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Abstract

This paper introduces the theoretical framework for a generalization of CF1F2 -integrals, a family of Choquet-like integrals 
used successfully in the aggregation process of the fuzzy reasoning mechanisms of fuzzy rule based classification systems. The 
proposed generalization, called by gCF1F2 -integrals, is based on the so-called pseudo pre-aggregation function pairs (F1, F2), 
which are pairs of fusion functions satisfying a minimal set of requirements in order to guarantee that the gCF1F2 -integrals to be 
either an aggregation function or just an ordered directionally increasing function satisfying the appropriate boundary conditions. 
We propose a dimension reduction of the input space, in order to deal with repeated elements in the input, avoiding ambiguities 
in the definition of gCF1F2 -integrals. We study several properties of gCF1F2 -integrals, considering different constraints for the 
functions F1 and F2, and state under which conditions gCF1F2 -integrals present or not averaging behaviors. Several examples 
of gCF1F2 -integrals are presented, considering different pseudo pre-aggregation function pairs, defined on, e.g., t-norms, overlap 
functions, copulas that are neither t-norms nor overlap functions and other functions that are not even pre-aggregation functions.
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1. Introduction

In 2016, Lucca et al. [1] introduced the notion of pre-aggregation function (PAF), which fulfills the boundary 
conditions as any aggregation function, but, instead of being an increasing function, it is just directional increas-
ing [2]. That is, it increases along some specific ray (direction). Furthermore, the authors presented some methods 
to produce PAFs [3,4]. One of them is by generalizing the Choquet integral [5] replacing the product operator by a 
t-norm, obtaining, under some constraints, idempotent and averaging PAFs. This approach was used in Fuzzy Rule-
Based Classification System (FRBCS) [6], presenting excellent results, when the Hamacher t-norm [7] is used for the 
generalization, overcoming the Choquet integral and classical averaging operators in classification systems.

Those excellent results motivated us to explore a more general method for constructing PAFs based on the Choquet 
integral. For that, instead of using just a t-norm, we replace the product operator by a fusion function F that is left 
0-absorbent (i.e., F(0, x) = 0, for all x ∈ [0, 1]), obtaining the CF -integrals [8]. CF -integrals are pre-aggregation 
functions, which, under certain conditions, may be idempotent and/or averaging functions. This allowed to analyze
sub-families of CF -integrals having or not the averaging behavior, showing that a CF -integral does not need to be an 
averaging function when used in FRBCSs, since the non-averaging obtained more accurate results than the averaging 
ones.

In the same line of this research, Lucca et al. [9] investigated another kind of Choquet integral that leads to ag-
gregation functions, instead of just PAFs. For that, the product operation of the standard Choquet integral was first 
distributed and, then, replaced by a copula [10], obtaining the CC-integrals, which happen to be averaging aggrega-
tion functions [11,12,14]. This approach presented excellent results in classification, in particular, when the minimun 
t-norm was the considered copula, in which case it was called CMin-integral [13]. See also the application in [37].

Recently, Luca et al. [15] developed the concept of CF1F2 -integral, which is a specific generalization of CC-
integrals, based on two possibly different fusion functions F1 and F2 (instead of a copula C) satisfying some 
appropriate conditions, obtaining non-averaging Choquet-like integrals that were successfully used in the aggrega-
tion process of the fuzzy reasoning mechanisms of fuzzy rule based classification systems. Their performance was 
proved to be statistically equivalent to FURIA [16].

The general aim of this paper is to generalize the concept of CF1F2 -integrals, obtaining the so-called gCF1F2 -
integrals, presenting a solid theoretical framework that gives the basis for applications. We shall define the 
gCF1F2 -integrals by distributing the product operation of the Choquet integral and, then, generalizing the two in-
stances of the product operation by a pair of fusion functions (F1, F2). For that, we face two main problems:

• Which properties/constraints should be imposed on (F1, F2) in order to guarantee a well defined concept, sat-
isfying the boundary conditions and some kind of increasingness (increasingness, directional increasingness 
or ordered directional (OD) increasing)? This leads us to the concept of pseudo pre-aggregation function pair 
(F1, F2), that is, a pair of fusion functions satisfying some kind of boundary conditions, directional increasing-
ness and F1-dominance property.

• How can we deal with the problem of repeated elements in the input, which may cause ambiguity in the results 
(that is, the same input may produce different results when we change the order of the elements)? To solve this 
problem, we propose to collapse those repeated elements into one representant of the class, and to proceed to a 
problem dimension reduction.

Then, the specific objectives of this paper are stated as:

1. To introduce the notion of pseudo pre-aggregation function pair (F1, F2);
2. To define a problem dimension reduction;
3. Using dimension reduction, to introduce the notion of Choquet-like integral based on pseudo pre-aggregation 

function pairs, called gCF1F2 -integrals;
4. To show under which conditions gCF1F2 -integrals based on pseudo pre-aggregation function pairs (F1, F2) are 

(pre) aggregation functions;
5. To show under which conditions gCF1F2 -integrals based on pseudo pre-aggregation function pairs (F1, F2) are 

ordered directional increasing functions [17] and satisfy the desirable boundary conditions;
6. To study when gCF1F2 -integrals are averaging [18];
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7. To analyze several types of pseudo pre-aggregation function pairs (F1, F2), built from t-norms [7], over-
lap functions [19–22], copulas, and other functions that are not even PAFs, showing examples of different 
gCF1F2 -integrals.

The paper is organized as follows. In Section 2, we present the basic concepts required to understand the paper. 
In Section 3, we introduce the concept of pseudo pre-aggregation pairs and analyze several properties. The con-
cept of gCF1F2 -integrals is introduced in Section 4, where we also define the dimension reduction. In Section 5, we 
discuss when gCF1F2 -integrals are (pre) aggregation functions, and the related properties. Section 6 studies when 
gCF1F2 -integrals are not (pre) aggregation functions, but OD monotone functions. Section 7 is the Conclusion.

2. Preliminaries

In this paper, we call any n-ary function F : [0, 1]n → [0, 1] by a fusion function.

Definition 2.1. [23,24] A function A : [0, 1]n → [0, 1] is an aggregation function whenever the following conditions 
hold:

(A1) A is increasing1 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then

A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);
(A2) A satisfies the boundary conditions: (i) A(0, . . . , 0) = 0 and (ii) A(1, . . . , 1) = 1.

An aggregation function A : [0, 1]n → [0, 1] is said to be idempotent if and only if:

(ID) ∀x ∈ [0, 1] : A(x, . . . , x) = x, and

it is said to be averaging if and only if:

(AV) ∀(x1, . . . , xn) ∈ [0, 1]n : min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤ max{x1, . . . , xn}.

Observe that, since aggregation functions are increasing, the idempotent and averaging behaviors are equivalent in 
the context of aggregation functions.

Definition 2.2. [10] A bivariate function C : [0, 1]2 → [0, 1] is a copula if it satisfies the following conditions, for all 
x, x ′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:

(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);
(C2) C(x, 0) = C(0, x) = 0;
(C3) C(x, 1) = C(1, x) = x.

Definition 2.3. [2] Let 	r = (r1, . . . , rn) be a real n-dimensional vector, 	r 
= 	0 = (0, . . . , 0). A function F : [0, 1]n →
[0, 1] is said to be 	r-increasing if for all 	x = (x1, . . . , xn) ∈ [0, 1]n and for all c > 0 such that 	x + c	r = (x1 +
cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F(	x + c	r) ≥ F(	x).

Similarly, one defines an 	r-decreasing function.

Definition 2.4. [1,4] A function PA : [0, 1]n → [0, 1] is said to be an n-ary pre-aggregation function (PAF) if the 
following conditions hold:

1 For an increasing (decreasing) function we do not mean a strictly increasing (decreasing) function.
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(PA1) Directional Increasingness: there exists 	r = (r1, . . . , rn) ∈ [0, 1]n, 	r 
= 	0, such that PA is 	r-increasing;
(PA2) Boundary conditions: (i) PA(0, . . . , 0) = 0 and (ii) PA(1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector 	r we just say that F is an 	r-pre-aggregation function.

Another important concept used in this paper is the one of ordered directional (OD) monotonicity, introduced 
in [17]. Observe that, when one considers directional monotonicity, the direction along which monotonicity is re-
quired is the same for all 	x ∈ [0, 1]n. On the contrary, OD monotone functions are functions that allow monotonicity 
along different directions depending on the ordinal size of the coordinates of each input 	x ∈ [0, 1]n. First, we take a 
permutation σ : {1, . . . , n} → {1, . . . , n} to reorder the input 	x ∈ [0, 1]n in a decreasing order, obtaining 	xσ ∈ [0, 1]n. 
Then, a fusion function F : [0, 1]n → [0, 1] is OD 	r-increasing, for a real vector 	r = (r1, . . . , rn), with 	r 
= 	0, whenever 
F(	x) is less than or equal to the values of F when applied to

(	xσ + c	r)σ−1 = 	x + c	rσ−1, (1)

under the assumption that 	xσ and 	xσ + c	r are comonotone (i.e., either they increase or decrease at the same time).

Definition 2.5. [17] Consider a function F : [0, 1]n → [0; 1] and let 	r = (r1, . . . , rn) be a real n-dimensional vector, 
	r 
= 	0. F is said to be ordered directionally (OD) 	r-increasing if, for each 	x ∈ [0, 1]n, any permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that 1 ≥ xσ(1) + cr1 ≥ . . . ≥ xσ(n) + crn, it holds that

F(	x + c	rσ−1) ≥ F(	x),

where 	rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one defines an ordered directionally (OD) 	r-decreasing function.

In what follows, denote N = {1, . . . , n}, for n > 0.

Definition 2.6. [5,25] A function m : 2N → [0, 1] is said to be a fuzzy measure if, for all X, Y ⊆ N , the following 
conditions hold:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

Definition 2.7. [5] The discrete Choquet integral with respect to a fuzzy measure m is the function Cm : [0, 1]n →
[0, 1], defined, for all of 	x = (x1, . . . , xn) ∈ [0, 1]n, by:

Cm(	x) =
n∑

i=1

(
x(i) − x(i−1)

) ·m (
A(i)

)
, (2)

where 
(
x(1), . . . , x(n)

)
is an increasing permutation on the input 	x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0 and 

A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the n − i + 1 largest components of 	x.

