
A Note on Stochastic Optimization Problems with
Nonlinear Dependence on a Probability Measure

Vlasta Kaňková1
Abstract. Nonlinear dependence on a probabilitymeasure begins to appear (last
time) in a stochastic optimization rather often. Namely, the corresponding type
of problems corresponds to many situations in applications. The nonlinear de-
pendence can appear as in the objective functions so in a constraints set. We plan
to consider the case of static (one-objective) problems in which nonlinear de-
pendence appears in the objective function with a few types of constraints sets.
In details we consider constraints sets “deterministic”, depending nonlinearly on
the probability measure, constraints set determined by second order stochastic
dominance and the sets given by mean-risk problems. The last case means that
the constraints set corresponds to solutions those guarantee an acceptable value
in both criteria. To introduce corresponding assertions we employ the stability
results based on the Wasserstein metric and L1 norm. Moreover, we try to deal
also with the case when all results have to be obtained (estimated) on the data
base.
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1 Introduction
Optimization problemswith nonlinear dependence on a probabilitymeasure begin to appear (in a stochastic
literature) (see, e.g., [2], [3], [6], [7]). This type of problems corresponds to many situations from practice.
To introduce the above mentioned type of the problems let (Ω,S,P) be a probability space; ξ (:= ξ(ω) =
(ξ1(ω), . . . , ξs(ω)) an s–dimensional random vector deϐined on (Ω,S, P); F(:= Fξ(z), z ∈ Rs) the distribution
function of ξ; PF, ZF the probability measure and a support corresponding to F; XF ⊂ X ⊂ Rn a nonempty
set generally depending on F; X ⊂ Rn a nonempty “deterministic” set. If ḡ0(:= ḡ0(x, z, y)) is a real–valued
function deϐined on Rn × Rs × Rm1 ; h(:= h(x, z)) = (h1(x, z), . . . , hm1(x, z)) is an m1–dimensional vector
function deϐined on Rn × Rs, then stochastic (static) optimization problem with a nonlinear dependence on
the probability measure can be introduced in the form:
Find

φ̄(F, XF) = inf{EFḡ0(x, ξ, EFh(x, ξ))|x ∈ XF}. (1)
Evidently a nonlinear dependence can appear as in the objective function so in the constraints set. We con-
sider a few types of XF :

a. XF := X,

b. XF := {x ∈ X : EFḡi(x, ξ, EFh(x, ξ)) ≤ 0, i = 1, . . . , m},

where ḡi(x, z, y), i = 1, . . . , m are defined on Rn × Rs × Rm1 .

(2)

Of course it is assumed that all ϐinite mathematical expectation in the relations (1), (2) exist.

Problem (1) covers a classical problem with linear dependence in the form:
Find

φ(F, XF) = inf{EFg0(x, ξ)|x ∈ XF}, (3)
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with ḡ0(x, z, y) := g0(x, z), XF = X; g0(:= g0(x, z)) a real-valued function deϐined on Rn × Rs.

To introduce the next type of XF we have ϐirst to recall a notion of second order stochastic dominance. If
V := V(ξ), Y := Y(ξ) are random values for which there exist ϐinite EFV(ξ), EFY(ξ) and if

F2Y(ξ)(u) =

u∫
−∞

FY(ξ)(y)dy, F2V(ξ)(u) =

u∫
−∞

FV(ξ)(y)dy,

then V(ξ) dominates in second order Y(ξ) (V(ξ) ⪰2 Y(ξ)) if

F2V(ξ)(u) ≤ F2Y(ξ)(u) for every u ∈ R1.

To deϐine second order stochastic dominance constraints set XF, let g(x, ξ) (deϐined on Rn ×Rs) be for every
x ∈ X a random variable with distribution function Fg(x, ξ). Let, moreover, for every x ∈ X there exists ϐinite
EFg(x, ξ), EFY(ξ) and

F2g(x, ξ)(u) =

u∫
−∞

Fg(x, ξ)(y)dy, F2Y(ξ)(u) =

u∫
−∞

FY(ξ)(y)dy, u ∈ R1,

then rather general second order stochastic dominance constraints set XF can be deϐined by

c.
XF = {x ∈ X : F2g(x, ξ)(u) ≤ F2Y(ξ)(u) for every u ∈ R1}, (4)

equivalently by

XF = {x ∈ X : EF(u− g(x, ξ))+ ≤ EF(u− Y(ξ))+ for every u ∈ R1}. (5)

(The equivalence of the constraints sets (4) and (5) can be found in [10]. For deϐinitions of the stochastic
dominance of others orders see, e.g., [9].)

