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Abstract. This contribution is devoted to risk-sensitivity in long-run average opti-
mality of Markov and semi-Markov reward processes. Since the traditional average
optimality criteria cannot reflect the variability-risk features of the problem, we are
interested in more sophisticated approaches where the stream of rewards generated
by the Markov chain that is evaluated by an exponential utility function with a given
risk sensitivity coefficient. Recall that for the risk sensitivity coefficient equal to zero
(i.e. the so called risk-neutral case) we arrive at traditional optimality criteria, if the
risk sensitivity coefficient is close to zero the Taylor expansion enables to evaluate
variability of the generated total reward. Observe that the first moment of the total
reward corresponds to expectation of total reward and the second central moment to
the reward variance. In this note we present necessary and sufficient risk-sensitivity
and risk-neutral optimality conditions for long run risk-sensitive average optimality
criterion of unichain Markov and semi-Markov reward processes.
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1 Formulation and Notation
Consider a controlled semi-Markov reward process Y = {Y (t), t ≥ 0} with finite state space I = {1, 2, . . . , N}
along with the embedded Markov chain X = {Xn, n = 0, 1, . . .}. The development of the process Y (t) over
time is the following: At time t = 0 if Y (0) = i the decision maker selects decision from an infinite (compact)
set Ai ≡ [0,Ki] ⊂ R of possible decisions (actions) in state i ∈ I. Then state j is reached in the next transition
with a given probability pij(a) after random time ηij(a). Let Fij(a, τ) be a non-lattice distribution function rep-
resenting the conditional probability P(ηij ≤ τ). We assume that for ` = 1, 2, 0 < d

(`)
ij =

∫∞
0
τ ` dFij(a, τ) <

∞ hence also 0 < d
(`)
i =

∑N
j=1 pij(a)d

(`)
ij (a) <∞. Finally, one-stage transition reward rij > 0 will be accrued

to transition from state i to state j, and reward rate ri(a) per unit of time incurred in state i is earned. We assume
that each pij(a) and ri(a) is a continuous function of a ∈ Ai.

A (Markovian) policy controlling the semi-Markov process Y , say π = (f0, f1, . . .), is identified by a sequence
of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . ×AN for every n = 0, 1, 2, . . ., and fni ∈ Ai
is the decision (or action) taken at the nth transition if the embedded Markov chain X is in state i. Let πk be a
sequence of decision vectors starting at the k-th transition, hence π = (f0, f1, . . . fk−1, πk). Policy which selects
at all times the same decision rule, i.e. π ∼ (f), is called stationary; P (f) is transition probability matrix with
elements pij(fi). Stationary policy π̃ is randomized if there exist decision vectors f (1), f (2), . . . , f (m) ∈ F and
on following policy π̃ we select in state i action f (j)

i with a given probability κ(j)
i (of course, κ(j)

i ≥ 0 with∑N
j=1 κ

(j)
i = 1 for all i ∈ I). For details see e.g. [1, 9, 10].

Let ξn be the cumulative reward obtained in the n first transitions of the considered embedded Markov chain
X . Since the process starts in state X0, ξn =

∑n−1
k=0 [rXk · ηXk,Xk+1

+ rXk,Xk+1
]. Similarly let ξ(m,n) be reserved

for the cumulative (random) reward, obtained from themth up to the nth transition (obviously, ξn = rX0 ·ηX0,X1 +
rX0,X1

+ ξ(1,n), we tacitly assume that ξ(1,n) starts in state X1).

For the (random) reward earned up to time t, say ξ(t) we have ξ(t) :=
[∫ t

0
rY (s)ds +

∑N(t)
k=0 rY (τ−

k ),Y (τ+
k )

]
,

with Y (s), denoting the state of the system at time s, Y (τ−k ) and Y (τ+
k ) the state just prior and after the kth

jump, N(t) the number of jumps up to time t, and Ri(f, t) := E πi ξ(t) denote the expected total reward of the
semi-Markov process Y (t) up to time t given its initial state at time t = 0 if policy π ∼ (f) is followed.
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In this note, we assume that the stream of rewards generated by the Markov processes is evaluated by an
exponential utility function, say ūγ(·), i.e. a separable utility function with constant risk sensitivity γ ∈ R. For
more details see e.g. [2, 3, 4, 7, 14]. Then the utility assigned to the (random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ 6= 0, risk-sensitive case,

ξ for γ = 0 risk-neutral case.
(1)

Observe that exponential utility function ūγ(·) is separable, and multiplicative if the risk sensitivity γ 6= 0 or
additive for γ = 0. In particular, for uγ(ξ) := exp(γξ) we have uγ(ξ1 + ξ2) = uγ(ξ1) · uγ(ξ2) if γ 6= 0 and
uγ(ξ1 + ξ2) ≡ ξ1 + ξ2 for γ = 0.

