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Abstract In this note we consider continuous-time Markov decision processes with finite
state space where the stream of rewards generated by the Markov processes is evaluated by
an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive
models). For the risk-sensitive case, i.e. if the considered risk-sensitivity coefficient is non-
zero, we establish explicit formulas for growth rate of expectation of the exponential utility
function. Recall that in this case along with the total reward also its higher moments are taken
into account. Using Taylor expansion of the utility function we present explicit formulae for
calculating variance and higher central moments of the total reward generated by the Markov
reward process along with its asymptotic behavior.

Keywords Continuous-time Markov reward chains, exponential utility, moment generating
functions, formulae for central moments

JEL Classification C44, C61
AMS Classification 90C40

1 Introduction

The usual optimization criteria examined in the literature on stochastic dynamic programming,
such as a total discounted or mean (average) reward structures, may be quite insufficient to
characterize robustness of the problem from the point of a decision maker. To this end it may
be preferable if not necessary to select more sophisticated criteria that also reflect stability and
variability-risk features of the problem. Hence robustness and risk control are also important
issues in practical applications. Perhaps the best known approaches stem from the classical
work of Markowitz (1952) on mean variance selection rules, i.e. we optimize the weighted sum
of average or total reward and its variance, and from the seminal paper titled ”Risk-sensitive
Markov decision processes” of Howard and Matheson (1972), based on evaluating generated
reward by exponential utility functions. Higher moments and variance of cumulative rewards
in Markov reward chains have been original studied only for discrete time models. Research in
this direction has been initiated in early papers Mandl (1971), Jaquette (1975), Benito (1982)
and Sobel (1982). For connections with risk sensitive models see e.g. Cavazos-Cadena and
Fernandez-Gaucherand (1999), Cavazos-Cadena and Hernández-Hernández (2005) and Sladký
(2008).

To the best of our knowledge higher moments of cumulative rewards for continuous-time
Markov control processes were originally studied by Jaquette (1975). In the paper Van Dijk and
Sladky (2006) results for the discrete-time case are extended to continuous-time Markov reward
chains. As the essential step is an expression for the variance of the undiscounted cumulative
reward and its asymptotic behavior. Limiting average variance for continuous-time models
are also studied in Guo and Song (2009) and in Prieto-Rumeau and Hernández-Lerma (2009)
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(see also the monograph by Guo and Hernández-Lerma (2009)), Wei and Chen (2016) and for
discounted models in Guo and Ying (2012).

The present article is a continuous-time version of the author’s paper Sladky (2018). The
present paper is structured as follows. Section 2 contains notations and summary of basic facts
on continuous-time Markov reward processes. Markov models with exponential utility function
(called risk-sensitive Markov chains) are studied in section 3 along with the corresponding mo-
ment generating functions. Sections 4 and 5 are devoted to explicit formulas of higher moments
and higher central models of total rewards generated in continuous-time Markov decision chains.

2 Notations and Preliminaries

In this note we consider Markov decision processes with finite state space I = {1, 2, . . . , N}
evolving in continuous-time. In particular, the development of the considered Markov decision
process X = {X(t), t ≥ 0} (with finite state space I) over time is governed by the transition
rates q(j|i, a), for i, j ∈ I, depending on the selected action a ∈ Ai. For j ̸= i q(j|i, a) is the
transition rate from state i to state j, q(i|i, a) =

∑
j∈I,j ̸=i q(j|i, a) is the transition rate out

of state i. Recall that for sufficiently small δ it holds for transition probabilities Pij(·)’s and
transition rates qij(·)’s (with qii(·) = −qi(·)) that

Pij(·) = qij(·) · δ + o(δ2) for i ̸= j, Pii(·) = (1− qi(·) · δ) + o(δ2)

and similarly for the corresponding one stage rewards we can conclude that

rij := r(i, j) for i ̸= j is the transition reward from state i to state j

ri := r(i) is the reward rate earned in state i

Let ξ(t) :=
∫ t
0 r(X(τ)dτ +

∑N(t)
k=0 r(X(τ−), X(τ+)), obviously ξ(t) is the (random) reward

obtained up to time t, where X(t) denotes the state at time t, X(τ−), X(τ+) is the state
just prior and after the kth jump, and N(t) is the number of jumps up to time t. Simi-

larly ξ(t′, t) :=
∫ t
t′ r(X(τ))dτ+

∑N(t)
k=N(t′) r(X(τ−), X(τ+)) is the total (random) reward obtained

in the time interval [t′, t); hence ξ(t+∆) = ξ(∆)+ξ(∆, t+∆) or ξ(t+∆) = ξ(t)+ξ(t, t+∆).

