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Abstract: We study whether, and if yes then how, a varying auto-correlation structure in different parts
of distributions is reflected in the multifractal properties of a dynamic process. Utilizing the quantile
autoregressive process with Gaussian copula using three popular estimators of the generalized Hurst
exponent, our Monte Carlo simulation study shows that such dynamics translate into multifractal
dynamics of the generated series. The tail-dependence of the auto-correlations forms strong enough
non-linear dependencies to be reflected in the estimated multifractal spectra and separated from the
case of the standard auto-regressive process. With a quick empirical example from financial markets,
we argue that the interaction is more important for the asymmetric tail dependence. In addition,
we discuss and explain the often reported paradox of higher multifractality of shuffled series
compared to the original financial series. In short, the quantile-dependent auto-correlation structures
qualify as sources of multifractality and they are worth further theoretical examination.
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1. Introduction

Multifractality as a characteristic of complex dynamic systems was developed in the 1970s
and 1980s in two separate branches—in the works of Novikov [1] and Mandelbrot [2,3] studying
turbulence in fluid mechanics, and in the works of Grassberger [4,5] and Hentschel and Procaccia [6]
generalizing the fractal dimension, information dimension and correlation dimension into a unified
framework through Rényi entropy describing strange attractors in nonlinear dynamics. In finance,
the analysis of multifractal properties of financial series goes back to the 1990s [7–9] and it has
escalated into numerous empirical analyses that have been coherently reviewed in the recent review of
Jiang et al. [10]. Financial markets are especially appealing for such analyses, as the time series emerging
from them—i.e., prices, returns, volatility, and traded volumes—not only come in sufficient amounts
and at sufficient frequency, but more importantly, they are outcomes of complicated interactions
between various types of market participants with different aims, opinions, and hence strategies, likely
resulting into complex systems with non-linear interactions [11–13].

Generalizing the notion of fractality, which in finance mostly translates into long-range
dependence and/or power-law distributions, the multifractality of financial time series suggests
that the correlation structure is non-linear and complex, usually intertwined with a non-Gaussian
distribution of the stochastic process. This leads to the standard separation of multifractality into two
sources—complex (non-linear) correlations and heavy-tailed distributions [14]. The former goes back
to the long-range dependence generalization, as long-range dependent processes are characterized
by a slowly decaying auto-correlation function, usually in an asymptotically hyperbolic manner, i.e.,
following a power-law, which implies a power-law scaling of variance of their integrated process.
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Multifractality then covers scaling of not only the second moment (variance) of the integrated process
but a whole spectrum of moments. The latter reflects the fact that distributional power-law tails
translate into scaling of the moments as well [15,16]. As the multifractal processes have a rich
correlation structure, they should provide good opportunities for modeling and—specifically for
finance—profitable forecasting, and thus trading opportunities. To this end, there have been many
multifractal models developed to take advantage of these dynamic properties not captured by standard
financial econometrics methods such as autoregressive models and (generalized) autoregressive
conditional heteroskedasticity models [17,18]. Out of these, the most prominent ones have been the
multiplicative cascade models [19], the multifractal model of asset returns [20,21], Markov-switching
multifractal models [22,23], and multifractal random walk models [24]. However, there are not only
quantitative (profitable) motives for studying multifractality in financial series but also qualitative,
as multifractality can be seen as a rather simple measure of complexity of the underlying process.
From this perspective, it becomes interesting to see whether specific types of models reflecting or
covering specific types of market participants’ behavior lead to multifractal dynamics of the generated
series. This is mostly motivated by original claims in the financial literature that some types of behavior
or characteristics of a market or market participants (agents) lead to more complex or even specifically
multifractal behavior, nicely summarized, e.g., in the collection of papers by Calvet and Fisher [25].
However, the connection between specific types of agents’ behavior and multifractal properties of
model-generated data had remained almost untouched until recently [26,27].