The certainty equivalent corresponding to ξ, say Zγ(ξ), is given by

ūγ(Zγ(ξ)) = E [ūγ(ξ)] (the symbol E is reserved for expectation). (2)

From (1), (2) we can immediately conclude that

Zγ(ξ) =

{
γ−1 ln{E uγ(ξ)}, if γ 6= 0

E [ξ] for γ = 0.
(3)

Considering Markov decision processX , then if the process starts in state i, i.e. X0 = i and policy π = (fn) is
followed, for the expectation of utility assigned to (cumulative) random reward ξn obtained in the n first transitions
we get by (1)

E πi ū
γ(ξn) :=

{
(sign γ)E πi exp(γξn), if γ 6= 0, risk-sensitive case

E πi ξn for γ = 0 risk-neutral case.
(4)

In what follows let

Ūπi (γ, n) := E πi ū
γ(ξn), Uπi (γ, n) := E πi exp(γξn), vπi (n) := E πi (ξn). (5)

In this note we focus attention on risk-neutral and risk-sensitive optimality of so called unichain models, i.e.
when the underlying Markov chain contains a single class of recurrent state and present characterization of control
policies by discrepancy functions. Discrepancy functions were originally introduced in [8] for risk-neutral unichain
models, possible extension to multichain case can be found in [11, 12]. To this end we make

Assumption GA. There exists state i0 ∈ I that is accessible from any state i ∈ I for every f ∈ F .

Obviously, if Assumption GA holds, then the resulting transition probability matrix P (f) is unichain for every
f ∈ F (i.e. P (f) has no two disjoint closed sets).

2 Risk-Neutral Optimality in Unichain Semi-Markov Processes
At first we focus attention on the embedded Markov chains and slightly extend some results reported in [13]. To
this end, on introducing for arbitrary g, wj ∈ R (i, j ∈ I) and decision f ∈ F , the discrepancy functions

ϕ̃i,j(w
c, gc, f) := di(fi) · r(i) + rij − wc

i + wc
j − gc, ϕ̄i,j(w

t, gt, f) := di(fi)− wt
i + wt

j − gt (6)

for the random reward obtained, resp. time elapsed, up to the nth transition we have

ξn = ngc+wc
X0
−wc

Xn+

n−1∑
k=0

ϕ̃Xk,Xk+1
(wc, gc, f) resp. ηn = ngt+wt

X0
−wt

Xn+

n−1∑
k=0

ϕ̄Xk,Xk+1
(wt, gt, f). (7)

Hence by (7) for the expectation of ξn, E πi ξn =: vπi (n), resp. of ηn, with E πi ηn =: tπi (n), we get

vπi (n) = ngc + wc
i + E πi {

n−1∑
k=0

ϕ̃Xk,Xk+1
(wc, gc, f)− wc

Xn}, (8)

tπi (n) = ngt + wt
i + E πi {

n−1∑
k=0

ϕ̄Xk,Xk+1
(wt, gt, f)− wt

Xn}. (9)



Now we show how to express average reward generated by the semi-Markov process Y (t), t ≥ 0 in terms of the
embedded Markov chain Xn. Considering policy π ∼ (f), let

ϕ̃i(w
c, gc, f) :=

∑
j∈I

pij(fi)ϕ̃i,j(w
c, gc, f) =

∑
j∈I

pij(fi)[di(fi) · r(i) + rij − wc
i + wc

j − gc], (10)

ϕ̄i(w
t, gt, f) :=

∑
j∈I

pij(fi)ϕ̄i,j(w
t, gt, f) =

∑
j∈I

pij(fi)[di(fi)− wt
i + wt

j − gt] (11)

It is well-known from the dynamic programming literature (cf. e.g. [1, 6, 9, 10]) that for every f ∈ F and arbitrary
transition costs sij = di(fi)r(i) + rij , i, j,∈ I, there exist numbers g(f) and wi(f), i ∈ I (unique up to additive
constant) such that

wi(f) + g(f) = di(fi)r(i) +
∑
j∈I

pij(fi)[rij + wj(f)], (i ∈ I), i.e. (12)

∑
j∈I

pij(fi)ϕi,j(w, g) = 0 where ϕi,j(w, g) := di(fi)r(i) + rij − wi(f) + wj(f)− g(f).