Whenever one distribute the product operation in Equation (2), we obtain the Choquet Integral in its expanded 
form:

Cm(	x) =
n∑

i=1

(
x(i) ·m (

A(i)

) − x(i−1) ·m (
A(i)

))
. (3)

Substituting the product operation in Equation (2) by a copula C, Lucca et al. [9] introduced the CC-integrals, 
which are averaging aggregation functions (see also [26]):

Definition 2.8. Let m : 2N → [0, 1] be a fuzzy measure and C : [0, 1]2 → [0, 1] be a bivariate copula. The Choquet-
like copula-based integral with respect to m is defined as a function CC

m : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, 
by
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CC
m(	x) =

n∑
i=1

(
C

(
x(i),m

(
A(i)

)) − C
(
x(i−1),m

(
A(i)

)))
, (4)

where (x(1), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention 
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of n − i + 1 largest components of 	x.

Another integral that is related to fuzzy measure is the Sugeno Integral:

Definition 2.9. The discrete Sugeno integral with respect to a fuzzy measure m is the function Sm : [0, 1]n → [0, 1], 
defined, for all of 	x = (x1, . . . , xn) ∈ [0, 1]n, by:

Sm(	x) = n
max
i=1

{
min

{
x(i),m

(
A(i)

)}}
, (5)

where 
(
x(1), . . . , x(n)

)
is an increasing permutation on the input 	x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), A(i) = {(i), . . . , (n)}

is the subset of indices corresponding to the n − i + 1 largest components of 	x.

3. Pseudo pre-aggregation function pairs (F1, F2)

In this section, we introduce the concept of pseudo pre-aggregation function pair and study some properties. In the 
following, consider N = {1, . . . , n}.
Definition 3.1. Consider two bivariate functions F1, F2 : [0, 1]2 → [0, 1]. The pair (F1, F2) is said to be a pseudo 
pre-aggregation function pair whenever the following conditions hold, for all y ∈ [0, 1]:

(DI) Directional Increasingness: F1 is (1, 0)-increasing, that is, it is increasing in the first coordinate;
(BC0) Boundary Conditions for 0:

(i) F1(0, y) = F2(0, y) and
(ii) F1(0, 1) = 0;

(BC1) Boundary Condition for 1: F1(1, 1) = 1;
(DM) F1-Dominance (or, equivalently, F2-Subordination): F1 ≥ F2.

Remark 3.1. Observe that, for any pseudo pre-aggregation function pair (F1, F2), by (i) and (ii), it holds that 
F2(0, 1) = 0.

We present in Table 1 examples of functions F : [0, 1]2 → [0, 1] satisfying (DI), (BC0)(ii) and (BC1). Those 
functions are, then, candidates to be combined in order to build pseudo pre-aggregation function pairs. In Table 2, we 
present an analysis of the Dominance property (DM), taking into account the functions presented in Table 1, all of 
them obviously satisfying (BC0)(i). In this table, considering that functions F1 and F2 are represented, respectively, 
in the lines and columns of the table, the pairs marked with “yes” satisfy (DM) or the F1-dominance (equivalently, 
the F2-subordination). Thus, those pairs are pseudo pre-aggregation function pairs. The pairs marked with “no” are 
not pseudo pre-aggregation function pairs since they do not satisfy (DM).

Example 3.1. According Tables 1 and 2, examples of pseudo pre-aggregation function pairs are: (TP , TŁ), (TM, Oα), 
(TM, FNA), (THP , CF ), (OB, FmM), (FBPC, CL), (TP , FBPC) (see Example 5.2), (FIP , FIP ) (see Example 5.3), 
(FBPC, FBPC) (see Example 5.4), (TM, TM) (see Example 5.5).

Remark 3.2. Whenever (F1, F2) is a pseudo pre-aggregation function pair then, for any F3 : [0, 1]2 → [0, 1] such that 
F2 ≤ F3 ≤ F1, we have that (F1, F3) is also a pseudo pre-aggregation function pair. In particular, (F1, F1) is a pseudo 
pre-aggregation function pair.

Definition 3.2. A pseudo pre-aggregation function pair (F1, F2) is pairwise increasing if, for all x, y1, y2 ∈ [0, 1] and 
h > 0 such that x + h ∈ [0, 1], the following condition holds:

(PI) If y2 ≤ y1 then F1(x, y1) − F2(x, y2) ≤ F1(x + h, y1) − F2(x + h, y2).
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Table 1
Fi : [0, 1]2 → [0, 1], i = 1, 2, satisfying (DI), (BC0)(ii), (BC1), for building pseudo pre-aggregation 
function pairs.

(I) T-norms [7]

Definition Name/Reference

TM(x, y) = min{x, y} Minimum
TP (x, y) = xy Algebraic Product
TŁ(x, y) = max{0, x + y − 1} Łukasiewicz

THP (x, y) =
{

0 if x = y = 0
xy

x+y−xy otherwise
Hamacher Product

TDP (x, y) =
⎧⎨
⎩

x if y = 1
y if x = 1
0 otherwise

Drastic Product

(II) Overlap functions [19–21,27]

Definition Name/Reference

OB(x, y) = min{x√
y, y

√
x} [19, Theorem 8], Cuadras–Augé family of copulas [28]

OmM(x, y) = min{x, y} max{x2, y2} [29, Ex. 3.1.(i)], [30, Ex. 4], [31, Ex. 3.1]
Oα(x, y) = xy(1 + α(1 − x)(1 − y)), [10, Appendix A (A.2.1)], [37],

α ∈ [−1, 0[ ∪ ]0, 1] Farlie–Gumbel–Morgenstern copula family

ODiv(x, y) = xy+min{x,y}
2 [10, Ap. A (A.8.7)], [9, Table 1]

GM(x, y) = √
xy Geometric Mean [32, Ex. 1]

HM(x, y) =⎧⎨
⎩

0 if x = 0 or y = 0
2

1
x + 1

y

otherwise

Harmonic Mean [32, Ex. 1]

S(x, y) = sin

(
π
2 (xy)

1
4

)
Sine [32, Ex. 1]

(III) Copulas that are neither t-norms nor overlap functions [10]

Definition Name/Reference

CF (x, y) = xy + x2y(1 − x)(1 − y) [7, Ex. 9.5 (v)], [9, Table 1]
CL(x, y) = max{min{x, y2 }, x + y − 1} [10, Ap. A (A.5.3a)], [9, Table 1]

(IV) Aggregation functions other than (I)–(III)

Definition Name/Reference

AV G(x, y) = x+y
2 Arithmetic Mean

FRS(x, y) = min
{

(x+1)
√

y

2 , y
√

x
}

FGL(x, y) =
√

x(y+1)
2

FBPC(x, y) = xy2 [23, Ex. 1.80]

(V) (1,0)-Pre-Aggregation functions

Definition Name/Reference

FNA(x, y) =
{

x if x ≤ y

min{ x
2 , y} otherwise

FNA2(x, y) =⎧⎪⎨
⎪⎩

0 if x = 0
x+y

2 if 0 < x ≤ y

min{ x
2 , y} otherwise

Fα(x, y) =
{

αx if x < y

max{αx,y} otherwise
,

0 < α < 1

(VI) Non Pre-Aggregation functions

Definition Name/Reference

FIM(x, y) = max{1 − y, x}
FIP (x, y) = 1 − y + xy
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Table 2
Analysis of the property (DM) for different candidates to pseudo pre-aggregation function pairs (F1, F2), satisfying (BC0)(i), constructed from 
Table 1.

TP TM TŁ TDP THP OB OmM Oα ODiv GM HM S FRS CF CL FGL FBPC FNA Fα FNA2 AVG FIM FIP

TP yes no yes yes no no yes no no no no no no no no no yes no no no no no no
TM yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes no no no no no
TŁ no no yes yes no no no no no no no no no no no no no no no no no no no
TDP no no no yes no no no no no no no no no no no no no no no no no no no
THP yes no yes yes yes no yes yes no no no no no yes no no yes no no no no no no
OB yes no yes yes no yes yes yes no no no no no no no no yes no no no no no no
OmM no no no yes no no yes no no no no no no no no no yes no no no no no no
Oα yes no yes yes no no yes yes no no no no no no no no yes no no no no no no
ODiv yes no yes yes no yes yes yes yes no no no no no no no yes no no no no no no
GM yes yes yes yes yes yes yes yes yes yes yes no yes yes yes no yes yes no no no no no
HM yes yes yes yes yes yes yes yes yes no yes no no yes yes no yes yes no no no no no
S yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
FRS yes no yes yes no yes yes yes no no no no yes no no no yes no no no no no no
CF yes no yes yes no no yes no no no no no no yes no no yes no no no no no no
CL no no yes yes no no no no no no no no no no yes no yes no no no no no no
FGL yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes no no no no
FBPC no no no yes no no no no no no no no no no yes no yes no no no no no no
FNA no no no yes no no no no no no no no no no yes no no yes no no no no no
Fα no no no yes no no no no no no no no no no yes no no no yes no no no no
FNA2 no no no yes no no no no no no no no no no yes no no yes no yes no no no
AVG yes yes yes yes yes yes yes yes yes yes yes no yes yes yes no yes yes yes yes yes no no
FIM yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes yes no no yes no
FIP yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes yes no no yes yes

Proposition 3.1. Let (F1, F2) be a pseudo pre-aggregation function pair. If F2 is (1, 0)-decreasing, then the pair 
(F1, F2) satisfies (PI).