Here, we study whether the effect of different strengths of auto-correlations for specific parts of
the series distribution translates into multifractal properties of the series, and can thus form a novel
multifractality source in addition to the well established ones. Regarding the standard separation
between causes of the so-called apparent multifractality, Jiang et al. [10] listed nonlinear correlations,
linear correlations, and heavy-tailed distributions, where the effect of linear correlations is usually
treated as spurious multifractality in addition to the finite size effect, as these do not reflect complex
dynamics. Multifractality due to tail-dependent auto-correlations would fall into new nonlinear
effects causing multifractality. We utilize the quantile autoregressive process with Gaussian copula
to ensure that the possibly detected multifractality is caused solely by the non-linear correlations
and not by the distributional properties of the series. The effect is examined via popular estimators
of multifractality—the multifractal detrended fluctuation analysis, multifractal detrending moving
average analysis, and the generalized Hurst exponent procedure. These are very popular estimators
with the bonus of having only a rather limited number of moving parts to keep the analysis and
simulation design solid and tractable. We show that all three methods are able to differentiate between
the tail-dependent auto-correlation structure and the standard autoregressive structure with one global
parameter, albeit mostly for the higher levels of the auto-correlation coefficients. The presented Monte
Carlo simulation study clearly presents that the tail-dependence of the auto-correlations forms strong
enough non-linear dependencies that they are reflected in the estimated multifractal spectra. With a
quick empirical example, we argue that the method’s performance for the asymmetric tail dependence
is more important for the financial data. In addition, we discuss and explain the often reported paradox
of higher multifractality of shuffled series compared to the original financial series.

2. Methods

2.1. Multifractality, Its Estimators, and Its Measures

Multifractality is a generalization of fractality which, for time series, is reflected in the long-range
dependence properties of its auto-correlation dynamics. Long-range dependent processes each
have a slowly decaying auto-correlation function, usually specified as asymptotically hyperbolically
decaying; i.e., the auto-correlation function has the shape of ρ(k) ∝ k2H−2 for a time lag k→ +∞.
The characteristic decay of the function is given by Hurst exponent H [28]. Even though
H ∈ R in general, it is usually treated as being limited between 0 and 1 for stationary (and not
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overdifferenced) processes. For Gaussian processes, it holds that H = d− 0.5 where d is the (fractional)
differencing/integration parameter, i.e., d = 1 for unit-root processes so that H = 1.5. The splitting
point for long-range dependent processes is H = 0.5 (parallel to d = 0, i.e., stationary process,
possibly with weak serial dependence structure, such as autoregressive processes). For H > 0.5,
the process is persistent, which can be seen as a locally trending process that still remains stationary.
For H < 0.5, we have anti-persistent processes that are characterized by frequent changes of the sign
of change. The asymptotic proportionality of the auto-correlation function translates into a power-law
scaling of variance of an integrated process with time. The multifractal processes are then described
through scaling of their generalized moments. Specifically, Calvet and Fisher [29] define a stochastic
process {Xt} as multifractal if it has stationary increments and the expected values of its qth absolute
moment follow:

E(|Xt|q) = c(q)tτ(q)+1 (1)

with a concave scaling function τ(q). A linear scaling function is characteristic for a unifractal
(monofractal) processes such as the fractional Brownian motion (fBm) and the fractionally integrated
autoregressive moving average processes (ARFIMA/FARIMA) [30]. Translating the scaling function
back to the language of Hurst exponents, we can write

H(q) =
1 + τ(q)

q
(2)

where H(q) is the generalized Hurst exponent and it holds that H(2) ≡ H; i.e., for the second moment
q = 2, we obtain the Hurst exponent characterizing the long-range dependence properties of the series.
The generalized Hurst exponent then describes the scaling properties of the respective moments q,
i.e., the situation when the time series is made of interwoven fractal subsets [14]. As τ(q) is concave
in q for the multifractal processes, H(q) is non-increasing in q for such processes. The size of such
a decrease, i.e., the range of the generalized Hurst exponents for a given spectrum of moments qs,
defined as ∆H ≡ maxq H(q)−minq H(q), is standardly taken as a measure of multifractality strength.
As an alternative, we can use the width of the singularity spectrum derived from the scaling function
τ(q) as

α(q) =
∂τ(q)

∂q

f (α(q), q) = qα(q)− τ(q) (3)

where α(q) is the singularity strength and f (α(q), q) is the singularity spectrum. The width of the
spectrum is then taken as ∆α ≡ maxq α(q)−minq α(q). The larger either ∆H or ∆α is, the higher the
level of multifractality in the series. As both measures are derived from the scaling function τ(q)
dynamics and they can be expressed using one another so that

α(q) = H(q) + qH′(q)

f (α(q), q) = q(α(q)− H(q)) + 1, (4)

they provide very similar information about the multifractal properties [26,31]. Therefore, we will
report only the width of the singularity spectrum ∆α in the results section.