In particular, for suitable selected wc
j(f), resp. wt

j(f), we have

vπi (n) = ngc(f) + wc
i (f)−

∑
j∈I

pij(f) · wc
j(f), tπi (n) = ngt + wt

i −
∑
j∈I

pij(f) · wt
j(f), where (13)

wc
i (f)+gc(f) = di(fi)·r(i)+

∑
j∈I

pij(fi)[rij+w
c
j(f)], resp. wt

i(f)+gt(f) = di(fi)+
∑
j∈I

pij(fi)·wt
j(f), (i ∈ I).

(14)
After some manipulation we obtain from (13)

wt
i(f) · g

c(f)

gt(f)
+ gc(f) = di(fi) ·

gc(f)

gt(f)
+

∑
j∈I

pij(fi) · wt
j(f)

gc(f)

gt(f)
(15)

and by subtracting (15) from (14) we get

wi(f) = r̄i(f) +
∑
j∈I

pij(fi)wj(f)− di(fi)g(f) where (16)

wi(f) := wc
i (f)− wt

i(f) · g
c(f)

gt(f)
, g(f) :=

gc(f)

gt(f)
, r̄i(f) = di(fi) · r(i) +

∑
j∈I,j 6=i

pij(fi)rij .

On introducing matrix notations P (f) = [pij(fi)], D(f) = diag [di(fi)], (square matrices)
r̄(f) = [r̄i(f)], w(f) = [wi(f)], ḡ(f) = [g(f)] (column vectors) equation (16) can be written as

w(f) = r̄(f) + P (f)w(f)−D(f)g(f)⇒ g(f) = D−1(f)r̄(f) + [D−1(f)P (f)− I] · w(f)]. (17)

Let

r̃(f) := D−1(f)r̄(f), w̃(f) := D−1(f)w(f), P̃ (f) := D−1(f) · P (f) ·D(f)

Then for the elements of r̃(f), w̃(f), P̃ (f) we have

r̃i(f) = r̄(i) + [di(fi)]
−1rij , p̃ij(fi) := pij(fi)

[dj(fj)]

[di(fi)]
, w̃i(f) := [di(fi)]

−1wi(f).

In particular, let us consider continuous-time Markov decision chain with transition intensities µij(fi), where∑
j∈I,j 6=i µij(fi) = −µii(fi) and µi(fi) = −µii(fi) is the is the intensity of jumps from state i. Obviously,

this is a very special case of semi-Markov processes with transition probabilities pij(f) =
µij(fi)
µi(fi)

, and expected
holding time di(fi) = 1

µi(fi)
in state i. Then on replacing in (17) transition probabilities and expected holding

times by transition intensities for the average reward per unit of time of the considered continuous-time Markov
process we conclude that

g(f) = r(i) +
∑
j 6=i

µij(fi)rij +
∑
j

µij(fi)wij(f) (18)

the standard equation for average reward of a continuous time Markov reward chain (cf. e.g. [6]).



3 Risk-Sensitive Optimality in Unichain Semi-Markov Processes
In this section we assume that the risk sensitivity coefficient γ 6= 0 and the transition probability matrix P (f)
is unichain for every f ∈ F , i.e. Assumption GA is fulfilled. We show how the discrepancy functions can be
employed for finding optimality conditions for risk-sensitive Markov and semi-Markov processes. These results
slightly extend some previous results reported in [12, 14, 15, 16, 17].

Similarly to the risk-neutral models, let for real g, wi’s (i ∈ I)

ϕij(w, g, f) := rij + di(f) · [r(i)− g] + wj − wi, where w′ = min
i∈I

wi, w
′′ = max

i∈I
wi. (19)

Then if policy π = (fn) is followed we get by (5),(19) for the risk-sensitive case

Uπi (γ, n) = E πi e
γ
n−1∑
k=0

[dXk (fXk )·r(Xk)+rXk,Xk+1
]
= eγwi × E πi e

γ[
n−1∑
k=0

ϕXk,Xk+1
(w,g,f)−wXn ]

. (20)

Hence for a given γ 6= 0 there exist numbers w̄, w̃ such that for any policy π = (fn)

E πi e
γ[
n−1∑
k=0

ϕXk,Xk+1
(w,g,f)−w̄]

