
Nonlinear Analysis: Real World Applications 54 (2020) 103108

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Multiplicity of clines for systems of indefinite differential equations
arising from a multilocus population genetics model✩

Guglielmo Feltrin a,∗, Paolo Gidoni b

a Department of Mathematics, Computer Science and Physics, University of Udine,
Via delle Scienze 206, 33100 Udine, Italy
b Czech Academy of Sciences, Institute of Information Theory and Automation (UTIA), Department of
Decision-Making Theory, Pod vodárenskou veží 4, CZ-182 08, Prague 8, Czech Republic

a r t i c l e i n f o

Article history:
Received 12 September 2019
Received in revised form 21 January
2020
Accepted 22 January 2020
Available online xxxx

Keywords:
Neumann problem
Indefinite weight
Coincidence degree
Multiplicity of clines
Population genetics models
Multilocus models

a b s t r a c t

We investigate sufficient conditions for the presence of coexistence states for
different genotypes in a diploid diallelic population with dominance distributed
on a heterogeneous habitat, considering also the interaction between genes at
multiple loci. In mathematical terms, this corresponds to the study of the Neumann
boundary value problem⎧⎨⎩ p′′

1 + λ1w1(x, p2)f1(p1) = 0, in Ω ,

p′′
2 + λ2w2(x, p1)f2(p2) = 0, in Ω ,

p′
1 = p′

2 = 0, on ∂Ω ,

where the coupling-weights wi are sign-changing in the first variable, and the
nonlinearities fi : [0, 1] → [0, +∞[ satisfy fi(0) = fi(1) = 0, fi(s) > 0 for all
s ∈ ]0, 1[, and a superlinear growth condition at zero. Using a topological degree
approach, we prove existence of 2N positive fully nontrivial solutions when the
real positive parameters λ1 and λ2 are sufficiently large.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Starting from the Eighties, a great deal of attention has been devoted to boundary value problems
associated with differential equations of the form

− ∆p = w(x)f(p), (1.1)

where w changes sign in the domain. Following a terminology popularised in [1], such problems are referred
to as indefinite weight problems. Many issues connected to this family of problems, like existence, uniqueness,
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multiplicity and stability of solutions for (1.1) have been largely investigated; among many others, we
mention [2–6], and we refer to the introduction in [7] for a more complete bibliography and to [8] for a
survey illustrating some examples of models in physics and ecology, where the search of stationary solutions
of parabolic equations strongly motivates the study of Eq. (1.1), also in the ODE case.

More recently, a series of papers (e.g. [9–14]) has shown the effectiveness of topological methods, such as
degree theory and shooting techniques, to study such issues in an ODE setting. More precisely, by analysing
the nodal behaviour of the indefinite weight, precise multiplicity results have been provided for positive
solutions of the equation

p′′ + w(x)f(p) = 0

considering several types of boundary conditions and several types of nonlinearities f all characterised by
a superlinear behaviour at zero. As we discuss briefly below and more extensively in Section 5.1, such
a framework is relevant to justify the coexistence of two competing alleles with dominance in a diploid
population.

The main purpose of this paper is to illustrate how such an approach can be successfully extended to the
case of systems of indefinite equations. Indeed, their flexibility is one of the advantages of the application of
topological methods. The employment of topological tools to generalise existence results for ODEs to systems
of differential equations obtained by suitable coupling of the original equation has been recently applied in
various frameworks, for instance in [15–21]. We remark that such results are not necessarily restricted to
small perturbations: indeed, as in our case, they apply also to larger suitable couplings.

In terms of modelling, our generalisation of the problem to the case of systems is justified by considering
a nontrivial interaction between genes at multiple loci. Let us therefore consider a diploid population. We
assume that at one locus we have two possible alleles A and a, with complete dominance of the allele A;
whereas at a second locus we have, analogously, two possible alleles B and b, with complete dominance of
the allele B. We denote by p, q ∈ [0, 1], respectively, the frequencies of the alleles a and b in the population.
We further assume that the population is at equilibrium, with random mating and linkage equilibrium
between the two loci. The population is distributed on a heterogeneous bounded habitat Ω ⊆ R. As we
derive rigorously in Section 5, the fitness of the allele a at a given place x can be expressed as the product
of a term f(p) = p2(1 − p), depending on the frequency of the allele and accounting for the dominance
of A, and of a Carathéodory function λwp(x, q) which describes how favourable is the habitat to the allele
a at x, and depends also on the genotype distribution of the population in x with respect to the other
locus, expressed through the dependence of the frequency q. Such structure is directly calculated by the
space-dependent fitnesses of the four possible phenotypes. We assume that the habitat presents a region
Ip ⊆ Ω where it is favourable to the allele a for all the possible situations at the other locus (namely
wp(x, q) > 0 for every x ∈ Ip), but that in general the environment is hostile to the allele a (namely
wp(x, q) < β(x) with

∫
Ω

β(x) dx < 0). The coefficient λ measures the intensity of the competition between
the alleles compared to the velocity of diffusion, meaning that a larger λ corresponds to a larger advantage of
one of the alleles where it is favoured by the environment. An analogous characterisation holds for the allele
b. We also assume a random dispersal of the population within the habitat, whose intensity is regulated by
a function κ(x) > κ0 > 0.

The search of steady states for the population corresponds to solving the system⎧⎪⎨⎪⎩
κ(x)p′′ + λwp(x, q)f(p) = 0, in Ω ,
κ(x)q′′ + λwq(x, p)f(q) = 0, in Ω ,
p′ = q′ = 0, on ∂Ω .

(1.2)

In particular we are interested in finding steady states where both alleles coexist at each locus, namely such
that 0 < p(x) < 1 and 0 < q(x) < 1 for all x ∈ Ω . We refer to such solutions of (1.2) as fully nontrivial
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solutions. Such stationary solutions are usually also called clines, since they describe the gradual change in
space of the frequency of an allele.

As a corollary of our main result (Theorem 2.1) we obtain the following sufficient condition for the
existence of fully nontrivial stationary states (cf. Corollary 5.1).

Corollary. There exists λ∗ > 0 such that for every λ > λ∗ there exist at least four fully nontrivial solutions
to (1.2).

Beyond this motivating application, since the problem has an intrinsic mathematical interest, we remark
that our main result deals with a more general family of systems. Indeed, as we discuss in Section 2, we
consider functions f satisfying

f(0) = f(1) = 0, f(s) > 0, for all s ∈ ]0, 1[,

and having a superlinear growth at zero, namely f ′(0) = 0. Moreover our result applies to an arbitrarily
large number of coupled equations.

