set and let there exist a constant C' > 0 such that

s (o)
rgo(x. €) — p(go(e O < €S [ IFle) ~ Fla)lds forevery xeX. (23
i=1_"
If we can assume that pr(go (%, £)) is a uniformly continuous on X, assumptions A.1 are fullfilled, then we can

obtain
P{w : [pr(go(X0, €)) — prv(go(xy, €))] —n—00 0} = 1,

1 (24)

P{w : [Eggo(x0, &) — Emgo(x}, &)] —n—0c 0}

Consequently, we have proven the convergence Emgo(xy, £) to Ergo(Xo, £) and pgv(go(xy, €)) to
pr(go(X0, &)) (a.s.). This result is important for us. However, our aim is to find out the assumptions under
which

P{w : |o(F, Xp(%0)) — @(F", Xpn (x3)))| —n—s00 0} = 1. (25)
Evidently if we can assume that

P{w : AlXp(x0), Xpv(x3)] —n—00 0} =1 (26)

and if we add to all above mentioned assumptions:
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Pr € M}(RY), X, Xp(x0), Xpv(x)), N=1,2,... are nonempty compact sets,
Ergo (X0, &, Erh(x,&)) is a Lipschitz function on X,

Assumptions B.1, B.2, A.2 are fulfilled,

then the assertion (25) is valid.

4

Conclusion

The contribution is focused on a special type of the stochastic optimization problems in which dependence
on the probability measure is not linear. This type of problems corresponds to real-life situations rather
often. A risk given by variance (in the mean-risk problem) is well known example of this class. The aim
of this contribution is to show that many properties of these problems (under acceptable assumptions) are
similar to them in the “classical” case. However the detailed analysis is beyond the scope of this contribution.
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