In this note we shall suppose that the obtained random reward, say ξ, is evaluated by an expo-
nential utility function, say uγ(·), i.e. utility functions with constant risk sensitivity depending
on the value of the risk sensitivity coefficient γ.

In case that γ > 0 (the risk seeking case) the utility assigned to the (random) reward ξ is given
by uγ(ξ) := exp(γξ), if γ < 0 (the risk averse case) the utility assigned to the (random) reward
ξ is given by uγ(ξ) := − exp(γξ), for γ = 0 it holds uγ(ξ) = ξ (risk neutral case). Hence we can
write

uγ(ξ) = sign(γ) exp(γξ) (1)

and for the expected utility we have (E is reserved for expectation)

Ū (γ)(ξ) := Euγ(ξ) = sign(γ)E[exp(γξ)], where E [exp(γξ)] =
∞∑
k=0

E
1

k!
(γξ)k. (2)

Then for the corresponding certainty equivalent Zγ(ξ) we have

uγ(Zγ(ξ)) = sign(γ)E[exp(γξ)] ⇐⇒ Zγ(ξ) = γ−1 ln{E [exp(γξ)]}. (3)
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From (2),(3) we immediately conclude that

Zγ(ξ) ≈ Eξ +
γ

2
Var ξ. (4)

A (Markovian) policy controlling the decision process is given as a piecewise constant right
continuous function of time. In particular, π = f(t), is a piecewise constant, right continuous
vector function where f(t) ∈ F ≡ A1 × . . . × AN , and fi(t) ∈ Ai is the decision (or action)
taken at time t if the process X(t) is in state i. Since π is piecewise constant, for each π we
can identify the time points 0 < t1 < t2 . . . < ti < . . . at which the policy switches; we denote
by f i ∈ F the decision rule taken in the time interval (ti−1, ti]. Policy which takes at all times
the same decision rule, i.e. π ∼ f , is called stationary; Q(f) is the transition rate matrix with
elements q(j|i, fi).

Let for f ∈ F Q(f) = [qij(fi)] be an N × N matrix whose ijth element qij(fi) = q(j|i, fi)
for i ≠ j and for the iith element we set qii(fi) = −q(i|i, fi). The sojourn time of the con-
sidered process X in state i ∈ I is exponentially distributed with parameter [q(i|i, fi)]. Hence
the expected value of the reward obtained in state i ∈ I equals r̃i(fi) = [q(i|i, fi)]−1 r(i) +∑

j∈I,j ̸=i q(j|i, fi) r(i, j) and r̃(f) is the (column) vector of reward rates at time t.
Using policy π = f(t) means that if the Markov chain X was found to be in state i at

time t, the action chosen at this time is fi(t), i.e. the ith coordinate of f(t) ∈ F . For any
policy π = f(t) the accompanying set of transition rate matrices {Q(f(t)), t ≥ 0} determines a
continuous-time (in general, nonstationary) Markov process.

3 Formulas for Higher Moments of Random Reward

Supposing that the obtained random reward up to time t, say ξ(t), is evaluated by an exponential

utility function, say uγ(·), with the risk sensitivity coefficient γ, let for π ∼ (f), U
(γ)
i (t, f) :=

Eπ
i [exp(γξ(t))] considered as the moment generating function of ξ(t), we can conclude that for

k = 0, 1, 2, . . ., n = 0, 1, 2, . . .

M
(k,π)
i (t) := Eπ

i (exp(ξ(t)
k) =

dk

dγk
Eπ
i [exp(γξ(t))]|γ=0 is the kth moment of ξ(t) (5)

and the Taylor expansion around γ = 0 reads

U
(γ)
i (t, f) = 1 +

∞∑
k=1

γk

k!
M

(k,π)
i (t). (6)

Similarly on introducing the moment generating function for the central moments of ξ(t) by

Ũ
(γ)
i (t, f) := Eπ

i [exp(γ(ξ(t)− Eπ
i ξ(t))]

k for all i ∈ I (7)

for the kth central moments of ξ(t) we have

M̃
(k,π)
i (t) := Eπ

i [ξ(t)− Eπ
i ξ(t)]

k =
dk

dγk
Eπ
i [exp(γ(ξ(t)− Eπ

i ξ(t))]γ=0 (8)

and the Taylor expansion around γ = 0 for sufficiently small γ reads

Ũ
(γ)
i (t, f) = 1 +

∞∑
k=1

γk

k!
M̃

(k,π)
i (t) (9)
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Let M (k,π)(t), M̃ (k,π)(t) be the (column) vector of the k moments, central k moments respec-

tively, with elements M
(k,π)
i (t), M̃

(k,π)
i (t) respectively.