The plan of the paper is as follows. In Section 2 we introduce the mathematical framework and state our
main result. Section 3 is devoted to illustrate the abstract degree setting which is employed in the proof of
Theorem 2.1, given in Section 4. The paper ends with Section 5, where we derive the model described above.

2. Notation, hypotheses and main result

We now introduce our working framework, which is more general than the one discussed in the Introduc-
tion. In particular we consider a system of N ordinary differential equations, where N ≥ 2 is an integer. In
this section, we list all the hypotheses needed and state our main result.

Let Ω = ]ω, ω[ be an open and bounded interval in R. For i = 1, . . . , N , let wi : Ω × RN−1 → R be an
L1-Carathéodory function satisfying

(wi,∗) there exists a closed interval Ii ⊆ Ω with non empty interior and there exist αi, βi ∈ L1(Ω) with

αi(x) ≥ 0 and αi ̸≡ 0 on Ii,
∫
Ω

βi(x) dx < 0,

such that
αi(x) ≤ wi(x, ξ̂) ≤ βi(x), for a.e. x ∈ Ω , for all ξ̂ ∈ [0, 1]N−1.

Here, the notation g ̸≡ 0 means that the function g is not identically zero, i.e. the measure of the set where
g ̸= 0 is positive. The first part of hypothesis (wi,∗) is a sign-condition which states that wi is positive on
an interval of Ω with non-zero measure, while the second part implies that wi is L1-uniformly bounded in
the second variable and βi is negative somewhere (and so also the wi). We notice that the weights wi can
change sign infinitely many times.

For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuously differentiable function such that

(fi,∗) fi(0) = fi(1) = 0, fi(s) > 0, for all s ∈ ]0, 1[.

Moreover, we assume a superlinear growth condition at zero, that is

(fi,0) f ′
i(0) = 0.
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We now introduce a useful notation. Let i ∈ {1, . . . , N} and J ⊆ R. Given a vector field p =
(p1, . . . , pN ) : J → RN we denote by

p̂i(x) =
(
p1(x), . . . , pi−1(x), pi+1(x), . . . , pN (x)

)
∈ RN−1, x ∈ J,

the vector of length N − 1 obtained from p by removing the i-th component.
We deal with the following system of N differential equations together with Neumann boundary conditions⎧⎪⎨⎪⎩

p′′
i + λiwi(x, p̂i)fi(pi) = 0, in Ω ,

p′
i = 0, on ∂Ω ,

i = 1, . . . , N.

(S)

Solutions to (S) are meant in the Carathéodory sense, that is, a function p = (p1, . . . , pN ), with pi : Ω →
[0, 1], is a solution of (S) if pi is continuously differentiable in Ω and p′

i is absolutely continuous in Ω ,
the differential equations in (S) are satisfied almost everywhere and p′

i(x) = 0 for all x ∈ ∂Ω , for every
i = 1, . . . , N . We stress that, since fi is defined on [0, 1], we implicitly assume that 0 ≤ pi(x) ≤ 1 for all
x ∈ Ω , for every i = 1, . . . , N .

Hypotheses (fi,∗) ensures that p = (p1, . . . , pN ) with either pi ≡ 0 or pi ≡ 1 for every i = 1, . . . , N , is
a (constant) trivial solution of (S). In the sequel, we call semitrivial a solution with pi ̸≡ 0 and pi ̸≡ 1 for
some i = 1, . . . , N , and fully nontrivial if pi ̸≡ 0 and pi ̸≡ 1 for every i = 1, . . . , N .

Our main result is the following.

Theorem 2.1. For i = 1, . . . , N , let wi : Ω ×RN−1 → R be an L1-Carathéodory function satisfying (wi,∗).
For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuously differentiable function satisfying (fi,∗) and (fi,0).
Then, there exist λ∗ > 0 such that the following holds: if λi > λ∗ for every i = 1, . . . , N , then there exist at
least 2N fully nontrivial solutions to (S). Moreover, there exist at least 4N − 2N semitrivial solutions to (S).

3. Abstract degree setting

This section presents the abstract setting of the coincidence degree in the framework of system (S) and
two crucial lemmas for the computation of the degree. In the following, for i = 1, . . . , N , we assume that
λi > 0, wi is an L1-Carathéodory function satisfying (wi,∗), fi ∈ C([0, 1]) satisfying (fi,∗).

As a first step, we extend the nonlinearities contained in (S) to the whole real line, by defining the
L1-Carathéodory function

h(x, ξ) = (h1(x, ξ), . . . , hN (x, ξ)), x ∈ Ω , ξ = (ξ1, . . . , ξN ) ∈ RN ,

where, for i = 1, . . . , N , we set

hi(x, ξ) =

⎧⎪⎨⎪⎩
−ξi, if ξi ≤ 0,
wi(x, ξ̂i)fi(ξi), if 0 ≤ ξi ≤ 1,
1 − ξi, if ξi ≥ 1,

x ∈ Ω , ξ ∈ RN ,

with ξ̂i = (ξ1, . . . , ξi−1, ξi+1, . . . , ξN ) ∈ RN−1.
In this manner, as a consequence of the weak maximum principle (based on a convexity argument), every

solution p of ⎧⎪⎨⎪⎩
p′′

i + λihi(x, p) = 0, in Ω ,
p′

i = 0, on ∂Ω ,
i = 1, . . . , N,

(H)

satisfies 0 ≤ pi(x) ≤ 1, for all x ∈ Ω (for i = 1, . . . , N), and thus solves (S).
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3.1. Operatorial formulation

We plan to exploit the coincidence degree theory introduced and developed by J. Mawhin (cf. [22–24]).
First of all, we aim to write system (H) as an operatorial equation of the form

Lp = Np, p ∈ dom L. (3.1)

As quite standard in the framework of Neumann boundary value problems, we define L : dom L → L1(Ω ,RN )
as the linear differential operator

(Lp)(x) = −p′′(x), x ∈ Ω ,

with
dom L =

{
p ∈ W 2,1(Ω ,RN ) : p′

i(ω) = p′
i(ω) = 0, i = 1, . . . , N

}
⊆ C(Ω ,RN ),

and N : C(Ω ,RN ) → L1(Ω ,RN ) as the Nemytskii operator induced by the function h, precisely

(Np)(x) = h(x, p(x)), x ∈ Ω .