There are many estimators of the generalized Hurst exponents or the scaling functions τ(q) that
were coherently reviewed by Jiang et al. [10]. We opt for a set of three popular estimators—the
multifractal detrended fluctuation analysis, multifractal detrending moving average, and generalized
Hurst exponent approach—mostly for their low number of free parameters, which is an essential
attribute to keep the simulation results straightforward and informative.

Multifractal detrended fluctuation analysis (MF-DFA) is a multifractal generalization of the
detrended fluctuation analysis [14,32] and it builds directly on the qth moment scaling in the
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multifractality definition. In the procedure, the process is firstly demeaned and integrated to form a
series profile (cumulative sum of the demeaned original series). For a specific scale s, the profile is
split into non-overlapping boxes of s observations (the procedure can be defined even for overlapping
boxes). Additionally, in the case of integer indivisibility, the series is split into the boxes from the
beginning of the series and also from the end to form twice the number of boxes of size s. In each box,
a time trend (usually linear, but practically any time-filtering method can be applied) is fit and a mean
squared error is obtained. For each such box ν = 1, . . . , Ns, where Ns is the number of boxes of size s,
we label such mean squared error as F2

DFA(ν, s) and the generalized fluctuation function as

Fq(s) =

(
1

Ns

Ns

∑
ν=1

(F2
DFA(ν, s))

q
2

) 1
q

. (5)

The fluctuation function scales according to

Fq(s) ∝ sH(q) for s→ +∞ (6)

so that the spectrum of generalized Hurst exponents can be estimated from the log–log specification of
the equation.

The multifractal detrending moving average (MF-DMA) method is similar to MF-DFA but it builds
on the moving average filtering rather than the polynomial filtering of MD-DFA [31,33]. Following the
unifractal version [34], the fluctuation function is based on fluctuations from the moving average with
length s, which is run over the whole time series length. Other aspects follow the MF-DFA procedure.

The generalized Hurst exponent (GHE) procedure of the Di Matteo group [15,16,35] builds on the
fractal geometry and it is sometimes referred to as the heigh-height correlation method [36] mostly to
overcome the possible confusion between the method itself and H(q). The method builds on scaling of
the qth order moments of the distribution of the increments of the integrated process {Xt}:

Kq(τ) =
〈|X(t + τ)− X(t)|q〉

〈|X(t)|q〉 (7)

where 〈〉 is an average operator. The generalized Hurst exponent is obtained via the log–log regression
on the scaling law

Kq(τ) ∝ τqH(q). (8)

Even though the number of free parameters is low for these methods compared to the other ones,
especially the ones in the frequency domain, there are still several moving parts that need to be set.
We stick to the industry standards here. For MF-DFA, we use smin = 10 and smax = T/5, where T is the
length of a time series, with a step of 10 between the scales. For MF-DMA, we keep parameters parallel
with MF-DFA so that smin = 11 and smax = (T/5) + 1, as the centered moving averages, are used as
filters. Additionally, for GHE, we set τmin = 1 and τmax is varied between 5 and 20 (or 100 for longer
time series), and the estimate is taken as the average over these varying maximal scales, which is in
effect equal to jackknifing [35].