In particular, if the system starts in state i, the expected total reward earned in state i up
to the first exit of state i within time interval [t, t+ δ) is equal to

M
(1,π)
i (t+ δ) = M

(1,π)
i (t) · [1− qi(fi) · δ] + δ · r(i) · [1− qi(fi) · δ] + o(δ2) (10)

and for the s-th power of this reward it holds

M
(s,π)
i (t+ δ) = {M (1,π)

i (t)[1− qi(·) · δ] + [r(i) · δ] · [1− qi(fi) · δ]}s

= M
(s,π)
i (t) + s ·M (s−1,π)

i (t) · δ + o(δ2) (11)

(Observe that M
(s,π)
i (t) = [M

(1,π)
i (t)]s, [M

(1,π)
i (t) + r(i) · δ]s = M

(s,π)
i (t) + s · r(i) ·M (s−1,π)

i (t) +
o(δ2).)

4 Higher Moments in Continuous-time Models

On inserting from (5),(7),(10),(11) we can conclude that

For k = 0 : M
(0,π)
i (t+ δ) = [1− qi(fi) · δ] +

∑
j∈I,j ̸=i

qij(fi) · δ ·M (0,π)
j (t) ⇒ M

(0,π)
j (t) = 1 ∀j. (12)

For k = 1 : M
(1,π)
i (t+ δ) = [1− qi(fi) · δ] · [M (1,π)

i (t) + r(i) · δ] +
∑

j∈I,j ̸=i

qij(fi) · δ · [rij +M
(1,π)
j (t)].(13)

For k = 2 : M
(2,π)
i (t+ δ) = [1− qi(fi) · δ] · [M (2,π)

i (t) + 2 ·M (1,π)
i (t) · r(i) · δ]

+
∑

j∈I,j ̸=i

qij(fi) · δ ·
{
[rij ]

2 + 2 · rij ·M (1,π)
j (t) +M

(2,π)
j (t)

}
+ o(δ2). (14)

For k = 3 : M
(3,π)
i (t+ δ) = [1− qi(fi) · δ] · [M (3,π)

i (t) + 3 ·M (2,π)
i (t) · r(i) · δ]

+
∑

j∈I,j ̸=i

qij(fi) · δ
{
[rij ]

3 + 3 · [rij ]2 ·M (1,π)
j (t) + 3 · [rij ] ·M (2,π)

j (t) +M
(3,π)
j (t)

}
+ o(δ2). (15)

For k = 4 : M
(4,π)
i (t+ δ) = [1− qi(fi) · δ] · [M (4,π)

i (t) + 4 ·M (4,π)
i (t)] +

∑
j∈I,j ̸=i

qij(fi) · δ ×

×
{
[rij ]

4 + 4 · [rij ]3 ·M (1,π)
j (t) + 6 · [rij ]2 ·M (2,π)

j (t) + 4 · [rij ] ·M (3,π)
j (t) +M

(4,π)
j (t)

}
+ o(δ2). (16)

...
...

...

In general:

M
(s,π)
i (t+ δ) = [1− qi(fi) · δ] · [M (s,π)

i (t) + s · r(i) · δ]

+
∑

j∈I,j ̸=i

qij(fi) · δ ·

{
s∑

k=0

(
s
k

)
· [rij ]k ·M (s−k,π)

j (t)

}
+ o(δ2) (17)

hence

M
(s,π)
i (t+ δ)−M

(s,π)
i (t) = s ·M (s−1,π)

i (t) · r(i)

+
∑

j∈I,j ̸=i

qij(fi) · δ ·

{
s∑

k=1

(
s
k

)
[rij ]

k M
(s−k,π)
j (t)

}
+
∑
j∈I

qij(fi) · δ ·M (s,π)
i (t) + o(δ2) (18)
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or equivalently

1

δ
{M (s,π)

i (t+ δ)−M
(s,π)
i (t)} = s ·M (s−1,π)

i (t) · r(i) · δ

+
∑

j∈I,j ̸=i

qij(fi)×

{
s∑

k=1

(
s
k

)
· [rij ]k ·M (s−k,π)

j (t)

}
+
∑
j∈I

qij(fi) ·M (s,π)
i (t) + o(δ) (19)

For δ tending to null from the above material we can arrive at the following systems of differential
equations.