Proof. Since F1 is (1, 0)-increasing, then, for any h > 0 and x, y1, y2 ∈ [0, 1] such that x + h ∈ [0, 1], it holds that 
F1(x + h, y1) ≥ F1(x, y1). On the other hand, since F2 is (1, 0)-decreasing, then, for any h > 0 and x, y1, y2 ∈ [0, 1]
such that x + h ∈ [0, 1], it holds that −F2(x + h, y2) ≥ −F2(x, y2). Thus, one has that F1(x, y1) − F2(x, y2) ≤
F1(x + h, y1) − F2(x + h, y2). �
Proposition 3.2. Let F : [0, 0]2 → [0, 1] be a (1, 0)-increasing function such that F(1, 1) = 1 and, for all y ∈ [0, 1], 
F(0, y) = 0. If F is 2-increasing (i.e., F satisfies (C1)), then the following statements hold:

(i) The pair (F, kF ), for any k ∈]0, 1], is a pseudo pre-aggregation function pair satisfying (PI).
(ii) For any increasing 1-Lipschitz function f : [0, 1] → [0, 1], such that f (x) ≤ x, the pair (F, f (F )) is a pseudo 

pre-aggregation function pair satisfying (PI).

Proof. One has that:

(i) It is immediate that (F, kF ) satisfies (DI), (BC0), (BC1) and (DM). Thus, (F, kF ) is a pseudo pre-aggregation 
function pair. From (C1), it is immediate that (F, kF ) satisfies (PI).

(ii) It follows from (i). �
Corollary 3.1. For a copula C, (C, C) is a pseudo pre-aggregation function pair satisfying (PI).

Proof. It follows from Proposition 3.2 (i), taking F = C and k = 1, since it is immediate that any copula C is 
(1, 0)-increasing and satisfies (C1). �
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Remark 3.3. Observe that (PI) is a generalization of the 2-increasing property (C1). In fact, for any fusion function F , 
(F, F) satisfies (PI) if and only if F satisfies (C1). Note also that the class of functions F such that (F, F) is a pseudo 
pre-aggregation function pair satisfying (PI) is a convex class.

Remark 3.4. For any function F such that (F, F) is a pseudo-aggregation function pair satisfying (PI) and for 
any increasing functions f, g : [0, 1] → [0, 1] such that f (0) = 0 and f (1) = g(1) = 1, the pair (G, G), where 
G : [0, 1]2 → [0, 1] is given by

G(x,y) = F(f (x), g(y)), (6)

is a pseudo-aggregation function pair satisfying (PI). So, for example, for F(x, y) = xy (that is, F is the product 
copula), f (x) = x2 and g(x) = y+1

2 , we have that

G(x,y) = x2(y + 1)

2
and (G, G) is a pseudo-aggregation pair satisfying (PI). Considering again Equation (6) and the product copula F , it 
is possible to observe that the same happens for the aggregation functions

G′(x, y) = FBPC(x,y) = xy2 for f (x) = x and g(x) = y2,

G′′(x, y) = FGL =
√

x(y + 1)

2
forf (x) = √

x and g(x) =
√

y + 1

2
,

both from Table 1, where (G′, G′) and (G′′, G′′) are pseudo-aggregation function pairs satisfying (PI).

4. Constructing Choquet-like integrals based on pseudo pre-aggregation function pairs (F1, F2)

In this section, we introduce a method for constructing Choquet-like integrals defined by combining the discrete 
Choquet integral in its expanded form (Equation (3)) with pseudo pre-aggregation function pairs (F1, F2), just replac-
ing the product operation in Equation (3) by (F1, F2). Such Choquet-like integrals, which generalize the concept of 
CF1F2 -integrals introduced in [15], are called gCF1F2 -integrals.

Consider N = {1, . . . , n}, where n is the dimension of the input vectors 	x, that is, 	x = (x1, . . . , xn) ∈ [0, 1]n. First, 
in order to handle repetitive elements in any input 	x, which would lead to an ambiguous definition, we proceed to a 
dimension reduction of such 	x, from n to k, such that k ≤ n is the cardinality of the set {x1, . . . , xn} composed by the 
components of the vector 	x.

For that, we introduce the following auxiliary definition:

Definition 4.1. The dimension reduction function is defined by the function R : [0, 1]n → ∪n
k=1[0, 1]k , given, for all 

input 	x = (x1, . . . , xn) ∈ [0, 1]n, by:

R(x1, . . . , xn) = 	y = (y1, . . . , yk), (7)

such that:

(R1) k = |{x1, . . . , xn}| is the cardinality of the set {x1, . . . , xn},
(R2) y1 < . . . < yk , and
(R3) {x1, . . . , xn} = {y1, . . . , yk}.

Note that the function R is well defined, and if it is the case that some components of an input 	x are repeated, then 
those repeated elements collapse into one single value. Also, in the case that all components of an input 	x are the 
same, then they all collapse into a single value y1 = x1.

Then, denote, for each 	x ∈ [0, 1]n and for each j ∈ K = {1, . . . , k}:
BR

j (	x) = {i ∈ N | xi = yj }. (8)

Observe that, for every 	x ∈ [0, 1]n, it holds that ∪k BR(	x)) = N .
j=1 j



52 G.P. Dimuro et al. / Fuzzy Sets and Systems 378 (2020) 44–67
Definition 4.2. Let F1, F2 : [0, 1]2 → [0, 1] be a pair of functions such that F1 ≥ F2 (i.e., F1 dominates F2) and F1 is 
(1, 0)-increasing. Let m : 2N → [0, 1] be a fuzzy measure and R : [0, 1]n → ∪n

k=1[0, 1]k be the dimension reduction 
function given in Definition 4.1. The generalized CF1F2 -integral based on (F1, F2) with respect to m is defined as a 
function gC(F1,F2)

m : [0, 1]n → [0, 1], given, for all 	x ∈ [0, 1]n, by

gC(F1,F2)
m (	x) = min

⎧⎨
⎩1,

k∑
j=1

F1

(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− F2

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))⎫⎬
⎭ , (9)

with the convention that y0 = 0 and BR
j is as defined in Equation (8).

Proposition 4.1. Under the conditions of Definition 4.2, gC(F1,F2)
m is well defined, for any pair F1, F2 : [0, 1]2 → [0, 1]

and fuzzy measure m.

Proof. It is immediate that, for all 	x, 	x′ ∈ [0, 1]n, whenever gC(F1,F2)
m (	x) 
= gC

(F1,F2)
m (	x′), then 	x 
= 	x′. Now, consider 

R and BR
j as defined in equations (7) and (8), respectively. Then, since F1 is (1, 0)-increasing and F1 ≥ F2, one has 

that:

F1

(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− F2

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))
≥ F1

(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− F1

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))
≥ 0.

Therefore, it holds that gC(F1,F2)
m (	x) ≥ 0, for all 	x ∈ [0, 1]n. On the other hand, it is immediate that gC(F1,F2)

m (	x) ≤ 1, 
for all 	x ∈ [0, 1]n. Thus, gC(F1,F2)

m is well defined. �
Lemma 4.1. Consider R and BR

j as defined in equations (7) and (8), respectively. Then, for all 	x = (x, . . . , x) ∈
[0, 1]n, it holds that k = 1, R(	x) = x and BR

1 (	x) = N .

Proof. It is immediate that the cardinality of any {x, . . . , x} is k = 1. It follows that R(	x) = x, since {x, . . . , x} = {y1}
implies that y1 = x. Also, one has that BR

1 (	x) = {i ∈ N | xi = y1 = x} = {1, . . . , n} = N . �
Proposition 4.2. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pseudo pre-
aggregation function pair (F1, F2), if F1(x, 1) = x, for all x ∈ [0, 1], then gC(F1,F2)

m is idempotent.

Proof. Consider R and BR
j as defined in equations (7) and (8), respectively. Then, one has that:

gC(F1,F2)
m (x, . . . , x) = min

{
1,F1(y1,m(BR

1 (	x))) − F2(0,m(BR
1 (	x)))

}
by Eq. (9)

= min {1,F1(x,m(N) − F2(0,m(N)} by Lemma 4.1

= min {1,F1(x,1) − F2(0,1)}
= x by (BC0). �

Proposition 4.3. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pair of functions 
F1, F2 : [0, 1]2 → [0, 1], if F2(0, 1) = 0 and F1(x, 1) ≥ x, for all x ∈ [0, 1], then gC(F1,F2)

m ≥ min.

Proof. Consider R and BR
j as defined in equations (7) and (8), respectively. Since F1 ≥ F2, for all 	x ∈ [0, 1]n, one 

has that:

gC(F1,F2)
m (	x) = min

{
1,F1(y1,m(∪k

p=1B
R
p (	x))) − F2(y0,m(∪k

p=1B
R
p (	x))) +



G.P. Dimuro et al. / Fuzzy Sets and Systems 378 (2020) 44–67 53
k∑
j=2

F1(yj ,m(∪k
p=jB

R
p (	x))) − F2(yj−1,m(∪k

p=jB
R
p (	x)))

}

≥ min {1,F1(y1,m(N)) − F2(y0,m(N))} by (DM)

= min {1,F1(y1,1) − F2(0,1)}
≥ min {1, y1 − 0}
= y1

= min 	x. �
Observe that, although we have stated sufficient conditions to have gC(F1,F2)

m ≥ min, we do have such conditions for 
gC

(F1,F2)
m ≤ max. In general, a gCF1F2 -integral is neither an aggregation function nor averaging. In the next section, 

we discuss such concepts for gCF1F2 -integrals.

5. gCF1F2 -integrals as (pre) aggregation functions

In this section, we show that a gCF1F2 -integral is an aggregation function whenever F1 = F2 = F and (F, F) is a 
pre-aggregation function pair satisfying an additional condition, namely, the pairwise increasingness property (PI). We 
also show the necessary and sufficient condition to have averaging gCFF -integrals (like CC-integrals). Additionally, 
we show that, whenever one has a gCFF -integral that is an aggregation function, then the gCF(wF)-integral, for 
w ∈ [0, 1], is a pre-aggregation function that is (1, . . . , 1)-increasing (or weakly increasing [33]).

Proposition 5.1. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pseudo pre-
aggregation function pair (F1, F2), gC

(F1,F2)
m satisfies the boundary conditions (A2).

Proof. Consider R and BR
j as defined in equations (7) and (8). If 	0 = (0, . . . , 0) ∈ [0, 1]n, then k = 1 and it follows 

that:

gC(F1,F2)
m (	0) = min

{
1,F1(0,m(BR

1 (	0)) − F2(0,m(BR
1 (	0))

}
by Eq. (9)

= min {1,F1(0,m(N) − F2(0,m(N)} by Lemma 4.1

= min {1,F1(0,1) − F2(0,1)}
= 0 by (BC0).