2.2. Quantile Autoregression with Gaussian Copula

We are interested in how tail-dependent auto-correlation structures translate into multifractal
properties of the time series. For this purpose, we utilize the quantile autoregression (QAR) model, as
it provides a straightforward way to approach the issue. Koenker and Xiao [37] studied estimation and
inference in a more general class of quantile autoregressive models in which all of the autoregressive
coefficients are allowed to be quantile-dependent, i.e., τ-dependent. In their model, the τth-quantile
conditional function of yt follows

Qyt(τ|yt−1, . . . , yt−p) = θ0(τ) + θ1(τ)yt−1 + . . . + θp(τ)yt−p. (9)
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(The authors consider a pth order autoregressive process for yt, yt = θ0(Ut) + θ1(Ut)yt−1 + . . . +
θp(Ut)yt−p, where Ut is iid standard uniform variable). This model is a significant extension of classical
constant coefficient linear time series models (in which the effect of conditioning variables is confined
to a location and shift of the conditional distribution) since it can capture systematic influences of
conditioning variables also in the shape of the conditional distribution of the response.

One possible extension of linear QAR models is the set of nonlinear QAR models based on copula
models. In comparison with linear QAR, these models are more desirable since copula functions allow
for a rich source of potential nonlinear dynamics describing temporal and tail dependence. In addition,
the copula-based nonlinear QARs have monotone conditional quantile functions over the domain of
conditioning variables. The latter is very important as it is related to the quantile crossing problem.

The cornerstone of the copula theory is Sklar’s theorem [38]. Based on this theorem, any joint
distribution can be written as a function of marginal distributions:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (10)

The class of functions C(·) represents the copula functions, which can extend the multivariate
distributions beyond those known and studied in the literature. We assume that the distribution
functions are continuous so that the copula C(·) is unique.

Exploiting the properties of conditional probability distribution, Bouyè and Salmon [39]
introduced a general approach to nonlinear-in-parameters quantile regression based on copula
models. The authors assumed correct specification of the parametric copula dependence function.
Chen et al. [40], on the other hand, allowed for the choice of copula C and marginal distribution
F to be globally misspecified, and yet, yielded correct specification of a conditional quantile
function at a particular quantile. The authors utilized parametric copula models to generate
nonlinear-in-parameters QAR models. The authors took a first-order strictly stationary Markov
process {Yt}, wherein probabilistic properties were determined by joint probability distribution of Yt−1

and Yt. Denoting the joint probability distribution G∗(yt−1, yt) and assuming continuous marginal
distribution F∗(·), with the help of the Sklar’s theorem, a unique copula function C∗(·, ·) can be defined
such that

G∗(yt−1, yt) ≡ C∗(F∗(yt−1), F∗(yt)). (11)

Using the properties of conditional probability distribution, the link between copula functions
and conditional quantile functions becomes obvious. The conditional probability distribution of
Yt|Yt−1 = x is given as

Pr[Yt < y|Yt−1 = x] =
∂C∗(u, v)

∂u
≡ C∗1 (F∗(x), F∗(y)) = τ (12)

where u = F∗(x), v = F∗(y) and τ ∈ (0, 1).
The τ-th conditional quantile of Yt at Yt−1 = x can be retrieved from Equation (12) as

QYt(τ|x) = F∗−1(D1C(τ; F∗(x))) (13)

where F∗−1(·) is the inverse of F∗(·) and D1C(τ; F∗(x)) = C∗−1
1 (·; u) is the partial inverse in the second

argument of C∗1 .
If we substitute some parametric copula function C(·, ·; δ) and marginal distribution F(y; β) into

Equation (13), we get
Qyt(τ|x) = F−1(D1C(τ; x, β, δ), β). (14)

Combinations of different marginal distributions and copula functions bring a wide range
of flexibility.
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For generation of time series with quantile-dependent auto-correlation structure and with
Gaussian unconditional distribution, we need to introduce the normal copula quantile function.
The bivariate normal copula function can be written as

Cρ(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π
√
(1− ρ2)

exp
{
−(r2 − 2ρrs + s2)

2(1− ρ2)

}
drds

where Φ(·) is the standard Gaussian distribution and ρ the linear correlation coefficient.
Let {Yt} be a first-order stationary Markov process generated from a normal copula

Cρ(u, v) = Φρ(Φ−1(u), Φ−1(v)) and marginal distribution F∗(·). Denoting ut = F∗(Yt), the joint
distribution of ut and ut−1 expressed in terms of Normal copula function is:

Cρ(ut−1, ut) = Φρ(Φ−1(ut−1), Φ−1(ut)) (15)