≤ Uπi (γ, n)

eγwi
≤ E πi e

γ[
n−1∑
k=0

ϕXk,Xk+1
(w,g,f)−w̄]

. (21)

In what follows we show that under certain conditions it is possible to choosewi’s and g such that for stationary
policy π ∼ (f) and any i ∈ I∑

j∈I
pij(fi) eγ[rij+di(fi)r(i)+wj(f)] = eγ[di(fi)g(f)+wi(f)] or E πi e

γ ϕXk,Xk+1
(w,g,f)

= 1. (22)

Moreover, on introducing new variables

vi(f) := eγwi(f), ρ(f) := eγg(f), qij(f) := pij(f)eγ[rij+di(fi)r(i)] (23)

from (22) we arrive at the following set of equations∑
j∈I

qij(fi) vj(f) = ρ(f)[di(fi)] · vi(f). (i ∈ I) (24)

Observe that if all di(fi)’s are equal to some constant, say d, then (24) is a well-known formula for finding spectral
radius (or so called Perron eigenvalue) of a nonnegative matrix, vi(f)’s are elements of the corresponding Perron
eigenvector (cf. [5]). In particular, if for the all i ∈ I and f ∈ F the values di(fi)’s are equal to one the considered
semi-Markov reward process is reduced to a Markov reward chain and Eq.(24) to formulas for calculating γ-risk
average reward/cost optimality equation of the Markov reward chain. Unfortunately, comparing with the risk-
neutral model, unichain property itself (cf. Assumption GA), cannot guarantee positivity of the Perron eigenvector;
however, Perron eigenvector is strictly positive if the respective matrix is irreducible.

In what follows we focus attention on finding stationary policies π∗ ∼ (f∗), resp. π̂ ∼ (f̂), such that for any
f ∈ F it holds ρ(f∗) ≥ ρ(f), resp. ρ(f̂) ≤ ρ(f). We show that the policies π∗ ∼ (f∗), resp. π̂ ∼ (f̂), can
be found by policy iterations. To specify the policy iteration algorithm, it will be convenient to use the following
matrix notation.2

On introducing the N × N matrices Q(f) = [qij(fi)] and (column) N -vector v(f) = [vi(f)] along with
diagonal N ×N matrix B(f) = diag[ρ(f)[di(fi)]], from (24) we get

B(f) · v(f) = Q(f) · v(f) ⇐⇒ v(f) = [B(f)]−1 ·Q(f) · v(f). (25)

Obviously, from (25) for the i-element of v(f) it holds vi(f) = ρ(f)−di(fi) ·
∑N
j=1 qij(fi) · vj(f).

If stationary policy π ∼ (f) is followed, policy improvement routine can be used for finding an improved
decision in any state (such approach slightly extends policy iteration method reported in [7] for finding maximal
possible spectral radius of a family of controlled ergodic Markov reward chains).

2In vector inequalities a ≥ b denotes that ai ≥ bi for all elements of the vectors a, b, and ai > bi at least for one i,
but not for all i’s, and a > b if and only if and ai > bi for all i’s. Using matrix notations the symbol I is reserved
for identity matrix, e denotes unit (column) vector.



a)
∑N
j=1 qij(hi) · vj(f) ≥ vi(f) if maximal ρ(f) is seeking, resp.,

b)
∑N
j=1 qij(hi) · vj(f) ≤ vi(f) if minimal ρ(f) is seeking.

Repeating the above procedure we can generate a sequence of stationary policies with increasing, resp. decreasing,
sequence of the values ρ(f)’s converging to maximal, resp. minimal, value of ρ(f)’s.

To this end, since Q(B)(f) := [B(f)]−1 · Q(f) is an irreducible nonnegative matrix, let for some h ∈ F
z(B)(h) be the left Perron eigenvector of Q(B)(h), i.e. z(B)(h) · Q(B)(h) = ρ(B)(h) · z(B)(h). Since the matrix
Q(B)(·) is irreducible, the vectors z(B)(h), v(f) are strictly positive, hence also their product z(B)(h) × v(f) is
positive.