For k = 0 :
d

dt
M

(0,π)
i (t) =

∑
j∈I

qij(fi)M
(0,π)
j (t) ⇒ M

(0,π)
j (t) = 1 ∀j. (20)

For k = 1 :
d

dt
M

(1,π)
i (t) = r(i) +

∑
j∈I,j ̸=i

qij(fi) rij+
∑
j∈I

qij(fi)M
(1,π)
j (t). (21)

For k = 2 :
d

dt
M

(2,π)
i (t) = 2 ·M (1,π)

i (t) · r(i) +
∑

j∈I,j ̸=i

qij(fi)
{
[rij ]

2 + 2 · rij ·M (1,π)
j (t)

}
+
∑
j∈I

qij(fi) ·M (2,π)
j (t). (22)

For k = 3 :
d

dt
M

(3,π)
i (t) = 3 ·M (2,π)

i (t) · r(i) +
∑

j∈I,j ̸=i

qij(fi)×

×
{
[rij ]

3 + 3 · [rij ]2 ·M (1,π)
j (t) + 3 · [rij ] ·M (2,π)

j (t)
}
+
∑
j∈I

qij(fi)M
(3,π)
j (t). (23)

For k = 4 :
d

dt
M

(4,π)
i (t) = 4 ·M (3,π)

i (t) · r(i) +
∑

j∈I,j ̸=i

qij(fi)×

×
{
[rij ]

4 + 4 · [rij ]3 M (1,π)
j (t) + 6 · [rij ]2 ·M (2,π)

j (t) + 4 · [rij ] ·M (3,π)
j (t)

}
+

∑
j∈I

qij(fi) ·M (4,π)
j (t). (24)

...
...

...

In general:

d

dt
M

(s,π)
i (t) = s ·M (s−1,π)

i (t) · r(i) +
∑

j∈I,j ̸=i

qij(fi)

{
s∑

k=1

(
s
k

)
·M (s,π)

i (t) · [rij ]k M (s−k,π)
j (t)

}
+
∑
j∈I

qij(fi) · M (s,π)
j (t) (25)

5 Higher Central Moments in Continuous-time Models

Supposing that higher moments are known, the corresponding central moments can be easily
computed. To this end, on recalling definition central moments, we can easily conclude that the
if the system starts in state i and policy π is followed then the nth central moment at time t

M̃
(n,π)
i (t) := Eπ

i [ξ(t)−M
(1,π)
i (t)]n (26)
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Since M
(j,π)
i (t) := Eπ

i [ξ(t)]
j , after little algebra we arrive at

M̃
(n,π)
i (t) :=

n∑
j=0

(
n
j

)
· (−1)n−j ·M (j,π)

i (t) · [M (1,π)
i (t)]n−j (27)

=

n−2∑
j=0

(
n
j

)
· (−1)n−j ·M (j,π)

i (t) · [M (1,π)
i (t)]n−j + (−1)n−1 · (n− 1) · [M (1,π)

i (t)]n (28)

In particular,

M̃
(1,π)
i (t) = M

(1,π)
i (t)−M

(1,π)
i (t) = 0 (29)

M̃
(2,π)
i (t) = M

(2,π)
i (t)− [M

(1,π)
i (t)]2 (30)

M̃
(3,π)
i (t) = M

(3,π)
i (t)− 3 ·M (2,π)

i (t) ·M (1,π)
i (t) + 3 ·M (1,π)

i (t) · [M (1,π)
i (t)]2 − [M

(1,π)
i (t)]3

= M
(3,π)
i (t)− 3 ·M (2,π)

i (t) ·M (1,π)
i (t) + 2 · [M (1,π)

i (t)]3 (31)

M̃
(4,π)
i (t) = M

(4,π)
i (t)− 4 ·M (3,π)

i (t) · [M (1,π)
i (t)] + 6 ·M (2,π)

i (t) · [M (1,π)
i (t)]2

−4 ·M (1,π)
i (t) · [M (1,π)

i (t)]3 + [M
(1,π)
i (t)]4

= M
(4,π)
i (t)− 4 ·M (1,π)

i (t) ·M (3,π)
i (t) + 6 · [M (1,π)

i (t)]2 ·M (2,π)
i (t)− 3 · [M (1,π)

i (t)]3 (32)

Since M̃
(1,π)
i (t) = 0 we shall consider M̃

(s,π)
i (t) only for s = 2, 3, . . . . From (30)–(32) we imme-

diately obtain

d

dt
M̃

(2,π)
i (t) =

d

dt
M

(2,π)
i (t)− 2 · [M (1,π)

i (t)] · d

dt
[M

(1,π)
i (t)] (33)

d

dt
M̃

(3,π)
i (t) =

d

dt
M

(3,π)
i (t)− 3 · d

dt

{
M

(2,π)
i (t) · M̃ (2,π)

i (t)
}
+ 6 · [M (1,π)

i (t)]2 · d

dt
M̃

(1,π)
i (t) (34)

d

dt
M̃

(4,π)
i (t) =

d

dt
M

(4,π)
i (t)− 4 · d

dt

{
M

(2,π)
i (t) · M̃ (3,π)

i (t)
}
+ 6 · d

dt

{
[M

(2,π)
i (t)]2 · M̃ (2,π)

i (t)
}
−

−9 · [M (2,π)
i (t)]2 · d

dt
[M

(1,π)
i (t)] (35)
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