We now recall the main features of coincidence degree theory which will be crucial in the sequel. Let

X =
N∏

i=1
Xi = C(Ω ,RN ) and Z =

N∏
i=1

Zi = L1(Ω ,RN ),

where, for i = 1, . . . , N , Xi = C(Ω) is the Banach space of continuous functions pi : Ω → R, endowed with
the sup-norm ∥pi∥∞ = maxx∈Ω |pi(x)|, and Zi = L1(Ω) is the Banach space of Lebesgue integrable functions
zi : Ω → R, endowed with the L1-norm ∥zi∥L1 =

∫
Ω

|zi(x)| dx. The spaces X and Z are endowed with the
standard norms.

For i = 1, . . . , N , let Li : dom Li → Zi be the i-th component of L = (L1, . . . , LN ), that is dom Li ={
pi ∈ W 2,1(Ω) : p′

i(ω) = p′
i(ω) = 0

}
⊆ Xi and Lipi = −p′′

i . We observe that ker Li ≡ R and cokerLi ≡ R
are made up of constant functions and

Im Li =
{

zi ∈ Zi :
∫
Ω

zi(x) dx = 0
}

.

We also define the projectors P : X → ker L and Q : Z → coker L with components

Pipi = 1
|Ω |

∫
Ω

pi(x) dx, Qizi = 1
|Ω |

∫
Ω

zi(x) dx, i = 1, . . . , N,

and the map K = (K1, . . . , KN ) : Im L → dom L ∩ ker P as the right inverse of L, namely, for i = 1, . . . , N ,
Ki associates to v ∈ L1(Ω) with

∫
Ω

v(x) dx = 0 the unique solution of p′′
i + v(x) = 0 with

∫
Ω

pi(x) dx = 0.
With the above position, one can show that p is a solution of (H) if and only if p satisfy the coincidence

equation (3.1). From Mawhin’s coincidence degree theory, it is standard to prove that (3.1) is equivalent to
the fixed point problem

p = Φ(p), p ∈ X,

where Φ = (Φ1, . . . ,ΦN ) : X → X is the completely continuous operator

Φ(p) = Pp + JQNp + K(IdZ − Q)Np, p ∈ X,

where J : coker L → ker L is the identity map.
Given an open and bounded set B ⊆ X such that

Lp ̸= Np, for all p ∈ ∂B ∩ dom L,
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the coincidence degree DL(L − N, B) of L and N in B is defined as

DL(L − N, B) = degLS(IdX − Φ, B, 0),

where “degLS” denotes the Leray–Schauder topological degree. The coincidence degree satisfies all the usual
properties of Brouwer’s and Leray–Schauder degrees, like additivity/excision and homotopic invariance
properties. In particular, Eq. (3.1) has at least a solution in B if DL(L − N, B) ̸= 0. For a more detailed
discussion, we refer to [22–24].

3.2. Technical degree lemmas

We present two lemmas for the computation of the coincidence degree on open bounded sets of the form

BI
d =

N∏
i=1

Bi, with d = (d1, . . . , dN ) ∈ ]0, 1[N ,

where I ⊆ {1, . . . , N} is a set of indices and

Bi =

⎧⎨⎩ B(0, di), if i /∈ I,

Udi,Ii
=

{
pi ∈ Xi : ∥pi∥∞ < 1, max

x∈Ii

|pi(x)| < di

}
, if i ∈ I,

denoting with B(0, di) the open ball in Xi with centre 0 and radius di, and recalling the interval Ii introduced
in hypothesis (wi,∗).

The first lemma presents sufficient conditions for zero degree.

Lemma 3.1. For i = 1, . . . , N , let wi : Ω × RN−1 → R be an L1-Carathéodory function satisfying (wi,∗).
For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuous function satisfying (fi,∗). Let I ⊆ {1, . . . , N} with
I ̸= ∅, d = (d1, . . . , dN ) ∈ ]0, 1[N , and assume that there exists v = (v1, . . . , vN ) ∈ L1(Ω ,RN ), with v ̸≡ 0
and vi ≥ 0, such that the following two properties hold:

(H1) If µ ≥ 0 and p is a solution of⎧⎪⎨⎪⎩
p′′

i + λiwi(x, p̂i)fi(pi) + µvi(x) = 0, in Ω ,
p′

i = 0, on ∂Ω ,
i = 1, . . . , N,

(3.2)

then

∥pi∥∞ ̸= di, for all i ∈ {1, . . . , N} \ I,
max
x∈Ii

|pi(x)| ≠ di, for all i ∈ I.

(H2) There exists µ0 ≥ 0 such that problem (3.2), with µ = µ0, has no solution p with

∥pi∥∞ ≤ di, for all i ∈ {1, . . . , N} \ I,
max
x∈Ii

|pi(x)| ≤ di, for all i ∈ I.

Then, it holds that DL(L − N, BI
d ) = 0.
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Proof. Let I ⊆ {1, . . . , N} with I ≠ ∅ and d = (d1, . . . , dN ) ∈ ]0, 1[N . Let v = (v1, . . . , vN ) ∈ L1(Ω ,RN ),
with v ̸≡ 0, be such that hypotheses (H1) and (H2) hold.

We study the parameter-dependent problem⎧⎪⎨⎪⎩
p′′

i + hi(x, p) + µvi(x) = 0, in Ω ,
p′

i = 0, on ∂Ω ,
i = 1, . . . , N,

(3.3)

for µ ≥ 0, which can be equivalently written as a coincidence equation in the space X

Lp = Np + µv, p ∈ dom L.

We notice that if p = (p1, . . . , pN ) is a solution of (3.3), then the weak maximum principle ensures that
0 ≤ pi(x) ≤ 1 for all x ∈ Ω , for every i = 1, . . . , N , and, indeed, p solves (3.2).

We first observe that ∥pi∥∞ < 1 for every pi ∈ ∂Udi,Ii
, for every i ∈ I, due the uniqueness of the

solution of the Cauchy problem associated with the i-th equation in (3.3). Therefore, by condition (H1),
the coincidence degree DL(L − N − µv, BI

d ) is well-defined for every µ ≥ 0. Now, using µ as a homotopy
parameter and exploiting the homotopy invariance property of the coincidence degree, we have that

DL(L − N, BI
d ) = DL(L − N − µ0v, BI

d ) = 0,

where the last equality follows from (H2). This concludes the proof. □

The second lemma states a sufficient condition for non-zero degree in

B∅
d = B(0, d1) × · · · × B(0, dN ) ⊆ X, with d = (d1, . . . , dN ) ∈ ]0, 1[N ,

namely in a Cartesian product of open balls in C(Ω). We recall that

∂B∅
d =

N⋃
i=1

(
B(0, d1) × · · · × B(0, di−1) × ∂B(0, di) × B(0, di+1) . . . × B(0, dN )

)
.