Consider 	1 = (1, . . . , 1) ∈ [0, 1]n. Then k = 1 and one has that:

gC(F1,F2)
m (	1) = min

{
1,F1(1,m(BR

1 (	1))) − F2(0,m(BR
1 (	1)))

}
by Eq. (9)

= min {1,F1(1,m(N) − F2(1,m(N)} by Lemma 4.1

= min{1,F1(1,1) − F2(0,1)

= 1 by (BC1), (BC0) �
Lemma 5.1. Let m : 2N → [0, 1] be a fuzzy measure and F1, F2 : [0, 1]2 → [0, 1] a pair of functions satisfying the 
conditions of Definition 4.2. Then

gC(F1,F2)
m (	x) ≤ gC(F1,F2)

m (	z),
for every 	x = (x1, . . . , xn), 	z = (z1, . . . , zn) ∈ [0, 1]n such that x(n) ≤ z(n) and xi = zi , for all i ∈ {(1), . . . , (n − 1)}, 
where (x(1), . . . , x(n)) is any increasing permutation of 	x.

Proof. Consider 	x = (x1, . . . , xn), 	z = (z1, . . . , zn) ∈ [0, 1]n such that x(n) < z(n) and xi = zi , for all i ∈ {(1), . . . ,
(n − 1)}. Then, according to equations (7) and (8), for each 	x ∈ [0, 1]n, we have that:

(i) R(	x) = (y1, . . . , yk) such that {x1, . . . , xn} = {y1, . . . , yk}, with k ≤ n, and y1 < . . . < yk ;
(ii) BR(	x) = {i ∈ N | xi = yj }, for j ∈ K = {1, . . . , k};
j
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(iii) R(	z) = (h1, . . . , hw) such that {z1, . . . , zn} = {h1, . . . , hw}, with w ≤ n, and h1 < . . . < hw ;
(iv) BR

j (	z) = {i ∈ N | zi = hj }, for j ∈ W = {1, . . . , w}.

Observe that either w = k or w = k + 1, and hi = yi , for each i = 1, . . . , w − 1. Then, one has the following cases:

k = w: In this case it holds that y1 = h1 < . . . < yk−1 = hw−1 < yk < hw = z(n) and BR
j (	x) = BR

j (	z), for all j ∈
K = W . Since F1 is (1, 0)-increasing, it follows that:

gC(F1,F2)
m (	x) = min

{
1,

k−1∑
j=1

(
F1(yj ,m(∪k

p=jB
R
p (	x))) − F2(yj−1,m(∪k

p=jB
R
p (	x)))

)

+F1(yk,m(BR
k (	x))) − F2(yk−1,m(BR

k (	x)))

}

≤ min

{
1,

k−1∑
j=1

(
F1(yj ,m(∪k

p=jB
R
p (	x))) − F2(yj−1,m(∪k

p=jB
R
p (	x)))

)

+F1(hw,m(BR
k (	x))) − F2(yk−1,m(BR

k (	x)))

}

= min

{
1,

w−1∑
j=1

(
F1(hj ,m(∪w

p=jB
R
p (	z))) − F2(hj−1,m(∪w

p=jB
R
p (	z)))

)

+F1(hw,m(BR
w(	z))) − F2(hw−1,m(BR

w(	z)))
}

= gC(F1,F2)
m (	z).

w = k + 1: In this case it holds that x(n) = x(n−1) = z(n−1), y1 = h1 < . . . < yk = hw−1 < hw , BR
j (	x) = BR

j (	z), for 

all j ≤ k − 1, BR
w−1(	z) = BR

k (	x) − {(n)} and BR
w(	z) = {(n)} (that is, BR

w−1(	z) ∪ BR
w(	z) = BR

k (	x)). Since F1
is (1, 0)-increasing, it follows that:

gC(F1,F2)
m (	x) = min

{
1,

k−1∑
j=1

(
F1(yj ,m(∪k

p=jB
R
p (	x))) − F2(yj−1,m(∪k

p=jB
R
p (	x)))

)

+F1(yk,m(BR
k (	x))) − F2(yk−1,m(BR

k (	x)))

}

= min

{
1,

k−1∑
j=1

(
F1(yj ,m(∪k

p=jB
R
p (	x))) − F2(yj−1,m(∪k

p=jB
R
p (	x)))

)

+F1(yk,m(BR
w−1(	z) ∪ BR

w(	z))) − F2(yk−1,m(BR
w−1(	z) ∪ BR

w(	z)))
}

≤ min

{
1,

w−2∑
j=1

(
F1(hj ,m(∪w

p=jB
R
p (	z))) − F2(hj−1,m(∪w

p=jB
R
p (	z))))

)
+F1(hw−1,m(BR

w−1(	z) ∪ BR
w(	z))) − F2(hw−2,m(BR

w−1(	z) ∪ BR
w(	z))))

+F1(hw,m(BR
w(	z))) − F2(hw−1,m(BR

w(	z)))
}

= gC(F1,F2)
m (	z). �
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Theorem 5.1. Let F : [0, 1]2 → [0, 1] such that (F, F) is a pair of functions satisfying the conditions of Definition 4.2. 
The pair (F, F) satisfies (PI) if and only if gC(F,F )

m is increasing for each fuzzy measure m : 2N → [0, 1].

Proof. (⇒) Suppose that (F, F) satisfies (PI) and consider 	x = (x1, . . . , xt−1, xt , xt+1 . . . , xn) ∈ [0, 1]n, with t ∈
{1, . . . , n}. By convention, given 	x ∈ [0, 1]n, we state that x0 = x(0) = 0 and xn+1 = x(n+1) = 1. We have the following 
cases:

(i) ∀i ∈ N : i 
= t → xt 
= xi . In this case, considering equations (7) and (8), for each 	x ∈ [0, 1]n, one has that:
• R(	x) = (y1, . . . , yl−1, yl = xt , yl+1, . . . , yk) (with l ∈ K = {1, . . . , k}, k ≤ n, y0 = 0 and yk+1 = 1) such that 

{x1, . . . , xt−1, xt , xt+1, . . . , xn} = {y1, . . . , yl−1, yl = xt , yl+1, . . . yk} and y1 < . . . < yl−1 < yl = xt < yl+1 <

. . . < yk .
• BR

j (	x) = {i ∈ N | xi = yj }, for j ∈ K = {1, . . . , k}. In particular, one has that BR
l (	x) = {t}.

Now, consider the following cases:
(ia) Suppose that there exists 	z ∈ [0, 1]n, with 	x < 	z, such that 	z = (z1 = x1, . . . , zt−1 = xt−1, zt , zt+1 =

xt+1, . . . , zt = xn) ∈ [0, 1]n with y1 < . . . < yl−1 < yl = xt < zt < yl+1 < . . . < yk . If t = 1 or t = n then 
define 	z = (z, z2, . . . , zn) ∈ [0, 1]n or 	z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this case, considering 
equations (7) and (8), one has that:
• R(	z) = (h1 = y1, . . . , hl−1 = yl−1, hl = zt , hl+1 = yl+1, . . . , hw = yk), with w = k ≤ n, where h1 = y1 <

. . . < hl−1 = yl−1 < yl = xt < hl = zt < hl+1 = yl+1 < . . . < hw = yk .
• BR

j (	z) = {i ∈ N | zi = hj } = {i ∈ N | xi = yj } = BR
j (	x), for j ∈ W = K = {1, . . . , w = k}. In particular, 

one has that BR
l (	z) = {t} = BR

l (	x).
Since the pair (F, F) satisfies (PI) and by Lemma 5.1, it follows that:

gC(F,F )
m (	x)

= min

⎧⎨
⎩1,

l−1∑
j=1

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)
+ F(yl,m(∪k

p=lB
R
p (	x)))

− F(yl−1,m(∪k
p=lB

R
p (	x))) + F(yl+1,m(∪k

p=l+1B
R
p (	x))) − F(yl,m(∪k

p=l+1B
R
p (	x)))

+
k∑

j=l+2

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)⎫⎬
⎭

= min

⎧⎨
⎩1,

l−1∑
j=1

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)
+ F(xt ,m(∪k

p=lB
R
p (	x)))

− F(yl−1,m(∪k
p=lB

R
p (	x))) + F(yl+1,m(∪k

p=l+1B
R
p (	x))) − F(xt ,m(∪k

p=l+1B
R
p (	x)))

+
k∑

j=l+2

(
F(yj ,m(∪k

p=jB
R
p (	x)) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)⎫⎬
⎭

≤ min

⎧⎨
⎩1,

l−1∑
j=1

(
F(hj ,m(∪w

p=jB
R
p (	z))) − F2(hj−1,m(∪w

p=jB
R
p (	z)))

)
+ F(zt ,m(∪w

p=lB
R
p (	z)))

− F(hl−1,m(∪w
p=lB

R
p (	z))) + F(hl+1,m(∪w

p=l+1B
R
p (	z))) − F(zt ,m(∪w

p=l+1B
R
p (	z)))

+
w∑

j=l+2

(
F(hj ,m(∪w

p=jB
R
p (	z))) − F(hj−1,m(∪w

p=jB
R
p (	z)))

)⎫⎬
⎭

= gC(F,F )
m (	z),
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since m(∪k
p=l+1B

R
p (	x)) = m(∪w

p=l+1B
R
p (	z)) ≤ m(∪k

p=lB
R
p (	x)) = m(∪w

p=lB
R
p (	z)), and, by (PI), it holds that

F(xt ,m(∪k
p=lB

R
p (	x))) − F(xt ,m(∪k

p=l+1B
R
p (	x))) ≤ F(zt ,m(∪w

p=lB
R
p (	z))) − F(zt ,m(∪w

p=l+1B
R
p (	z))).