Taking the partial derivative with respect to ut−1 in Equation (15), we can get the conditional
distribution of ut given ut−1:

τ = Φ

(
Φ−1(ut)− ρΦ−1(ut−1)√

1− ρ2

)
(16)

The quantile curve implied by copula function is obtained by solving Equation (16) for ut:

ut =Φ
(

ρΦ−1(ut−1) +
√

1− ρ2Φ−1(τ)

)
(17)

By letting Zt = Φ−1(Ut) = Φ−1(F∗(Yt)) and making use of the multivariate normal distribution
property that the conditional mean functions are linear in the conditioning variables, Chen et al. [40]
showed that {Zt} follows an AR(1) process such that

Zt = ρZt−1 + εt, εt ∼ N(0, (1− ρ2)) (18)

The conditional quantile relationship between Zt and Zt−1 at quantile τ is then

QYt(τ|Yt−1) =F∗−1
(

Φ
(

ρΦ−1(F∗(Yt−1)) +
√

1− ρ2Φ−1(τ)

))
(19)

or

QZt(τ|Zt−1) =b(τ) + ρZt−1, where b(τ) =
√

1− ρ2Φ−1(τ). (20)

3. Simulations Setting

We are interested in whether, and if yes then how, a varying auto-correlation structure in different
parts of distributions is reflected in the multifractal properties of the process. Note that the Monte
Carlo simulation presented here mostly studies the coexistence of such properties rather than causal
relationship that would need to be studied on a more theoretical basis. To do so, we study three types
of processes with different quantile-dependent auto-correlations: (i) flat—standard autoregressive
process, i.e., with a constant auto-correlations coefficient across all quantiles; (ii) symmetric
tails—quantile autoregressive process (Equations (18)–(20)) with zero auto-correlation coefficient
in the bulk (second and third) quartiles and possibly non-zero auto-correlation coefficients for the tail
(first and fourth) quartiles of the same magnitude; and (iii) asymmetric tails—the same as in (ii) only
the auto-correlation coefficients for the tails are of opposite signs, i.e., asymmetric.

A Monte Carlo simulation was then run for each of these settings for time series lengths
T = 500, 1000, 5000, 10, 000, for each varying the specific auto-correlation coefficients between −0.9
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and 0.9 with a step of 0.1, and this was all run for ranges [−qmax, qmax] with qmax = 3, 5, 10, always with
a step of 0.1. For each setting, we ran 1000 repetitions. Importantly, the quantile autoregressive process
we utilized is based on the Gaussian copula, which ensured the final process would be Gaussian; i.e.,
there was no multifractality due to the distribution so that there was no need to worry about further
shuffling the series and studying the interactions as in other studies [26,27].

4. Results

We studied the effect of quantile-dependent auto-correlation structure on the multifractality of
such time series. The expectation is simple and straightforward—more profound differences in the
quantile auto-correlation structure lead to higher multifractality as such correlations are non-linear.
Figure 1 summarizes the statistics of the singularity spectrum widths for all scenarios. In the charts,
we show the results of 1000 simulations for each setting. The solid lines represent the mean values over
the simulations for the given settings and the dashed lines are the 95% confidence intervals (as the
respective quantiles of the simulations distribution). The lighter the color, the longer the number of
observations (ranging from black for T = 500 to light gray for T = 10,000).

4.1. Baseline Settings

Starting with the flat correlation structure, which is in fact a simple autoregressive process, we see
that the level of multifractality varies with the auto-correlation level. This is rather interesting as a
standard autoregressive process is not an example of complex (non-linear) correlation structure. Such a
result has been shown previously on the synthetic data by Rak and Grech [41] and to some extend
explained by Ludescher et al. [42] who found the short-range correlations, i.e., standard autoregressive
processes, as we have here, led to crossovers in the generalized fluctuation function (their study focuses
on MF-DFA) that led to overestimated generalized Hurst exponents for low moments qs and thus
spurious multifractality. We detected this effect for all three estimators we utilized, even though the
effect was much less pronounced for GHE. In addition, we found several relevant regularities.