To introduce the last considered type of the set XF we start with classical mean-risk problem:
Find

max EFg0(x, ξ), min ρF(g0(x, ξ)) s.t. x ∈ X; ρ(·) := ρF(·) denotes a risk measure. (6)

Evidently to optimize simultaneously both objectives ismostly impossible. However it can happen that there
exist two real-valued acceptable constants ν2, ν1 and x0 ∈ X such that

EFg0(x0, ξ) ≥ ν2, ρF(g0(x0, ξ)) ≤ ν1. (7)

If furthermore the function g0 and risk measure ρF follow the following deϐinition:

Deϔinition. [4] The mean–risk model (6) is called consistent with the second order stochastic dominance
if for every x ∈ X and x′ ∈ X,

g0(x, ξ) ⪰2 g0(x′, ξ) =⇒ EFg0(x, ξ) ≥ EFg0(x′, ξ) and ρF(g0(x, ξ)) ≤ ρF(g0(x′, ξ)); (8)

then we can deϐine the set XF(x0) by

XF(x0) = {x ∈ X, x =/ x0 : EF(u− g0(x, ξ))+ ≤ EF(u− g0(x0, ξ))+ for every u ∈ R1}. (9)

In the case when XF(x0) is a nonempty set, then according to the relation (8) we can see that

x ∈ XF(xo) =⇒ EFg0(x, ξ) ≥ EFg0(x0, ξ) and simultaneously ρF(g0(x, ξ)) ≤ ρF(g0(x0, ξ)).

Evidently, we can set

d. XF := XF(x0).
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2 Some Deϐinitions and Auxiliary Assertions
In this section we recall some auxiliary assertions suitable for stability and empirical estimates of the prob-
lems (1), (3) with constraints sets a., b., c., d. To this end, ϐirst, letP(Rs) denote the set of all (Borel) probabi-
lity measures on Rs and let the systemM1

1(R
s) be deϐined by the relation:

M1
1(R

s) = {ν ∈ P(Rs) :

∫
Rs

∥z∥1dν(z) < ∞}, ∥ · ∥1 denotes L1 norm in Rs.

We introduce the system of the assumptions:

A.1
1. g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding to

the L1 norm) not depending on x,
2. g0(x, z) is either a uniformly continuous function on X× Rs or there exists ε > 0 such that go(x, z)

is a convex bounded function on X(ε); (X(ε) denotes the ε–neighborhood of the setX),

B.1 For PF, PG ∈ M1
1(R

s), there exist ε > 0 such that
1. ḡ0(x, z, y) is for x ∈ X(ε), z ∈ Rs a Lipschitz function of y ∈ Y(ε) with a Lips. constant Ly; Y(ε) =

{y ∈ Rm1 : y = h(x, z) for some x ∈ X(ε), z ∈ Rs}, EFh(x, ξ), EGh(x, ξ) ∈ Y(ε),
2. for every x ∈ X(ε), y ∈ Y(ε) there exist ϐinite mathematical expectations, EFḡ0(x, ξ, EFh(x, ξ)),

EFḡ0(x, ξ, EGh(x, ξ)), EGḡ0(x, ξ, EFh(x, ξ)), EGḡ0(x, ξ, EGh(x, ξ)),
3. hi(x, z), i = 1, . . . , m1 are for every x ∈ X(ε) Lipschitz functions of zwith the Lipschitz constants

Lih (corresponding to L1),
4. ḡ0(x, z, y) is for every x ∈ X(ε), y ∈ Y(ε) a Lipschitz function of z ∈ Rs with the Lipschitz constant

Lz (corresponding to L1 norm),

B.2 EFḡ0(x, ξ, EFh(x, ξ)), EGḡ0(x, ξ, EGh(x, ξ)) are continuous functions on X.