Lemma 3.2. For i = 1, . . . , N , let wi : Ω×RN−1 → R be an L1-Carathéodory function satisfying (wi,∗). For
i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuous function satisfying (fi,∗). Let d = (d1, . . . , dN ) ∈ ]0, 1[N

and assume that the following property holds.

(H3) If ϑ ∈ ]0, 1] and p is a solution of⎧⎪⎨⎪⎩
p′′

i + ϑλiwi(x, p̂i)fi(pi) = 0, in Ω ,
p′

i = 0, on ∂Ω ,
i = 1, . . . , N,

(3.4)

then ∥pi∥∞ ̸= di, for all i ∈ {1, . . . , N}.

Then, it holds that DL(L − N, B∅
d) = 1.

Proof. Let d = (d1, . . . , dN ) ∈ ]0, 1[N . As a first step, we show that

Lp ̸= ϑNp, for all p ∈ ∂B∅
d ∩ dom L and ϑ ∈ ]0, 1].

Indeed, if p ∈ B∅
d ∩ dom L is a solution to Lp = ϑNp for some ϑ ∈ ]0, 1], then p solves⎧⎪⎨⎪⎩

p′′
i + ϑhi(x, p) = 0, in Ω ,

p′
i = 0, on ∂Ω ,

i = 1, . . . , N.
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By the weak maximum principle, we find that 0 ≤ pi(x) ≤ 1 for all x ∈ Ω and, indeed, p solves (3.4). By
condition (H3), we deduce that p /∈ ∂B∅

d and hence the claim is proved.
As a second step, we deal with the case ϑ = 0. We consider the operator QN in ker L ≡ RN , namely

QNp = 1
|Ω |

∫
Ω

h(x, ξ) dx, p ≡ ξ ∈ RN .

We introduce the map h# = (h#
1 , . . . , h#

N ) : RN → RN defined, for i = 1, . . . , N , by

h#
i (ξ) = 1

|Ω |

∫
Ω

hi(x, ξ) dx =

⎧⎪⎪⎨⎪⎪⎩
−ξi, if ξi ≤ 0,

λi

(
1

|Ω |

∫
Ω

wi(x, ξ̂i) dx

)
fi(ξi), if 0 ≤ ξi ≤ 1,

1 − ξi, if ξi ≥ 1.

Hence QNξ = h#(ξ) for all ξ ∈ RN . By condition (wi,∗), for i = 1, . . . , N , we have∫
Ω

wi(x, ξ̂) dx ≤
∫
Ω

βi(x) dx < 0, for all ξ̂ ∈ [0, 1]N−1,

and thus
⟨h#(ξ), ξ⟩ < 0, for all ξ ∈ RN with ξi ̸= 0, ξi ̸= 1, for every i = 1, . . . , N . (3.5)

As a direct consequence, h# has no zeros on

∂(B∅
d ∩ RN ) =

N⋃
i=1

(
[−d1, d1] × · · · × [−di−1, di−1] × {±di} × [−di+1, di+1] × · · · × [−dN , dN ]

)
,

and therefore QNp ̸= 0 for all p ∈ ∂B∅
d ∩ ker L.

An application of Mawhin’s continuation theorem (see [25]) ensures that

DL(L − N, B∅
d) = degB(−QN, B∅

d ∩ ker L, 0) = degB(−h#, B∅
d ∩ RN , 0),

where “degB” denotes Brouwer’s topological degree.
Finally, from (3.5) we deduce that Brouwer’s degree of −h# in B∅

d ∩ ker L is 1. This fact can be
straightforwardly verified by considering the homotopy given by a convex combination with the identity
map. □

4. Proof of the main result

The section presents the proof of Theorem 2.1. First, we prove some preliminary lemmas. Then, we can
give the proof which is based on the coincidence degree theory illustrated in Section 3.

4.1. Preliminary lemmas

The following three lemmas give some estimates for the solutions of the homotopic parameter dependent
systems associated with (S) introduced in Section 3.2.

Lemma 4.1. For i = 1, . . . , N , let wi : Ω × RN−1 → R be an L1-Carathéodory function satisfying (wi,∗).
For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuous function satisfying (fi,∗). Let v = (v1, . . . , vN ) ∈
L1(Ω ,RN ), with vi ≥ 0, for every i = 1, . . . , N . Let k ∈ {1, . . . , N}. For every ρ ∈ ]0, 1[, there exists
λ∗

k = λ∗
k(ρ) > 0 such that, for every λk > λ∗

k, λi > 0 for i ̸= k and µ ≥ 0, there is no solution p = (p1, . . . , pN )
of {

p′′
i + λiwi(x, p̂i)fi(pi) + µvi(x) = 0, in Ω ,

i = 1, . . . , N,
(4.1)

such that maxx∈Ik
pk(x) = ρ.
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Proof. For simplicity, for i = 1, . . . , N , we set Ii = [σi, τi]. Let k ∈ {1, . . . , N} be fixed. Let ε > 0 with
ε < (τk − σk)/2, and satisfying

∫ τk−ε

σk+ε
αk(x) dx > 0.

Let ρ ∈ ]0, 1[. We fix µ ≥ 0 and suppose by contradiction that p is a solution of (4.1) such that
maxx∈Ik

pk(x) = ρ. Hypothesis (wk,∗) ensures that pk is concave on Ik. As a consequence, we have

pk(x) ≥ ρ

τk − σk
min

{
x − σk, τk − x

}
≥ ερ

|Ik|
, for all x ∈ Ik,

(cf. [26, p. 420] for a similar estimate). Moreover, since p′
k is non-decreasing in Ik, by integrating we have

that
|p′

k(x)| ≤ pk(x)
ε

≤ ρ

ε
, for all x ∈ [σk + ε, τk − ε].

We define

ηε,ρ = min
{

fk(s) : ερ

|Ik|
≤ s ≤ ρ

}
.

We integrate the k-th equation in (4.1) on [σk + ε, τk − ε] and we use the above estimates to obtain

λkηε,ρ

∫ τk−ε

σk+ε

αk(x) dx ≤ λk

∫ τk−ε

σk+ε

wi(x, p̂k(x))fk(pk(x)) dx

=
∫ τk−ε

σk+ε

(−p′′
k(x) − µvk(x)) dx ≤

∫ τk−ε

σk+ε

−p′′
k(x) dx

= p′
k(σk + ε) − p′

k(τk − ε) ≤ 2ρ

ε
.