First, multifractality increases with the time series length and this pattern is rather
uniform across all settings, which has not been so uniformly reported in other topical
studies [26,27,43]. Second, the level of multifractality is not symmetrical around the zero correlation.
Specifically, the multifractality level is higher for the positive auto-correlations than for symmetrical
negative auto-correlations. This might be due to a different effects of negative and positive
serial correlations on the scaling crossovers, as mentioned earlier [42], but this would require
a more detailed study of the crossover effects which is not the topic of interest for this study.
Third, minimal multifractality was not observed for zero auto-correlations as one might expect,
and that was true for all three estimators, even though the details were different. For most of the
negative serial correlations, we found a lower level of auto-correlation, which gives an answer to a
paradox reported for financial series where the shuffled series show higher levels of multifractality
than the original ones [44]. Disturbingly, the size of such difference increases with the time series
length so that it actually becomes more problematic for longer series. Therefore, when discussing
the “remaining” or “true” multifractality, this effect must be controlled for as well. Fourth, the flattest
profile is reported for the GHE method while the other two methods show a pronounced J-shape.

4.2. Comparison to the Flat Correlation Structure

The symmetric tail auto-correlation structure, expectedly, showed a rather different picture.
MF-DFA and MF-DMA still kept their J-shape from the flat correlations case but the levels changed.
The GHE method showed a structural change and the relationship resembles an L-shape. For the
asymmetric tails, the shape became rather symmetric for all three methods. To better understand
the changes for the symmetric and asymmetric cases, we present Figure 2 which shows ratios of
multifractality measures between the symmetric or asymmetric tails and their parallel flat-correlations
case to see how much the quantile-dependent auto-correlations influence the multifractal properties
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when compared to the standard autoregressive case. Note that linear correlation is simply an average
correlation over all quantiles (this has been validated by auxiliary simulations as well) [45] so that,
e.g., the symmetric quantile autoregression with auto-correlations of 0.9 at the upper and the lower
quartile and no serial correlation for the bulk quartiles has a linear auto-correlation coefficient of 0.45,
and in parallel, the asymmetric quantile autoregression with auto-correlations of −0.9 and 0.9 at their
extremes and zeros at the bulk has a linear auto-correlation coefficient of zero. Again, we find several
common patterns but also some clear distinctions between the methods.
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Figure 1. Multifractal range ∆α. Multifractal ranges are shown for processes with Gaussian copulas
with (top) constant correlation coefficients, (middle) symmetric tail dependence, and (bottom) and
asymmetric tail dependence for MF-DFA (left), MF-DMA (center), and GHE (right). The solid lines
represent the mean values of the 1000 simulations for the given settings and the dashed lines represent
the 95% confidence bands as the respective quantiles of the simulated distribution. The lighter the
color, the longer the generated time series (black for T = 500 and light gray for T = 10,000.
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Figure 2. Multifractal range comparison. The ratios between the singularity spectrum widths for the
(a)symmetric quantile-dependent auto-correlation processes and their respective linear autoregressive
counterparts are shown. The solid lines represent the ratios, and the lighter the color, the longer the
generated time series.

For MF-DFA and MF-DMA, the ratios collapse together with respect to the time series lengths of
the underlying processes, but for GHE, the ratios are higher for the longer time series. Note that the
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distinction between ratios with respect to the time series length is beneficial, as longer time series make
successful separation between the effects more likely. In general, the results are qualitatively very
similar for MF-DFA and MF-DMA. For the case of symmetrically tailed auto-correlations, we see that
it is very difficult to distinguish between the flat and tail-dependent auto-correlation structure of the
series for coefficients between −0.3 and 0.3. For larger coefficients, the ratios become more prominent.
For the highest levels of auto-correlations, the ratios climb up to around 30% and 60–70% for the
positive and negative correlations, respectively, for both methods. However, even for auto-correlations
of around ±0.6, the ratio does not exceed 10%. The methods are thus able to separate the effect of
quantile-dependent auto-correlation structure from parallel global auto-correlation structure only for
rather extreme levels of such quantile-dependent auto-correlations. Evidently, both methods perform
better for negative auto-correlations. The results are somewhat better for the case of asymmetric tail
correlations, reaching ratios of around 70% for the extreme auto-correlations and ratios around 20%
for tail auto-correlations at ±0.6.