(ib) Now, consider that n ≥ 2 and 	z ∈ [0, 1]n, with 	x < 	z, such that 	z = (z1 = x1, . . . , zt−1 = xt−1, zt , zt+1 =
xt+1, . . . , zt = xn) ∈ [0, 1]n with y1 < . . . < yl−1 < yl = xt < zt = yl+1 < . . . < yk . If t = 1 or t = n then 
define 	z = (z, z2, . . . , zn) ∈ [0, 1]n or 	z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this case, considering 
equations (7) and (8), one has that:
• R(	z) = (h1 = yl, . . . , hl−1 = yl−1, hl = zt = yl+1, hl+1 = yl+2, . . . , hw = yk), with w = k − 1 ≤ n, where 

h1 = yl < . . . < hl−1 = yl−1 < yl = xt < hl = zt = yl+1 < hl+1 = yl+2 < . . . < hw = yk .
• BR

j (	z) = {i ∈ N | zi = hj }.
Observe that, since hl = zt = yl+1, with l ∈ W , then it holds that:
• ∀j ∈ W : j < l → BR

j (	z) = BR
j (	x).

• | BR
l (	z) |=| BR

l+1(	x) | +1.
• ∀j ∈ W : j > l → BR

j (	z) = BR
j+1(	x).

• | ∪k
p=lB

R
p (	x)) |=| ∪w

p=lB
R
p (	z)) |.

Since the pair (F, F) satisfies (PI) and by Lemma 5.1, it follows that:

gC(F,F )
m (	x)

= min

⎧⎨
⎩1,

l−1∑
j=1

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)
+ F(yl,m(∪k

p=lB
R
p (	x))) − F(yl−1,m(∪k

p=lB
R
p (	x)))

+ F(yl+1,m(∪k
p=l+1B

R
p (	x))) − F(yl,m(∪k

p=l+1B
R
p (	x)))

+ F(yl+2,m(∪k
p=l+2B

R
p (	x))) − F(yl+1,m(∪k

p=l+2B
R
p (	x)))

+
k∑

j=l+3

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)⎫⎬
⎭

= min

⎧⎨
⎩1,

l−1∑
j=1

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)
+ F(xt ,m(∪k

p=lB
R
p (	x))) − F(yl−1,m(∪k

p=lB
R
p (	x)))

+ F(yl+1,m(∪k
p=l+1B

R
p (	x))) − F(xt ,m(∪k

p=l+1B
R
p (	x)))

+ F(yl+2,m(∪k
p=l+2B

R
p (	x))) − F(yl+1,m(∪k

p=l+2B
R
p (	x)))

+
k∑

j=l+3

(
F(yj ,m(∪k

p=jB
R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))

)⎫⎬
⎭

≤ min

⎧⎨
⎩1,

l−1∑
j=1

(
F(hj = yj ,m(∪w

p=jB
R
p (	z))) − F(hj−1 = yj−1,m(∪w

p=jB
R
p (	z)))

)
+ F(hl = zt = yl+1,m(∪w

p=lB
R
p (	z))) − F(hl−1 = yl−1,m(∪w

p=lB
R
p (	z)))

+ F(hl+1 = yl+2,m(∪w
p=l+1B

R
p (	x))) − F(hl = zt = yl+1,m(∪w

p=l+1B
R
p (	x)))

+
w∑

j=l+2

(
F(hj ,m(∪w

p=jB
R
p (	z))) − F(hj−1,m(∪w

p=jB
R
p (	z)))

)⎫⎬
⎭

= gC(F,F )
m (	z),
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since ∪k
p=l+1B

R
p (	x) ⊂ ∪k

p=lB
R
p (	x) = ∪w

p=lB
R
p (	z), and, then, by (PI), it holds that

F(xt ,m(∪k
p=lB

R
p (	x))) − F(xt ,m(∪k

p=l+1B
R
p (	x)))

< F(hl = zt = yl+1,m(∪w
p=lB

R
p (	z))) − F(yl+1,m(∪k

p=l+1B
R
p (	x))).

(ic) Now consider l ∈ {1, . . . , k − 3}, and 	z = (z1 = x1, . . . , zt−1 = xt−1, zt , zt+1 = xt+1, . . . , xn) ∈ [0, 1]n, such 
that 	x < 	z, with y1 < . . . < yl−1 < yl = xt < yl+1 < . . . < zt < . . . < yk . If t = 1 or t = n then define 	z =
(z, z2, . . . , zn) ∈ [0, 1]n or 	z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this case, considering equations 
(7) and (8), one has that:
• R(	z) = (h1, . . . , hl−1, hl = zt , hl+1, . . . , hw), with w ≤ n, where h1 < . . . < hl−1 < hl = zt < hl+1 <

. . . < hw and {x1 = z1, . . . , xt−1 = zt−1, zt , xt+1 = zt+1, . . . , zn = xn} = {h1, . . . , hl−1, hl = z,

hl+1, . . . hw}.
• Bh

j = {i | zi = hj }, for j ∈ W = {1, . . . , w}.
Consider r ∈ {2, . . . , w − l − 1}. Suppose that yl = xt < yl+1 < . . . < yk−r < zt < yk−r+2. Then, by (ia) and
(ib), it follows that:

gC(F1,F2)
m (	x) ≤ gC(F1,F2)

m (	s1) ≤ . . . ≤ gC(F1,F2)
m (	sn−r−l ) ≤ gC(F1,F2)

m (	z),
where, for i = 1, . . . , n − r − l, 	si = (x1, . . . , xt−1, yl+i , xt+1, . . . , xn).

(id) Suppose the same conditions of case (ic), but for 	z = (z1 = x1, . . . , zt−1 = xt−1, zt , zt+1 = xt+1, . . . , xn) ∈
[0, 1]n, such that zt = yj , for some yj > yl+1, that is, y1 < . . . < xt = yl < yl+1 < . . . < zt = yj < . . . < yk . 
In this case, considering equations (7) and (8), one has that:
• R(	z) = (h1 = y1, . . . , hl−1 = yj−1, hl = zt = yj , hl+1 = yj+1, . . . , hw), with w < k, where h1 < . . . <

hl−1 < hl = zt < hl+1 < . . . < hw and {x1 = z1, . . . , xt−1 = zt−1, zt , xt+1 = zt+1, . . . , zn = xn} =
{h1, . . . , hl−1, hl = zt , hl+1, . . . hw}.

• Bh
j = {i | zi = hj }, for j ∈ W = {1, . . . , w}.

Consider r ∈ {2, . . . , w − l −1}. Suppose that yl = xt < yl+1 < . . . < yk−r < zt = k − r +1 < yk−r+2. Then, 
considering (ib), the proof is analogous to (ic).

(ii) ∃i ∈ N, i 
= t, s.t. xt = xi . In this case, we have the same subcases (ia)–(id), and the proofs are analogous.

(⇐) We prove the contrapositive. Suppose that the pair (F, F) does not satisfy (PI). Then, there exist a, b, c, d ∈
[0, 1] such that a ≤ b, c ≤ d and F(a, d) −F(a, c) > F(b, d) −F(b, c). Observe that a 
= 1 and c 
= 1. Let m : 2N →
[0, 1] be such that m({n − 1, n − 2}) = d and m({n − 1}) = c. Then, for 	x = (0, . . . , 0, a, 1) and 	z = (0, . . . , 0, b, 1), 
we have that k = 3 and 	x ≤ 	z. Consider 	y = (0, a, 1) and 	h = (0, b, 1). Then, one has that:

gC(F,F )
m (	x) = min

{
1,F (0,m(∪3

p=1B
R
p (	x))) − F(0,m(∪k

p=1B
R
p (	x))) + F(a,m(∪3

p=2B
R
p (	x)))

−F(0,m(∪3
p=2B

R
p (	x))) + F(1,m(BR

3 (	x))) − F(a,m(BR
3 (	x)))

}
= min {1,F (a,m({n − 2, n − 1})) − F(0,m({n − 2, n − 1})) + F(1,m({n − 1}))

−F(a,m({n − 1}))}
= min {1,F (a, d) − F(0, d) + F(1, c) − F(a, c)}
> min {1,F (b, d) − F(0, d) + F(1, c) − F(b, c)}
= min {1,F (b,m({n − 2, n − 1})) − F(0,m({n − 2, n − 1})) + F(1,m({n − 1}))

−F(b,m({n − 1}))}
= min

{
1,F (0,m(∪3

p=1B
R
p (	x))) − F(0,m(∪k

p=1B
R
p (	x))) + F(b,m(∪3

p=2B
R
p (	x)))

−F(0,m(∪3
p=2B

R
p (	x))) + F(1,m(BR

3 (	x))) − F(b,m(BR
3 (	x)))

}
= gC(F,F )

m (	z).
Therefore, gC(F,F )

m is not increasing for each fuzzy measure m : 2N → [0, 1]. �
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Corollary 5.1. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pseudo pre-
aggregation function pair (F, F) satisfying (PI), gC(F,F )

m is an aggregation function.

Proof. It follows from Proposition 5.1 and Theorem 5.1. �
Observe that if for some pseudo pre-aggregation function pair (F, F) and fuzzy measure m we can have that 

gC
(F,F )
m is not increasing (and, thus, it is not an aggregation function) then (F, F) does not satisfy (PI). Nevertheless, 

this does not mean that, for some other fuzzy measure m′, gC(F,F )

m′ would not be an aggregation function.

Example 5.1. Let F : [0, 1]2 → [0, 1] be the function defined by

F(x, y) =

⎧⎪⎨
⎪⎩

0 if x = 0 ∨ y = 0;
x+y

2 if 0 < x ≤ y;
x otherwise.

Clearly, F is (1, 0)-increasing, F(0, 1) = 0 and F(1, 1), and therefore (F, F) is a pseudo pre-aggregation pair (in fact, 
F is an aggregation function). But, (F, F) does not satisfy (PI). In fact, one has that

F(0.3,0.7) − F(0.3,0.5) = 0.5 − 0.4 = 0.1 > 0 = 1 − 1 = F(1,0.7) − F(1,0.5).