Finally, setting
λ∗

k = λ∗
k(ρ) = 2ρ

εηε,ρ

∫ τk−ε

σk+ε
αk(x) dx

and taking λk > λ∗
k, we conclude that there is no solution p of (4.1) with maxx∈Ik

pk(x) = ρ. □

Lemma 4.2. For i = 1, . . . , N , let wi : Ω × RN−1 → R be an L1-Carathéodory function satisfying (wi,∗).
For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuously differentiable function satisfying (fi,∗) and (fi,0).
Let λi > 0, for i = 1, . . . , N . For every k ∈ {1, . . . , N} there exists rk ∈ ]0, 1[ such that for all ϑ ∈ ]0, 1] every
solution p = (p1, . . . , pN ) of (3.4) with ∥pk∥∞ ≤ rk satisfies pk(x) = 0 for all x ∈ Ω .

Proof. Let k ∈ {1, . . . , N} be fixed. By contradiction, we assume that there exists a sequence (pn)n of
solutions of (3.4) for ϑ = ϑn ∈ ]0, 1], with pn = (pn

1 , . . . , pn
N ) such that 0 < ∥pn

k ∥∞ = rn → 0 as n → ∞.
Setting

zn
i (x) = (pn

i )′(x)
ϑnfi(pn

i (x)) , x ∈ Ω , for i = 1, . . . , N , (4.2)

we deduce that
(zn

i )′(x) = (pn
i )′′(x)ϑnfi(pn

i (x)) − ϑnf ′
i(pn

i (x))((pn
i )′(x))2

(ϑn)2fi(pn
i (x))2

= −λiwi(x, p̂n
i(x)) − ϑnf ′

i(pn
i (x))(zn

i (x))2,

(4.3)

for almost every x ∈ Ω , and
zn

i (ω) = zn
i (ω) = 0,

since pn
i satisfies the Neumann boundary conditions on ∂Ω .

Let γk = λk max{|αk|, |βk|}. We fix M > ∥γk∥L1 and then δ ∈ R with

0 < δ <
M − ∥γk∥L1

|Ω |M2 . (4.4)
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By condition (fk,0) we can fix µk ∈ ]0, 1[ such that |f ′
k(s)| ≤ δ, for all s ∈ [0, µk]. We notice that

0 < pn
k (x) < µk on Ω , for n sufficiently large. We claim that

∥zn
k ∥∞ ≤ M. (4.5)

Indeed, if by contradiction we suppose that this is not true, then, since zn
k (ω) = 0, we consider the maximal

interval of the form [ω, νn] such that |zn
k (x)| ≤ M for all x ∈ [ω, νn] and |zn

k (x)| > M for some x ∈ ]νn, ω[.
By the maximality of the interval and the continuity of zn

k , we also know that |zn
k (νn)| = M . Integrating

(4.3) on [ω, νn] and passing to the absolute value, we obtain

M = |zn
k (νn)| = |zn

k (νn) − zn
k (ω)| ≤

⏐⏐⏐∫ νn

ω

f ′
k(pn

k (x))(zn
k (x))2 dx

⏐⏐⏐ + ϑn∥γk∥L1

≤ δM2|νn − ω| + ∥γk∥L1 ≤ δM2|Ω | + ∥γk∥L1 ,

a contradiction with the choice of δ in (4.4). In this manner, we have verified that (4.5) is true.
Now, integrating (4.3) on Ω and using (4.5), we obtain that

0 < −λk

∫
Ω

βk(x) dx ≤ −λk

∫
Ω

wk(x, p̂n
k(x)) dx = ϑn

∫
Ω

f ′
k(pn

k (x))(zn
k (x))2 dx ≤ M2|Ω | max

0≤s≤rn
|f ′

k(s)|

holds for every n sufficiently large. Using the continuity of f ′
k at 0+, we get a contradiction, as n → ∞. □

Lemma 4.3. For i = 1, . . . , N , let wi : Ω × RN−1 → R be an L1-Carathéodory function satisfying (wi,∗).
For i = 1, . . . , N , let fi : [0, 1] → [0, +∞[ be a continuously differentiable function satisfying (fi,∗). Let λi > 0,
for i = 1, . . . , N . For every k ∈ {1, . . . , N} there exists Rk ∈ ]0, 1[ such that for all ϑ ∈ ]0, 1] every solution
p = (p1, . . . , pN ) of (3.4) satisfies ∥pk∥∞ < Rk.

Proof. Let k ∈ {1, . . . , N} be fixed. By contradiction, we assume that there exists a sequence (pn)n of
solutions of (3.4) for ϑ = ϑn ∈ ]0, 1], with pn = (pn

1 , . . . , pn
N ) such that 0 < ∥pn

k ∥∞ = Rn → 1− as n → ∞.
As a first step, we claim that pn

k → 1 uniformly as n → ∞. By the uniqueness of the solution of the Cauchy
problem associated with the k-th equation in (3.4), since pn

k ̸≡ 1, we notice that (1−pn
k (x))2+((pn

k )′(x))2 > 0
for all x ∈ Ω . Since fk ∈ C1([0, 1]), we can fix a constant C > 0 such that fk(s) ≤ C(1−s) for every s ∈ [0, 1].
Let γk = λk max{|αk|, |βk|}. Therefore, we have⏐⏐⏐⏐ d

dx
log

(
(1 − pn

k (x))2 + ((pn
k )′(x))2)⏐⏐⏐⏐

=
⏐⏐⏐⏐−2 (1 − pn

k (x))(pn
k )′(x) + ϑnλkwk(x, p̂n

k(x))(pn
k )′(x)fk(pn

k (x))
(1 − pn

k (x))2 + ((pn
k )′(x))2

⏐⏐⏐⏐
≤ 2(1 − pn

k (x))|(pn
k )′(x)| + γk(x)|(pn

k )′(x)|fk(pn
k (x))

(1 − pn
k (x))2 + ((pn

k )′(x))2

≤ (1 + Cγk(x)) 2(1 − pn
k (x))|(pn

k )′(x)|
(1 − pn

k (x))2 + ((pn
k )′(x))2

≤ 1 + Cγk(x), for all x ∈ Ω .