If Fi(zi),Gi(zi), i = 1, . . . , s are one dimensional marginal distributions corresponding to F, G, then we can
recall
Proposition 1. [7]. Let PF, PG ∈ M1

1(R
s) and let X be a compact set. If

1. Assumption A.1 1 is fulϐilled, then for x ∈ X it holds

|EFg0(x, ξ)− EFg0(x, ξ)| ≤ L
s∑

i=1

+∞∫
−∞

Fi(zi)− Gi(zi)|dzi. (10)

If moreover A.1 2 is fulϐilled, then also

|φ(F, X)− φ(G, X)| ≤ L
s∑

i=1

+∞∫
−∞

|Fi(zi)− Gi(zi)|dzi, (11)

2. Assumptions B.1 are fulϐilled, then there exist Ĉ > 0 such that for x ∈ X

|EFḡ0(x, ξ, EFh(x, ξ)) − EGḡ0(x, ξ, EGh(x, ξ))| ≤ Ĉ
s∑

i=1

∞∫
−∞

|Fi(zi)− Gi(zi)|dzi. (12)

If moreover B.2 is fulϐilled, then also

|φ̄(F, X)− φ̄(G, X)| ≤ Ĉ
s∑

i=1

∞∫
−∞

|Fi(zi)− Gi(zi)|dzi. (13)
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To complete auxiliary assertions we recall a very useful inequalities. To this end let PF, PG ∈ M1
1(R

s) and let
problems (1), (3) be well deϐined, then on employing the triangular inequality we can obtain

|φ(F, XF)− φ(G, XG)| ≤ |φ(F, XF)− φ(G, XF)| + |φ(G, XF)− φ(G, XG)|,

|φ̄(F, XF)− φ̄(G, XG)| ≤ |φ̄(F, XF)− φ̄(G, XF)| + |φ̄(G, XF)− φ̄(G, XG)|. (14)

Evidently, employing the assertion of Proposition 1 and the relations (14)we can bounded the gaps between
optimal values of the problems (1), (3) with different distributions F and G.However to this end it is reason-
able, ϐirst, to deϐine for ε ∈ R1 the sets XεF by

•

XεF = {x ∈ X : EFḡ1(x, ξ, EFh(x, ξ)) ≤ ε} in the case of constraints set b. with m = 1, (15)

•
XεF = {x ∈ X : EF(u− g(x, ξ))+ − EF(u− Y(ξ))+ ≤ ε for every u ∈ R1}

in the case of constraint set c.
(16)

Employing the last relations, assumptions of Proposition 1 and the approach of the work [8] we can obtain:
1. in the case of constraint b. withm = 1 and the function ḡ1 fulϐilling the assumption B.1 that

Xδ−ε
G ⊂ XδF ⊂ Xδ+ε

G with δ ∈ R1, ε = Ĉ
s∑

i=1

+∞∫
−∞

|Fi(zi)− Gi(zi)|dzi, (17)

2. in the case of constraint set c; g(x, z), Y(z) to be for every x ∈ X Lipschitz functions of z ∈ Rs with the
Lipschitz constant Lg not depending on x ∈ X, that

Xδ−ε
G ⊂ XδF ⊂ Xδ+ε

G with δ ∈ R1, ε = 2Lg
s∑

i=1

+∞∫
−∞

|Fi(zi)− Gi(zi)|dzi. (18)

Evidently, the analysis and the results of this section can be employed in the case when the distribution
function G is replaced by empirical one.

3 Empirical Estimates
First, in this section, we introduce a new system of the assumptions.

A.2
• {ξi}∞i=1 is an independent random sequence corresponding to F,
• FN is an empirical distribution function determined by {ξi}Ni=1,N = 1,2, . . . ,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1.

Empirical problem, corresponding to the “underlying” problem (1), can be introduced in the form:
Find

φ̄(FN, XFN) = inf{EFN ḡ0(x, ξ, EFNh(x, ξ))|x ∈ XFN}. (19)

Employing the idea of the paper [8], we can obtain.

Proposition2. LetXbeanonempty compact set,PF ∈ M1
1(R

s), XF bedeϐinedby the relation (5); XF, XFN , N =
1, . . . be nonempty compact sets. Let, moreover, g(x, z), Y(z) be for every x ∈ X Lipschitz functions of z ∈ ZF
with the Lipschitz constant Lg not depending on x ∈ X. If
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1. Assumptions B.1, B.2 , A.2 are fulϐilled,
2. EFḡ0(x, ξ, EFh(x, ξ)) is a Lipschitz function on X,
3. there exists ε0 > 0 such that XεF (deϐined by the relation (15)) are nonempty compact sets for every