Hence, by Theorem 5.1, for some fuzzy measure m, gC(F,F )
m is not increasing. In particular, by the proof of this 

Theorem, gC(F,F )
m is not increasing for any fuzzy measure m such that 1 >m({n − 2, n − 1}) >m({n − 1}). However, 

for the fuzzy measure m⊥ : 2N → [0, 1], defined by:

m⊥(X) =
{

1 if X = N;
0 otherwise,

one has that gC(F,F )
m⊥ : [0, 1]n → [0, 1] is the aggregation function, defined, for all 	x = (x1, . . . , xn) ∈ [0, 1]n, by:

gC(F,F )
m⊥ (	x) =

{
0 if min{x1, . . . , xn} = 0
min{x1,...,xn}+1

2 otherwise.

Notice that Theorem 5.1 requires that a pseudo pre-aggregation function pair (F1, F2), with F1 = F2, to satisfy (PI)
in order to guarantee that gC(F1,F2)

m⊥ is increasing. The following example shows that there exist pseudo pre-aggregation 
function pairs (F1, F2), with F1 
= F2, satisfying (PI) such that gC(F1,F2)

m⊥ is not increasing.

Example 5.2. Consider the pseudo pre-aggregation function pair (TP , FBPC), where TP is the product t-norm and 
FBPC is an aggregation function (which is neither a t-norm, overlap function nor a copula), as defined in Tables 1
and 2. Observe that TP dominates FBPC . Moreover, this pair satisfies (PI). In fact, for all x, y1, y2 ∈ [0, 1] and h > 0
such that x + h ∈ [0, 1], if y2 ≤ y1, it holds that:

TP (x + h,y1) − FBPC(x + h,y2) = (x + h)y1 − (x + h)y2
2 by Table 1

= xy1 − xy2
2 + h(y1 − y2

2)

= TP (x, y1) − FBPC(x, y2) + h(y1 − y2
2) by Table 1

≥ TP (x, y1) − FBPC(x, y2),

since h(y1 − y2
2) ≥ 0. However, gC(TP ,FBPC)

m is not increasing. In fact, consider 	x = (0.6, 0.4, 0.6, 0.5, 0.4, 0.6, 0.7)

and 	z = (0.6, 0.4, 0.6, 0.6, 0.4, 0.6, 0.7), that is, 	x < 	z. Then, k = 4 and w = 3, and:

• R(	x) = (0.4, 0.5, 0.6, 0.7) and R(	z) = (0.4, 0.6, 0.7);
• BR

1 (	x) = {2, 5}, BR
2 (	x) = {4}, BR

3 (	x) = {1, 3, 6} and BR
4 (	x) = {7};

• BR(	z) = {2, 5}, BR(	z) = {1, 3, 4, 6} and BR(	x) = {7}.
1 2 3
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Suppose that the fuzzy measure m : 2N → [0, 1] is such that: m({1, 2, 3, 4, 5, 6, 7}) = 1, m({1, 3, 4, 6, 7}) = 0.8, 
m({1, 3, 6, 7}) = 0.5 and m({7}) = 0.2. Then one has that:

gC(TP ,FBPC)
m (	x) = min

⎧⎨
⎩1,

4∑
j=1

(
TP (yj ,m(∪k

p=jB
R
p (	x))) − FBPC(yj−1,m(∪k

p=jB
R
p (	x)))

)⎫⎬
⎭

= {1, TP (0.4,m({1,2,3,4,5,6,7})) − FBPC(0,m({1,2,3,4,5,6,7}))
+TP (0.5,m({1,3,4,6,7})) − FBPC(0.4,m({1,3,4,6,7}))
+TP (0.6,m({1,3,6,7})) − FBPC(0.5,m({1,3,6,7}))
+TP (0.7,m({7})) − FBPC(0.6,m({7}))}

= min{1,0.4 · 1 − 0 · (1)2 + 0.5 · 0.8 − 0.4 · (0.8)2 + 0.6 · 0.5 − 0.5 · (0.5)2 + 0,7 · 0.2

−0.6 · (0.2)2}
= 0.835

and

gC(TP ,FBPC)
m (	z) = min

⎧⎨
⎩1,

3∑
j=1

(
TP (yj ,m(∪w

p=jB
R
p (	z))) − FBPC(yj−1,m(∪k

p=jB
R
p (	z)))

)⎫⎬
⎭

= {1, TP (0.4,m({1,2,3,4,5,6,7})) − FBPC(0,m({1,2,3,4,5,6,7}))
+TP (0.6,m({1,3,4,6,7})) − FBPC(0.4,m({1,3,4,6,7}))
+TP (0.7,m({7})) − FBPC(0.6,m({7}))}

= min{1,0.4 · 1 − 0 · (1)2 + 0.6 · 0.8 − 0.4 · (0.8)2 + 0,7 · 0.2 − 0.6 · (0.2)2}
= 0.74.

Thus, gC(TP ,FBPC)
m (	x) > gC

(TP ,FBPC)
m (	z) and gC(TP ,FBPC)

m is not an aggregation function, since it is not increasing.

Now we present an example of a pseudo pre-aggregation function pair (F, F) satisfying (PI) (then, fulfilling all 
the requirements of Theorem 5.1), thus generating an aggregation function gC(F,F )

m .

Example 5.3. Consider the pseudo pre-aggregation function pair (FIP , FIP ), where FIP is not even a pre-aggregation 
function, as defined in Tables 1 and 2. This pair satisfies (PI). In fact, for all x, y1, y2 ∈ [0, 1] and h > 0 such that 
x + h ∈ [0, 1], if y2 ≤ y1, it holds that:

FIP (x + h,y1) − FIP (x + h,y2) = 1 − y1 + (x + h)y1 − (1 − y2 + (x + h)y2) by Table 1

= (1 − y1 + xy1) − (1 − y2 + xy2) + h(y1 − y2)

= FIP (x, y1) − FIP (x, y2) + h(y1 − y2) by Table 1

≥ FIP (x, y1) − FIP (x, y2),

since h(y1 − y2) ≥ 0. Thus, from Corollary 5.1, gC(FIP ,TIP )
m is an aggregation function, for any fuzzy measure m :

2N → [0, 1].

Corollary 5.2. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pseudo pre-
aggregation function pair (F, F) satisfying (PI), gC

(F,F )
m is an averaging aggregation function if and only if 

F(x, 1) = x, for all x ∈ [0, 1].

Proof. It follows from Corollary 5.1 and Proposition 4.2. �
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Example 5.4. Consider the pseudo pre-aggregation function pair (FBPC, FBPC), where FBPC is an aggregation func-
tion (which is neither a t-norm, overlap function nor a copula), as defined in Tables 1 and 2. This pair satisfies (PI). In 
fact, for all x, y1, y2 ∈ [0, 1] and h > 0 such that x + h ∈ [0, 1], then, whenever y2 ≤ y1, it holds that:

FBPC(x + h,y1) − FBPC(x + h,y2) = (x + h)y2
1 − (x + h)y2

2 by Table 1

= xy2
1 − xy2

2 + h(y2
1 − y2

2)

= FBPC(x, y1) − FBPC(x, y2) + h(y2
1 − y2

2) by Table 1

≥ FBPC(x, y1) − FBPC(x, y2),

since h(y2
1 − y2

2) ≥ 0. Therefore, since FBPC(x, 1) = x, then, from Corollary 5.2, it follows that gC(FBPC,FBPC)
m is an 

averaging aggregation function, for any fuzzy measure m : 2N → [0, 1].

Corollary 5.3. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and copula C, gC(C,C)
m

is an averaging aggregation function.

Proof. It follows from Corollary 5.2 and Corollary 3.1. �
Remark 5.1. Considering equations (4) and (9), by an easy calculation it is possible to check that, whenever F1 =
F2 = C, for a copula C, for all 	x ∈ [0, 1]n, one has that:

gC(C,C)
m (	x) = min

⎧⎨
⎩1,

k∑
j=1

C
(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− C

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))⎫⎬
⎭

=
n∑

i=1

C
(
x(i),m

(
A(i)

)) − C
(
x(i−1),m

(
A(i)

))
(10)

= CC
m(	x),

which is, in fact, the CC-Integral used in classification problems in [9]. In [34, Theorem 1], Mesiar and Stupnanová 
showed that the CC-Integral is a C-based universal integral IC

m , for a fuzzy measure m and copula C. Additionally, 
from [34, Corollary 2], for any fuzzy measure m : 2N → [0, 1] and copula C : [0, 1]2 → [0, 1], one has that gC(C,C)

m

is an OMA2 operator and vice-versa.

Remark 5.2. Observe that, by Remark 5.2, whenever F1 = F2 = C, for a copula C, it is not necessary to make the 
dimension reduction to deal with duplicated elements.

Example 5.5. Consider the pseudo pre-aggregation pair (TM, TM), where TM is the minimum t-norm. Then, for any 
fuzzy measure m : 2N → [0, 1], gC(TM,TM)

m is an averaging aggregation function, since (TM, TM) satisfies PI and 
TM(x, 1) = x. Moreover, by [34, Corollary 1], gC(TM,TM)

m is a Sugeno Integral [36]. Observe that, by Remark 5.2, 
since F1 = F2 = TM , we do not need to worry about the duplicated components in the input 	x, so that we can just 
consider that K = N in Definition 4.1. In fact, consider 	x ∈ [0, 1]n and let (x(1), . . . , x(n)) be an increasing permutation 
on the input 	x, and A(i) = {(i), . . . , (n)} be the subset of indices of the n − i + 1 largest components of 	x. It follows 
that:

gC(TM,TM)
m (	x) = min

{
1,

n∑
i=1

min
{
x(i),m

(
A(i)

)} − min
{
x(i−1),m

(
A(i)

)}}
,

= min

⎧⎪⎨
⎪⎩1,

n∑
i=1

⎧⎪⎨
⎪⎩

x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)
m

(
A(i)

) − x(i−1) if x(i) >m
(
A(i)

) ∧ x(i−1) ≤ m
(
A(i)

)
0 otherwise.