Let x̄n ∈ Ω be such that pn
k (x̄n) = Rn. Hence, by an integration of the above inequality from x̄n to an

arbitrary x ∈ Ω , we have
log (1 − pn

k (x))2 + ((pn
k )′(x))2

(1 − Rn)2 ≤ |Ω | + C∥γk∥L1

and so we deduce
(1 − pn

k (x))2 + ((pn
k )′(x))2 ≤ (1 − Rn)2e|Ω|+C∥γk∥

L1 ,
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for all x ∈ Ω . The claim is thus proved since Rn → 1− as n → ∞.
As in Lemma 4.2 we perform the change of variable (4.2) and we integrate (4.3) on Ω , obtaining

0 < −λk

∫
Ω

βk(x) dx ≤ ϑn

∫
Ω

f ′
k(pn

k (x))(zn
k (x))2 dx. (4.6)

If f ′
k(1) < 0, then f ′

k(s) < 0 for every s in a left neighbourhood of 1 and a contradiction follows from (4.6)
since pn

k → 1 uniformly as n → ∞. On the other hand, if f ′
k(1) = 0, by arguing as in Lemma 4.2, the

sequence (zn
k )n is uniformly bounded, f ′

k(pn
k ) → 0 uniformly as n → ∞, and a contradiction is reached from

(4.6). □

4.2. Proof of Theorem 2.1

Let ρ ∈ ]0, 1[ be arbitrarily fixed. For every i = 1, . . . , N , let λ∗
i = λ∗

i (ρ) > 0 be the constant given by
Lemma 4.1. Then, we define

λ∗ = max
i=1,...,N

λ∗
i

and fix
λi > λ∗, for every i = 1, . . . , N .

Next, we apply Lemmas 4.2 and 4.3, obtaining 2N constants ri, Ri ∈ ]0, 1[. Without loss of generality we
assume 0 < ri < ρ < Ri < 1, for every i = 1, . . . , N . Then, we define

r = min
i=1,...,N

ri and R = max
i=1,...,N

Ri,

and so have 0 < r < ρ < R < 1.
We are going to compute the coincidence degrees of L and N in the open sets

BI
d =

N∏
i=1

Bi, with d = (d1, . . . , dN ) ∈ ]0, 1[N ,

where I ⊆ {1, . . . , N} is a subset of indices, di ∈ {r, R} if i ∈ {1, . . . , N} \ I, di = ρ if i ∈ I, and

Bi =
{

B(0, di), if i /∈ I
Uρ,Ii

, if i ∈ I.

Precisely, we prove that

DL(L − N, BI
d ) =

{
1, if I = ∅,
0, if I ≠ ∅.

(4.7)

Firstly, we consider the set B∅
d with di ∈ {r, R} for every index i = 1, . . . , N . We are going to verify that

condition (H3) of Lemma 3.2 is satisfied. Let ϑ ∈ ]0, 1] and suppose, by contradiction, that p = (p1, . . . , pN )
is a solution of (3.4) such that at least one of the following cases occurs:

• there exists an index k ∈ {1, . . . , N} such that ∥pk∥∞ = r,
• there exists an index k ∈ {1, . . . , N} such that ∥pk∥∞ = R.

In the first case, an application of Lemma 4.2 gives that pk(x) = 0 for all x ∈ Ω , and thus a contradiction.
The second case contradicts Lemma 4.3.

Secondly, we consider the set BI
d with I ̸= ∅. We are going to verify conditions (H1) and (H2) of

Lemma 3.1, with the choice v = (v1, . . . , vN ) where vi ≡ 0 if i /∈ I and vi ≡ 1 if i ∈ I. Let ϑ ∈ ]0, 1].
In order to verify condition (H2) we suppose, by contradiction, that p = (p1, . . . , pN ) is a solution of (3.4)
such that at least one of the following cases occurs:
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• there exists an index k ∈ {1, . . . , N} \ I such that ∥pk∥∞ = r,
• there exists an index k ∈ I such that maxx∈Ik

|pk(x)| = ρ,
• there exists an index k ∈ {1, . . . , N} \ I such that ∥pk∥∞ = R.

A contradiction is obtained by applying Lemma 4.2 or Lemma 4.3 (with ϑ = 1) if k /∈ I and Lemma 4.1 if
k ∈ I. Next, we integrate the k-th equation in (3.2) and pass to the absolute value to obtain

µ|Ω | ≤ ∥γk∥L1 max
s∈[0,1]

fk(s), with γk = λk max{|αk|, |βk|}.

Therefore, condition (H3) follows for µ0 = max{∥γi∥L1 maxs∈[0,1] fi(s)/|Ω | : i = 1, . . . , N}.
Having proved that formula (4.7) holds, for I, J ⊆ {1, . . . , N} with I ∩ J = ∅, we introduce the sets

AI,J =
N∏

i=1
Ai,

where

Ai =

⎧⎪⎨⎪⎩
B(0, r), if i ∈ {1, . . . , N} \ (I ∪ J ),
Uρ,Ii

\ B(0, r), if i ∈ I,
B(0, R) \ Uρ,Ii

, if i ∈ J .

The sets AI,J are Cartesian products of “annuli” in C(Ω), are pairwise disjoint, and, considering all the
possible choices of I and J , their number is 3N .

As a consequence of a powerful combinatorial argument illustrated in [10, Appendix A.1] and exploited
in a different framework in the same paper, from (4.7) and the additivity property of the degree we deduce
that

DL(L − N, AI,J ) = (−1)#I . (4.8)

We refer to Remark 4.1 for the explicit derivation of (4.8) in the case N = 2.
Formula (4.8) and the existence property of the coincidence degree imply that in each of the sets of the

form AI,J there exists a solution p = (p1, . . . , pN ) of (H). We observe that, by the maximum principle, it
holds that pi(x) ≥ 0 for all x ∈ Ω , for every i = 1, . . . , N , and, moreover, by the definition of AI,J , we
clearly have pi(x) < 1 for all x ∈ Ω , for every i = 1, . . . , N . Hence, p is a solution of (S).

As a final step, we distinguish between constant solutions, semitrivial solutions and fully nontrivial
solutions. We remark that if I ∪ J = {1, . . . , N} then Ai is the set Uρ,Ii

\ B(0, r) or the set B(0, R) \ Uρ,Ii
,

for every i = 1, . . . , N . In such a situation, the solution p in AI,J is such that 0 < r < ∥pi∥∞ < R, for every
i = 1, . . . , N . Now, the uniqueness of the constant zero solution for the Cauchy problem associated with (S)
is ensured by the fact that the functions fi are of class C1; therefore, by the strong maximum principle, we
deduce that p is a fully nontrivial solution of (S). The number of partitions of {1, . . . , N} in two sets I, J
with I ∩ J = ∅ and I ∪ J = {1, . . . , N} is 2N , since, for every i = 1, . . . , N , we have two choices

• r < maxx∈Ii
|pi(x)| < ρ,

• ρ < maxx∈Ii
|pi(x)| < R.