ε ∈ ⟨−ε0, ε0⟩ and, moreover, there exists a constant Ĉ > 0 such that

∆n[XεF, Xε
′

F ] ≤ Ĉ|ε− ε
′
| for ε, ε

′
∈ ⟨−ε0, ε0⟩,

then
P{ω : |φ̄(F, XF)− φ̄(FN, XFN)| −→N−→∞ 0} = 1. (20)

(∆[·, ·] := ∆n[·, ·] denotes the Hausdorff distance in the subsets of n-dimensional Euclidean space; for deϐi-
nition see, e.g., [11].)
Proposition3. LetXbeanonempty compact set,PF ∈ M1

1(R
s), XF bedeϐinedby the relation (2); XF, XFN , N =

1, . . . be nonempty compact sets.
1. functions ḡ0, ḡ1 fulϐil Assumptions B.1, B.2; Assumption A.2 is fulϐilled,
2. EFḡ0(x, ξ, EFh(x, ξ)) is a Lipschitz function on X,
3. there exists ε0 > 0 such that XεF (deϐined by the relation (15)) are nonempty compact sets for every

ε ∈ ⟨−ε0, ε0⟩ and, moreover, there exists a constant Ĉ > 0 such that

∆n[XεF, Xε
′

F ] ≤ Ĉ|ε− ε
′
| for ε, ε

′
∈ ⟨−ε0, ε0⟩,

then
P{ω : |φ̄(F, XF)− φ̄(FN, XFN)| −→N−→∞ 0} = 1. (21)

Remark. In the both cases (Proposition 2, Proposition 3) φ̄(FN, XFN) is a consistent estimate of φ̄(F, XF).
Evidently, it is possible also to prove results about the rate of convergence for this estimates. However to
present the corresponding assertion is beyond the scope of this contribution.
It remains to deal with an analysis of the constraints set XF corresponding to the case d. If we can assume
that constants ν2, ν1 fulϐill condition (7) with some x0 ∈ X, then we can replace distribution function F by
FN and try to ϐind xN0 and XFN(xN0 )

N such that for N = 1, 2, . . .

EFg0(xN0 , ξ) ≥ ν2 −
1
N
, ρF(g0(xN0 , ξ)) ≤ ν1 +

1
N
.

XFN(x0N) = {x ∈ X, x ̸= xN0 : EF(u− g0(x, ξ))+ ≤ EF(u− g0(xN0 , ξ))
+ for every u ∈ R1} (22)

Let X be a compact set and let there exist a constant C1 > 0 such that

|ρF(g0(x, ξ)) − ρFN(g0(x, ξ))| ≤ C1
s∑

i=1

∞∫
−∞

|Fi(zi)− FNi (zi)|dzi for every x ∈ X. (23)

If we can assume that ρF(g0(x, ξ)) is a uniformly continuous on X, assumptions A.1 are fullϐilled, thenwe can
obtain

P{ω : |ρF(g0(x0, ξ)) − ρFN(g0(xN0 , ξ))| −→N−→∞ 0 } = 1,

P{ω : |EFg0(x0, ξ) − EFNg0(xN0 , ξ)| −→N−→∞ 0 } = 1. (24)

Consequently, we have proven the convergence EFNg0(xN0 , ξ) to EFg0(x0, ξ) and ρFN(g0(xN0 , ξ)) to
ρF(g0(x0, ξ)) (a.s.). This result is important for us. However, our aim is to ϐind out the assumptions under
which

P{ω : |φ̄(F, XF(x0))− φ̄(FN, XFN(x
N
0 )))| −→N−→∞ 0} = 1. (25)

Evidently if we can assume that
P{ω : ∆[X0F(x0), X

0
FN(x

N
0 )] −→N−→∞ 0} = 1 (26)

and if we add to all above mentioned assumptions:
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• PF ∈ M1
1(R

1), X, XF(x0), XFN(xN0 ), N = 1, 2, . . . are nonempty compact sets,
• EFg0(x0, ξ, EFh(x, ξ)) is a Lipschitz function on X,
• Assumptions B.1, B.2, A.2 are fulϐilled,
then the assertion (25) is valid.

4 Conclusion
The contribution is focused on a special type of the stochastic optimization problems in which dependence
on the probability measure is not linear. This type of problems corresponds to real-life situations rather
often. A risk given by variance (in the mean-risk problem) is well known example of this class. The aim
of this contribution is to show that many properties of these problems (under acceptable assumptions) are
similar to them in the “classical” case. However the detailed analysis is beyond the scope of this contribution.
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