In particular, let

ψ(h, f) := [Q(B)(h)−Q(B)(f)] · v(f), ψ̄(h, f) := B(f) · [Q(B)(h)−Q(B)(f)] · v(f)

be column N -vectors with elements ψi(h, f), resp. ψ̄i(h, f). Then by (25) we can conclude that

Q(B)(h) · v(h)−Q(B)(f) · v(f) = Q(B)(h) · v(h)−Q(B)(h) · v(f) + ψ̄(h, f)

and on premultiplying by z(B)(h) we can conclude that

[ρ(B)(h)− ρ(B)(f)] · z(B)(h) · v(f) = z(B)(h) · ψ̄(h, f).

Then ψ̄(h, f) > 0 implies that ρ(B)(h) > ρ(B)(f), if ψ̄(h, f) < 0 then ρ(B)(h) < ρ(B)(f).
Observe that if all di(f)’s are equal to one (or at least to some constant number) the value ρ(f) in (25) is the Perron
eigenvalue (equal to the spectral radius) of the nonnegative matrix Q(f) = [qij(f)]. To this end we can expect
that for not too much different elements of the diagonal matrix B(f) if ψ̄(h, f) > 0, resp. ψ̄(h, f) < 0, then also
ψ(h, f) > 0, resp. ψ(h, f) < 0.

Repeating the above improvements, we arrive at stationary policies π∗ ∼ (f∗), resp. π̂ ∼ (f̂), such that

vi(f
∗) = max

f∈F

∑
j∈I

qij(fi) [ρ(f)][−di(fi)]vj(fi) =
∑
j∈I

qij(f
∗
i ) [ρ(f∗)][−di(f

∗
i )]vj(f

∗
i ) (26)

vi(f̂) = min
f∈F

∑
j∈I

qij(fi) [ρ(f)][−di(fi)]vj(fi) =
∑
j∈I

qij(f̂i) [ρ(f̂)][−di(f̂i)] vj(f̂i) (27)

Moreover, from (26), (27), we get the following set of nonlinear equations

eγw
∗
i = max

f∈F

∑
j∈I

pij(fi) eγ[rij+di(fi)[r(i)−g(f)]+wj(f)]

= eγdi(f
∗
i )[r(i)−g(f∗)]

∑
j∈I

pij(f
∗
i ) eγ[rij+wj(f

∗)] (i ∈ I)) (28)

eγŵi = min
f∈F

∑
j∈I

pij(fi) eγ[rij+di(fi)[r(i)−g(f)]+wj(f)]

= eγ[di(f̂i)[r(i)−g(f̂)]
∑
j∈I

pij(f̂i) eγ[rij+wj(f̂)] (i ∈ I) (29)

Eqs. (28),(29) can be called the γ-risk average reward/cost optimality equation for semi-Markov processes.

Similar results can be also formulated for the corresponding certainty equivalents, see (2), (3). To this end,
let Zπi (γ, n) := lnUπi (γ, n) hence in virtue of (20), (21) we can conclude from Eqs. (28),(29) that for π̂ ∼ (f̂),
π∗ ∼ (f∗) and any π = (fn)

Zπi (γ, n) = E πi

n−1∑
k=0

[dXk(fXk) · r(Xk) + rXk,Xk+1
] =

∑
j∈I

qij(fi) [ρ(f)][−di(fi)] vj(fi) (30)

Z π̂i (γ, n) ≤ Zπi (γ, n) ≤ Zπ
∗

i (γ, n) (31)



Special case: continuous-time Markov chain.

Let us consider continuous-time Markov decision chain with transition intensities µij(fi), for i, j ∈ I, j 6= i,∑
j∈I,j 6=i µij(fi) = −µii(fi) and µi(fi) = −µii(fi) is the intensity of jumps from state i. Obviously, this is a

very special case of semi-Markov processes with transition probabilities pij(fi) =
µij(fi)
µi(fi)

, for j¬i, pii(fi) = 0

and expected holding time di(fi) = 1
µi(fi)

in state i. Then by (22) for the considered continuous-time Markov
process after some manipulation we conclude that∑

j∈I,j 6=i

µij(fi) e
γ[rij+

1
µi(fi)

r(i)+wj(f)]
= µi(fi) · eγ[ 1

µi(fi)
g(f)+wi(f)]

. (32)

Moreover, on introducing new variables (recall that di(fi) = 1
µi(fi)

)

v̄i(f) := eγwi(f), ρ̄(f) := eγg(f), q̄ij(f) := µij(f)eγ[rij+di(fi)r(i)] (33)

from (32) we arrive at the following set of equations∑
j∈I,j 6=i

q̄ij(fi) v̄j(f) = ρ̄(f)[di(fi)] · v̄i(f) (i ∈ I). (34)
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