In conclusion, there are 2N fully nontrivial solutions of (S).
In order to count the trivial and semitrivial solutions we define a correspondence between solutions of

(S) and finite strings on an alphabet A = {0, s, ℓ, 1} of four symbols. Precisely, we claim that, given a finite
string Σ = (S1, . . . , SN ) ∈ {0, s, ℓ, 1}N of length N , we can associate to Σ a solution p = (p1, . . . , pN ) of (S)
such that

(i) pi = 0, if Si = 0;
(ii) r < maxx∈Ii

|pi(x)| < ρ, if Si = s;
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(iii) ρ < maxx∈Ii
|pi(x)| < R, if Si = ℓ;

(iv) pi = 1, if Si = 1.

for every i = 1, . . . , N . Firstly, the strings Σ ∈ {0, 1}N are, by (i) and (iv), in bijection with the 2N

trivial solutions. Secondly, we observe that the 2N strings Σ ∈ {s, ℓ}N correspond to distinct fully nontrivial
solutions and that the associated solution satisfying conditions (ii) and (iii) is provided by the topological
argument above in the set AI,J with I = {i : Si = s} and J = {i : Si = ℓ}. To conclude, we consider the
strings Σ ∈ {0, s, ℓ, 1} with Si ∈ {0, 1} for i ∈ K, with ∅ ≠ K ̸= {1, . . . , N}. Each of these strings can be
associated to a distinct semitrivial solution as follows. We fix the components pi with i ∈ K following the
rules (i) and (iv) and replace them in (S), obtaining a simpler system of the same form and properties, but
with only N − |K| equations. Then, we apply our topological argument to the reduced system to obtain the
nontrivial components pi, i /∈ K, of the semitrivial solution corresponding to Σ , all of them satisfying (ii)
and (iii).

Hence, we have shown the existence of 4N − 2N solutions of (S), of which 2N fully nontrivial. □

Remark 4.1. In order to clarify the derivation of formula (4.8), we now give the direct computation of
the degree in the case N = 2, without using the combinatorial argument developed in [10]. As an example
we compute the degree in A∅,{1}. Starting from

A∅,{1} =
(
B(0, R) × B(0, r)

)
\

(
A∅,∅ ∪ A{1},∅

)
, (4.9)

our goal is to apply the additivity property of the coincidence degree. Accordingly we first compute
DL(L − N, A∅,∅) and DL(L − N, A{1},∅). Since A∅,∅ = B(0, r) × B(0, r), formula (4.7) implies that

DL(L − N, A∅,∅) = 1.

Next, we observe that A{1},∅ =
(
Uρ,I1 × B(0, r)

)
\ A∅,∅. From formula (4.7) and the excision property of the

degree (noticing that there are no solutions of (S) on the boundary of the sets A∅,∅ and A{1},∅, as already
shown) we obtain

DL(L − N, A{1},∅) = DL(L − N, Uρ,I1 × B(0, r)) − DL(L − N, A∅,∅) = −1.

As a final step, arguing as above, from (4.9) and the additivity of the degree, we have

DL(L − N, A∅,{1}) = DL(L − N, B(0, R) × B(0, r)) − DL(L − N, A∅,∅) − DL(L − N, A{1},∅)
= 1 − 1 − (−1) = 1.

Proceeding as above, one can obtain the values of the degree in all the remaining sets of the form AI,J ,
namely

DL(L − N, A{2},∅) = −1, DL(L − N, A{1,2},∅) = 1,

DL(L − N, A{1},{2}) = −1, DL(L − N, A{2},{1}) = −1,

DL(L − N, A∅,{2}) = 1, DL(L − N, A∅,{1,2}) = 1.

The four fully nontrivial solutions are contained in the sets A{1},{2}, A{2},{1}, A{1,2},∅, A∅,{1,2}.
For a general integer N one can prove formula (4.8) using the combinatorial argument in [10] or by

induction using the excision property of the degree. ◁

Remark 4.2. From the proof, one can observe that Theorem 2.1 is still valid if the nonlinearities fi are
assumed to be only continuous in [0, 1], and continuously differentiable in a right neighbourhood of s = 0
and in a left neighbourhood of s = 1. ◁
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5. Application to selection–migration models in population genetics

In this section we show how our abstract result applies to a selection–migration model in population
genetics (cf. [27,28]). In order to gradually introduce our motivating model, discussed in Section 5.2, we first
briefly recall the basics of selection–migration models, and then, in Section 5.1, revise the case of a diploid
population with selection only at one locus.

We study the continuous distribution of a given trait of a population on a bounded habitat, that we
denote by Ω . The evolution of the state of the population is guided by two main mechanisms: dispersal in
the habitat and competition between genotypes. Let us therefore denote by p = p(t, x) : R × Ω → [0, 1] the
frequency of a trait a at time t and position x. The evolution of the population is described by the nonlinear
reaction–diffusion equation:

∂p

∂t
= κ(x)

λ
∆p + F (x, p). (5.1)

The Laplacian ∆ describes the dispersal of the population, weighted by a coefficient κ(x) > κ0 > 0. The
parameter λ > 0 controls the ratio between the rates of selection and diffusion. The term F (x, p) accounts
for the selection on the traits and can be expressed in the form

F (x, p) = p(ra(x) − r̄(x, p)), (5.2)

where ra is the fitness of the trait and r̄ is the average fitness of the population, both taken at x. In other
words, ra − r̄ is the relative fitness of the trait. We observe that

F (x, 0) = F (x, 1) = 0.

This property means that if a trait is absent in the population, it will remain so; indeed, we assume no
mutation, nor constant immigration rate from an external environment. As we will derive in the models we
discuss below, in some circumstances it can be observed that the term F (x, p) is factorised in the following
way

F (x, p) = ω(x)f(p). (5.3)
The factor ω(x) describes whether there is a competitive advantage (ω(x) > 0) or disadvantage (ω(x) < 0)
for the trait with respect to the population in a specific place x of the habitat. The factor f(p) describes the
frequency-dependent effects on the selection.

Moreover, since we consider bounded habitats Ω , we impose the condition of zero normal derivative at
the boundary

∂p

∂ν
= 0, on ∂Ω , (5.4)

meaning that there is no population flow at the boundary into or out of the habitat.
The most famous case of Eq. (5.1) is Fisher’s equation, corresponding to constant ω(x) = ω and κ(x) = κ,

and f(p) = p(1 − p). In the framework above, it corresponds to the competition between two types a and A

with constant fitnesses ra and rA, so that, by (5.2),

F (x, p) = p
[
ra − pra − (1 − p)rA

]
= p(1 − p)(ra − rA).