⎫⎪⎬
⎪⎭

2 An aggregation function A = [0, 1]n → [0, 1] is an Ordered Modular Average (OMA) operator if it is commutative, idempotent, and comono-
tone modular [35].
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Suppose that for some k ∈ {1, . . . , n}, it holds that x(k) >m 
(
A(k)

)
, but x(k−1) ≤m 

(
A(k)

)
. Then it holds that:

gC(TM,TM)
m (	x) = min

⎧⎪⎨
⎪⎩1,

n∑
i=1

⎧⎪⎨
⎪⎩

x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)
m

(
A(i)

) − x(i−1) if x(i) >m
(
A(i)

) ∧ x(i−1) ≤ m
(
A(i)

)
0 otherwise.

⎫⎪⎬
⎪⎭

= min
{
1, (x(1) − x(0)) + (x(2) − x(1)) + . . . + (x(k−1) − x(k−2)) + (m

(
A(k)

) − x(k−1))

+0 + . . . + 0︸ ︷︷ ︸
n−k

}
= min

{
1,m

(
A(k)

)}
=m

(
A(k)

)
Otherwise, one has the following possibilities:

(i) For all k ∈ {1, . . . , n}, it holds that x(k) ≤m 
(
A(k)

)
. In this case, one has that:

gC(TM,TM)
m (	x) = min

⎧⎪⎨
⎪⎩1,

n∑
i=1

⎧⎪⎨
⎪⎩

x(i) − x(i−1) if x(i) ≤m
(
A(i)

)
m

(
A(i)

) − x(i−1) if x(i) >m
(
A(i)

) ∧ x(i−1) ≤ m
(
A(i)

)
0 otherwise.

⎫⎪⎬
⎪⎭

= min
{
1, (x(1) − x(0)) + . . . + (x(n) − x(n−1))

= min
{
1, x(n)

}
= x(n)

(ii) For all k ∈ {1, . . . , n} such that x(k) >m 
(
A(k)

)
it holds that x(k−1) >m 

(
A(k)

)
. In this case, one has that:

gC(TM,TM)
m (	x) = min

⎧⎪⎨
⎪⎩1,

n∑
i=1

⎧⎪⎨
⎪⎩

x(i) − x(i−1) if x(i) ≤m
(
A(i)

)
m

(
A(i)

) − x(i−1) if x(i) >m
(
A(i)

) ∧ x(i−1) ≤ m
(
A(i)

)
0 otherwise.

⎫⎪⎬
⎪⎭

= min
{
1, (x(1) − x(0)) + (x(2) − x(1)) + . . . + (x(k−1) − x(k−2))

+0 + . . . + 0︸ ︷︷ ︸
n−k+1

}
= min

{
1, x(k−1)

}
= x(k−1).

Then, it follows that:

gC(TM,TM)
m (	x) =

⎧⎪⎨
⎪⎩
m

(
A(k)

)
if ∃k ∈ {1, . . . , n} : x(k) >m

(
A(k)

) ∧ x(k−1) ≤ m
(
A(k)

)
x(n) if ∀k ∈ {1, . . . , n} : x(k) ≤m

(
A(k)

)
x(k−1) if ∀k ∈ {1, . . . , n} : x(k) >m

(
A(k)

) ∧ x(k−1) >m
(
A(k)

)
= n

max
i=1

{
min

{
x(i),m

(
A(i)

)}}
= Sm(	x),

where Sm is the Sugeno integral. Observe that CTM,TM
-integral is the CMin-integral analyzed in [13].

Finally, we show this interesting example of a gC(F1,F2)
m that is (1, . . . ,1)︸ ︷︷ ︸-increasing (or weakly increasing).
n times
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Example 5.6. Consider F1 = TP , the product t-norm, and F2 = wTP , for w ∈ [0, 1]. Observe that, for w = 1, 
gC

(TP ,wTP )
m is the standard Choquet Integral. Take n = 2, 	x = (x1, x2) and a fuzzy measure m : 2N → [0, 1] such 

that m({1}) = a and m({2}) = b, a, b ∈]0, 1[. Then, we have that:

gC(TP ,wTP )
m (x1, x2) =

⎧⎪⎨
⎪⎩

min{1, (1 − wb)x1 + bx2} if x1 < x2

x if x1 = x2 = x

min{1, ax1 + (1 − wa)x2} if x1 > x2

which may be not an aggregation function whenever w 
= 1. In fact, take x1 = 0.9, x2 = 0.94, a = b = 0.5, w = 0.1. 
Then one has that

gC(TP ,0.1TP )
m (0.9,0.94) = min{1, (1 − 0.1 · 0.5) · 0.9 + 0.5 · 0.94} = min{1,1.325} = 1.

Now, consider x1 = x2 = 0.95. In this case, one has that gC
(TP ,0.1TP )
m (0.94, 0.94) = 0.94, which shows that 

gC
(TP ,0.1TP )
m is not increasing. Now, observe that gC(TP ,wTP )

m is (1, . . . ,1)︸ ︷︷ ︸
n times

-increasing. One has the following cases:

(i) If x1 < x2 then, for all c > 0 such that x1 + c, x2 + c ∈ [0, 1] it holds that x1 + c < x2 + c and

gC(TP ,wTP )
m (x1 + c, x2 + c) = min{1, (1 − wb)(x1 + c) + b(x2 + c)} > min{1, (1 − wb)x1 + bx2}

= gC(TP ,wTP )
m (x1, x2).

(ii) If x1 = x2 = x then, for all c > 0 such that x + c ∈ [0, 1] it holds that x1 + c = x2 + c = x + c and

gC(TP ,wTP )
m (x1 + c, x2 + c) = x + c > x = gC(TP ,wTP )

m (x1, x2).

(iii) If x1 > x2 then, for all c > 0 such that x1 + c, x2 + c ∈ [0, 1] it holds that x1 + c > x2 + c and

gC(TP ,wTP )
m (x1 + c, x2 + c) = min{1, a(x1 + c) + (1 − wa)(x2 + c)} > min{1, ax1 + (1 − wa)x2}

= gC(TP ,wTP )
m (x1, x2).

Example 5.6 is justified by the following result:

Theorem 5.2. Under the condition of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pseudo pre-
aggregation function pair (F, F) satisfying (PI), and for any w ∈ [0, 1], gC(F,wF)

m is a pre-aggregation function 
that is weakly increasing.

Proof. By Proposition 5.1, gC(F,wF)
m satisfies the boundary conditions. It remains to prove the weak monotonicity of 

gC
(F,wF)
m . To show this, observe first that, for any 	x = (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1 + c, . . . , xn + c) ∈

[0, 1]n, the sets BR
j (	x) and BR

j (	x + c) coincide. Then, based on Theorem 5.1, it follows that:

k∑
j=1

(F (yj + c,m(∪k
p=jB

R
p (	x + c))) − F(yj−1 + c,m(∪k

p=jB
R
p (	x + c))))

≥
k∑

j=1

(F (yj ,m(∪k
p=jB

R
p (	x))) − F(yj−1,m(∪k

p=jB
R
p (	x)))).

Then, one has that:

k∑
j=1

(F (yj + c,m(∪k
p=jB

R
p (	x + c))) − F(yj ,m(∪k

p=jB
R
p (	x))))

≥
k∑

(F (yj−1 + c,m(∪k
p=jB

R
p (	x + c))) − F(yj−1,m(∪k

p=jB
R
p (	x)))) ≥ 0,
j=1
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since F is (1, 0)-increasing. Consequently, for any w ∈ [0, 1] it follows

k∑
j=1

(F (yj + c,m(∪k
p=jB

R
p (	x + c))) − F(yj ,m(∪k

p=jB
R
p (	x))))

≥ w

k∑
j=1

(F (yj−1 + c,m(∪k
p=jB

R
p (	x + c))) − F(yj−1,m(∪k

p=jB
R
p (	x)))),

and thus

k∑
j=1

(F (yj + c,m(∪k
p=jB

R
p (	x + c))) − wF(yj−1 + c,m(∪k

p=jB
R
p (	x + c))))

≥
k∑

j=1

(F (yj ,m(∪k
p=jB

R
p (	x))) − wF(yj−1,m(∪k

p=jB
R
p (	x)))).

Hence, evidently, it follows that

gC(F,wF)
m (	x + c) ≥ gC(F,wF)

m (	x),

that is, gC(F,wF)
m is weakly increasing. �

6. gCF1F2 -integrals as OD monotone functions

In the previous section, we presented the requirements for gCF1F2 -integrals to be aggregation functions, showing 
that there exist pseudo pre-aggregation function pairs that do not fulfill such requirements, and, therefore, the cor-
responding gCF1F2 -integrals are not aggregation functions. However, under some constraints, gCF1F2 -integrals are 
OD increasing functions satisfying (A2), presenting, thus, some desirable conditions to play the role of “aggregation 
operators” in applications (see, for example, [15]). In this section we prove such properties of gCF1F2 -integrals.

First, notice that, in order to study the directional increasingness feature of our integrals, it is necessary to com-
patibilize the dimension reduction process, which should be performed in both input 	x = (x1, . . . , xn) ∈ [0, 1]n and 
direction vector 	r = (r1, . . . , rn) ∈ Rn, 	r 
= 	0, reducing both vectors to the same dimension k ≤ n. It is easy to see that 
this compatible dimension reduction is possible if it holds that:

∀i, l ∈ {1, . . . , n}, i < l : xi = xl ⇒ ri = rl ∨ rl = 0. (11)

Example 6.1. There are different vectors 	r ∈Rn that satisfy (11) for all 	x ∈ [0, 1]n. For example, consider the vectors 
(w, . . . , w) and (w, 0, . . . , 0), with w 
= 0. However, the vector (w, 0, 0, w′, 0), with w, w′ 
= 0 does not satisfy (11)
for some 	x ∈ [0, 1]n. Take, for example, 	x = (0.2, 0.3, 0.5, 0.5, 0.6). Observe that x3 = x4 = 0.5 but r3 
= r4 and 
r4 = w′ 
= 0.

It follows that:

Proposition 6.1. Let Rn
	x be the set of non null vectors 	r ∈ Rn satisfying (11), for a given 	x ∈ [0, 1]n. Then, for each 

	x ∈ [0, 1]n, 	r ∈ Rn
	x if and only if 	r = (w, 0, . . . , 0) ∈ Rn or 	r = (w, . . . , w) ∈Rn, with w 
= 0.