The results are quite different for GHE. In addition to being able to better separate the
tail-correlations from the mean correlations with an increasing number of observations, the ratios of
the singularity spectrum widths behave very differently compared to the other two methods. For the
symmetric tail effects, we observe that GHE is hardly able to tell the different between the tail and the
mean correlations for the positive coefficients. However, for the negative coefficients, the separation
becomes clear, even though it becomes very apparent mostly for the extreme cases again. For the most
extreme cases and the longest studied time series, the ratio reaches 200%. For the positive correlations,
the ratio does not exceed 20% even for the most extreme cases. For the asymmetrical auto-correlations,
the ratios again become symmetrical around the auto-correlation coefficient and the method clearly
surpasses the other two with ratios, reaching around 150% for the highest auto-correlations and the
longest time series.

5. Discussion and Conclusions

We have found a clear connection between multifractality and tail-dependent auto-correlation
structures, even though it is not completely straightforward. With respect to the actual separation
between the tail-specific auto-correlation structures from the standard autoregressive dynamics of the
underlying series, the performance of the utilized methods varies markedly.

MF-DFA and MF-DMA provide satisfying results only for strong auto-correlations and GHE only
for the negative ones. The results improve distinctively for the case of asymmetric tail dependencies,
as not only are the levels of the ratios higher, but they are also almost perfectly symmetric. To show
how this connects to actual empirical financial series, we present Figure 3 which shows that in fact the
asymmetric structure of quantile auto-correlations is the more representative one. In the chart, we show
the auto-correlation profiles for the logarithmic returns for the S&P 500 index, gold, EURUSD exchange
rate, and Bitcoin between 1 Jan 2015 and 31 July 2020, and we observe the profiles are in fact asymmetric.
Nevertheless, the levels of the coefficients are rather low and even for the most extreme asymmetry
(the S&P 500 stock index), the range of the minimal and maximal auto-correlation is around 0.4.
Therefore, GHE qualifies as the best method for the financial series, as it best distinguishes between the
flat and quantile-dependent auto-correlation structures for the asymmetric case, although its supremacy
is most apparent for longer series of 5000 observations and higher. The other two methods are thus
more suitable for time series with possibly symmetric but still quantile-dependent auto-correlation
structures.
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Figure 3. Empirical example of the quantile auto-correlation structure. Estimated quantile-dependent
auto-correlation coefficients are reported for Bitcoin, EURUSD exchange rate, gold, and S&P 500 for the
period between 1 Jan 2015 and 31 July 2020. Datasets have been obtained from finance.yahoo.com.

In addition, we have shown that all three methods are sensitive to the standard autoregressive
dynamics leading to spurious signs of multifractality. Therefore, when separating between the
correlations-induced and distribution-induced multifractality, the linear auto-correlations must be
carefully controlled for, i.e., plain shuffling or bootstrapping without reconstructing the linear serial
correlations’ structure is not enough for clear separation between the effects. This is generally in hand
with the other simulation-based studies reviewed in Jiang et al. [10], but we also found evidence and
an explanation for the paradox of increased multifractality after shuffling of the original series, as first
reported by Barunik et al. [44]. The latter certainly presents a challenge for theoretical justification
of such behavior and/or distinguishing between the possible causes, as this might be due to the
effect of the auto-correlation structure itself or the bias or inconsistency of estimators—even though
a hint by Ludescher et al. [42] points to a more detailed fine-tuning of the scaling range of the
estimators, which thus leads to the latter case we mention. Either way, a more detailed treatment is
certainly needed.

Overall, the results of our Monte Carlo study suggest a clear connection between a non-linear
correlation structure of the process and its multifractal properties. Even though the separation between
the standard auto-correlations and the quantile-dependent ones is not as clear-cut as one would hope,
the interaction is evident. We see that the higher the discrepancy between the bulk correlations and
the tail correlations is, the higher the level of multifractality found by the utilized methods. In short,
the quantile-dependent auto-correlation structures qualify as sources of multifractality and they are
worth further theoretical examination.
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