Proof. (⇒) Suppose that 	r ∈Rn
	x , for all 	x = (x1, . . . , xn) ∈ [0, 1]n, and 	r = (w1, . . . , wn), with 	r 
= 	0, such that there 

exist i, j ∈ {1, . . . , n} with wi 
= wj and there exists h ∈ {2, . . . , n} with wh 
= 0. Then, take 	x = (x1, . . . , xn) ∈ [0, 1]n
such that xi = xj = xh. Since xi = xj then, by (11), considering that wi 
= wj , it holds that wj = 0. Now, since 
xj = xh, then, by (11), considering that wh 
= 0, then wj = wh, which is a contradiction with wj = 0. Then, one 
concludes that either wi = wj , for all i, j ∈ {1, . . . , n}, or wh = 0, for all h ∈ {2, . . . , n}. (⇐) It is immediate. �

The dimension reduction of such direction vectors 	r can be done as follows:
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Definition 6.1. Let R : [0, 1]n → ∪n
k=1[0, 1]k be the dimension reduction function, as defined in Equation (7). 

The associated direction-dimension reduction function is defined as the function SR : {(w, . . . , w) ∈ Rn | w 
=
0} ∪ {(w, 0, . . . , 0) ∈ Rn | w 
= 0} → ⋃n

k=1({(w, . . . , w) ∈Rk | w 
= 0} ∪ {(w, 0, . . . , 0) ∈ Rk | w 
= 0}), given by:

SR((w,0, . . . ,0)) = (w,0, . . . ,0︸ ︷︷ ︸
k−1

)

SR((w, . . . ,w)) = (w, . . . ,w︸ ︷︷ ︸
k

), (12)

where k = |{x1, . . . , xn}| is cardinality of the set {x1, . . . , xn}, for any input 	x ∈ [0, 1]n of R.

Then we have the following results:

Lemma 6.1. Consider 	r = (w, 0, . . . , 0) ∈ Rn, w 
= 0. Let R and SR be as defined in equations (7) and (12), respec-
tively, and denote SR((w, 0, . . . , 0)) = (w, 0, . . . , 0) = (s1, . . . , sn). Let σK : {1, . . . , k} → {1, . . . , k} be a permutation 
in decreasing order defined, for all j ∈ K = {1, . . . , k}, as

σK(j) = (k − j + 1), (13)

(i.e., σK(1) = (k), σK(2) = (k − 1), . . ., σK(k) = (1)). Then, for all c > 0 such that yσK(1) + cw ∈ [0, 1], if
1 ≥ yσK(1) + cw > yσK(2) > . . . > yσK(k), (14)

then, for any 	z = 	y + c	s
σ−1

K
, where 	s

σ−1
K

= (s
σ−1

K (1)
, . . . , s

σ−1
K (k)

), it holds that z(j) = yj + csk−j+1, that is, z(k) =
yk + cw and z(j) = yj , for all j ∈ {1, . . . , k − 1}.

Proof. For all 	x ∈ [0, 1]n and respective 	y ∈ [0, 1]k , since y1 < . . . < yk , then yσK(1) = yn > . . . > yσK(k) = y1. 
Considering 	r = (w, 0, . . . , 0) ∈ Rn, with w 
= 0, and its respective 	s = (w, 0, . . . , 0) ∈ Rk , suppose that, for all c > 0
the inequality (14) holds (i.e., 	yσK

and 	yσK
+ c	s are comonotone, and either they increase or decrease at the same 

time). Then, for any 	z = 	y + c	s
σ−1

K
, where 	s

σ−1
K

= (s
σ−1

K (1)
, . . . , s

σ−1
K (k)

), as the same as in Equation (1), it holds that 

	zσK
= (	y + c	s

σ−1
K

)σK
= 	yσK

+ c	s, and, thus, by the inequality (14), it holds that

1 ≥ zσK(1) = yσK(1) + cs1 > . . . > zσK(k) = yσK(k) + csk,

that is,

1 ≥ zσK(1) = yσK(1) + cw > zσK(2) = yσK(2) > . . . > zσK(k) = yσK(k).

This means that zσK(k) = yσK(k) + cw and, for all j ∈ {1, . . . , k − 1}, zσK(j) = yσK(j). From Equation (13), it holds 
that:

z(k) = z
σ−1

K σK(k)
= y

σ−1
K σK(k)

+ cs
σ−1

K (k)
= y(k) + cs1 = yk + cw

and, for all j ∈ {1, . . . , k − 1},
z(j) = z

σ−1
K σK(j)

= y
σ−1

K σK(j)
+ cs

σ−1
K (j)

= y(j) + csk−j+1 = yj + csk−j+1 = yj ,

where (·) : {1, . . . , k} → {1, . . . , k} is a permutation in an increasing order with z(1) < . . . < z(k). �
Theorem 6.1. Let m : 2N → [0, 1] be a fuzzy measure and F1, F2 : [0, 1]2 → [0, 1] be fusion functions satisfying the 
conditions of Definition 4.2. Consider 	r = (w, 0, . . . , 0) ∈ Rn, with w > 0. Then gC(F1,F2)

m is OD 	r-increasing.

Proof. Let R, BR
j and SR be as defined in equations (7), (8) and (12), respectively. Let σN : {1, . . . , n} → {1, . . . , n}

be any permutation such that, for all 	x ∈ [0, 1]n, with

xσN(1) ≥ . . . ≥ xσN(n), (15)
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and for all c > 0, such that 1 ≥ xσN(1)+cw ≥ xσN(2) ≥ . . . ≥ xσN(n), where 	r
σ−1

N
= (r

σ−1
N (1)

, . . . , r
σ−1

N (n)
) ∈ Rn. Clearly, 

one can consider the permutation in the decreasing order σN : {1, . . . , n} → {1, . . . , n} defined in terms of the per-
mutation in the increasing order (·) : {1, . . . , n} → {1, . . . , n} as σN(1) = (n), σN(2) = (n − 1), . . ., σN(n) = (1), 
that is, σN(j) = (n − j + 1), with j ∈ {1, . . . , n}. Then, one has that x(1) ≤ . . . ≤ x(n), xσN(1) ≥ . . . ≥ xσN(n) and 
	r
σ−1

N
= (0, . . . , 0, w).

Due to the dimension reduction, for each 	x ∈ [0, 1]n, consider its respective 	y = (y1, . . . , yk) ∈ [0, 1]k and 
	s = (w, 0, . . . , 0) ∈ Rk , obtained from 	r . Let σK : {1, . . . , k} → {1, . . . , k} be the permutation such that {xσN(1), . . . ,
xσN (n)} = {yσK(1), . . . , yσK(k)} and yσK(1) > . . . > yσK(k). Observe that, after the dimension reduction, for any 
	y ∈ [0, 1]k with respect to a 	x ∈ [0, 1]n satisfying (15), and, for all c > 0, it holds that 1 ≥ yσK(1) + cw > yσK(2) >

. . . > yσK(k), with 	s
σ−1

K
= (s

σ−1
K (1)

, . . . , s
σ−1

K (k)
) = (0, . . . , 0, w) ∈Rk .

Clearly, when considering σK defined in terms of the permutation in the increasing order (·) : {1, . . . , k} →
{1, . . . , k}, we have that σK(1) = (k), σK(2) = (k − 1), . . ., σK(k) = (1), that is, σK(j) = (k − j + 1), with 
j ∈ {1, . . . , k}. Then, one has that y(1) = y1 < . . . < y(k) = yk and yσK(1) > . . . > yσK(k). Then, from Lemma 6.1, 
it follows that:

gC(F1,F2)
m (	x + c	r

σ−1
N

) = min

{
1,F1(yk + cw,m(BR

k (	x))) − F2(yk−1,m(BR
k (	x)))

+
k−1∑
j=1

F1

(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− F2

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))}

≥ min

{
1,F1(yk,m(BR

k (	x))) − F2(yk−1,m(BR
k (	x)))

+
k−1∑
j=1

F1

(
yj ,m

(
∪k

p=jB
R
p (	x)

))
− F2

(
yj−1,m

(
∪k

p=jB
R
p (	x)

))}

= gC(F1,F2)
m (	x),

since F1 is (1, 0)-increasing. Thus, gC(F1,F2)
m is OD ( w, 0, . . . , 0)-increasing, for w > 0. �

Corollary 6.1. Let m : 2N → [0, 1] be a fuzzy measure and (F1, F2) be a pseudo pre-aggregation function pair, under 
the conditions of Definition 4.2. Consider 	r = (w, 0, . . . , 0) ∈ Rn, with w > 0. Then C(F1,F2)

m is an OD 	r-increasing 
function satisfying the boundary conditions (A2).

Proof. It follows from Proposition 5.1 and Theorem 6.1. �
7. Conclusion

In this paper, we introduced the gCF1F2 -integrals, either (pre) aggregation or OD monotone functions based 
on pseudo pre-aggregation pairs for the generalization of CF1F2 -integrals. We have stated under which conditions 
gCF1F2 -integrals are (averaging) aggregation, pre-aggregation or OD pre-aggregation functions. In summary, the main 
features of gCF1F2 -integrals in relation to our previous approaches related to the generalizations of the Choquet inte-
gral are:

1. The pseudo pre-aggregation pairs (F1, F2) used for building gCF1F2 -integrals satisfy a few number of constraint, 
less than, for example a pair of copulas (C, C) of the CC-integrals [9], and we still have an (pre) aggregation 
function or, at least, an OD monotone function satisfying boundary conditions;

2. The obtained (pre) aggregation or OD monotone function need not to be neither averaging nor idempotent to 
present excellent results in classification (see [15,37]).
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Recall that the Choquet integral is 1-Lipschitz (with respect to L1-norm), and its stability under possible noise in 
aggregated data is guaranteed. Similarly, based on Remark 5.1, one can show that (C, C)-based integrals (where C is 
a copula) are 1-Lipschitz. This need not be more true for (F, F)-based integrals characterized in Corollary 5.2, and 
thus a deeper study of stability in this case (in dependence of some other properties of F ) is an important topic for 
the further study. As another topic for future work, we will study our generalizations in an interval-valued context, 
following the approach in [38–40].
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