We restrict our analysis to the case of a one-dimensional habitat. Our interest is focused on the search of
stationary solutions for (5.1), corresponding to the solutions of

p′′ + λ
ω(x)
κ(x) f(p) = 0

with the boundary condition (5.4). In particular, we are interested in fully nontrivial solutions, meaning
that 0 < p < 1, corresponding to steady states for the population where the two traits coexist. Such
solutions are often called clines. Indeed, the main motivation of the models we consider in the following is to
investigate how a heterogeneous habitat (i.e. a sign-changing ω(x)) can be a mechanism for the preservation
of polymorphism in the population.
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5.1. Diploid population with selection at one locus

We now extend our discussion to the case of a diploid population with two alleles a and A (cf. [29]). Hence
we consider not any longer the frequency of a trait, but instead the frequency of the allele a in the population,
which we denote by p. We assume random mating and that the allele frequencies are at equilibrium, so that
the genotype distribution follows Hardy–Weinberg law. We denote the fitness of the genotypes as

aa Aa AA

raa(x) rAa(x) rAA(x)

and hence, recalling that aa-individuals account for two copies of the allele a in the genetic pool, we replace
(5.2) by

F (x, p) = 2p2(raa(x) − r̄(x, p)) + 2p(1 − p)(rAa(x) − r̄(x, p)), (5.5)

where
r̄(x, p) = p2raa(x) + 2p(1 − p)rAa(x) + (1 − p)2rAA(x).

Often it is assumed that rAa(x) can be expressed in terms of the other two rates using a parameter h,
according to

rAa(x) = raa(x) + rAA(x)
2 + h

raa(x) − rAA(x)
2 ,

which gives f(p) = p(1−p)(1+h−2hp), cf. [29]. In this framework, two specific situations are remarkable. The
first one is the case when rAa(x) = 1

2 (raa(x) + rAA(x)), i.e. h = 0, which is equivalent to a space dependent
Fisher’s equation. The second remarkable case occurs when we have complete dominance of an allele, which
without loss of generality we assume to be A. In other words, we have rAa(x) = rAA(x), i.e. h = −1. In this
case a straightforward computation shows that F (x, p) can be expressed in the form (5.3) with

f(p) = p2(1 − p), ω(x) = 2(raa(x) − rAA(x)).

As in the previous case, we are interested in mechanisms for the coexistence of the two alleles in the
population. The simpler one is heterosis, namely assuming the heterozygote is fitter than either homozygote
(rAa > raa and rAa > rAA). We are however interested in situations where polymorphism is preserved by the
combination of migration and selection, and not by selection alone. Following Fleming [29] and Henry [30] the
classical approach to study such a situation is to assume that F is of the form (5.3) where f is a C1-function
satisfying

f(0) = f(1) = 0, f ′(0) > 0 > f ′(1), f(s) > 0, for all s ∈ ]0, 1[, (5.6)

whereas ω(x) is sign-changing. This framework covers the cases corresponding to h ∈ ]−1, 1[ and has been
extensively studied, showing different behaviour according to the sign of the average of ω(x). We mention
for instance [31–33] and refer to [34,35] for recent surveys.

However (5.6) leaves out the case of complete dominance h = −1, where we have f ′(0) = 0 (or f ′(1) = 0,
if we consider the symmetric case h = 1), which is indeed the superlinear framework we introduced with
conditions (fi,∗) and (fi,0).

Such a superlinear behaviour in the origin has proven to be suitable to the application of analytical
tools. Within the standing assumptions, it has been shown that in an overall hostile environment (ω(x)
with negative average) with a sufficiently intense selection (λ large) we have at least two nontrivial
solutions [36,37]. Moreover, using topological degree [36] or shooting methods [11,38], the existence of
multiple disconnected patches of favourable habitat (i.e. the existence of multiple disjoint subintervals of Ω
where ω(x) is positive) produces an increasingly large number of clines. In the specific case f(p) = p2(1 − p)
some stability results for the clines have also been obtained [39].
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5.2. Diploid population with selection at two loci

We now extend the previous scenario to a multilocus model. Therefore, we have to discuss first in
which way we expect the state at one locus to influence the evolution at the other one. One possibility
considered in literature to couple the selection processes at the two (or more) loci is linkage disequilibrium.
It has been shown that linkage disequilibrium produces a steepening of the cline [40,41] and that such
deviation by a Hardy–Weinberg distribution has little evolutionary significance [42]. We also mention [43]
for stability results. In all these works linkage disequilibrium is the only coupling effect, since additivity of
the fitnesses of the two loci is assumed (namely, the effects on the fitness of the individual produced by
the genotypes at different loci are independent of each other). Our approach is complementary. We assume
linkage equilibrium, but allow general non-additive interactions between the fitnesses of the genotypes at
different loci. In simpler words, we assume that genotypes at different loci may produce a combined effect
on the fitness of the individual is greater than the sum of their single effects. A general treatment of this case
in the weak-selection limit (hence neglecting the spatial dependence) has been recently presented in [44].

In more details, we consider a diploid population with two alleles a and A at one locus and other two
alleles b and B at another locus. We assume complete dominance at both loci, with the alleles a and b being
the recessive ones. We denote by p and q the frequencies of the alleles a and b in the population. We assume
random mating, linkage equilibrium between the two loci, and that the allele frequencies are at equilibrium,
so that Hardy–Weinberg law applies independently to each locus, namely

genotype
frequency aa Aa AA

bb p2q2 2p(1 − p)q2 (1 − p)2q2

Bb 2p2q(1 − q) 4p(1 − p)q(1 − q) 2(1 − p)2q(1 − q)

BB p2(1 − q)2 2p(1 − p)(1 − q)2 (1 − p)2(1 − q)2

Recalling that with dominance at both loci we have only four possible phenotypes, we denote the fitness of
the genotypes as

genotype
fitness aa Aa AA

bb rab(x) rAb(x) rAb(x)

Bb raB(x) rAB(x) rAB(x)

BB raB(x) rAB(x) rAB(x)

(to simplify the notation in the subscripts, we are using a lowercase letter when the recessive allele is
expressed, and an uppercase one when the dominant is expressed).

We remark that in general one may expect several kinds of epistatic effects on the two loci, so that all the
nine entries of the table above may be independent from each other. However, a direct computation shows
that the situations we are considering are the unique ones in which the fitnesses of the allele a and b are of
the form (5.3) with the function f presenting a superlinear behaviour at zero. As for the extensively studied
one-locus case discussed above, we expect the analysis of the linear case to require a different toolkit, which
is outside of the purposes of this paper.

We also point out that the situation we consider still provides a genuine case of epistatic effect on the
fitnesses. Indeed, linearity in fitness, which mathematically corresponds to two uncoupled equations, requires
the additional assumption rab + rAB = rAb + raB .

Proceeding analogously to (5.5) for both alleles, and recalling that the fitness of an allele depends also by
the allele distribution in the other locus, we can recover the fitnesses of the alleles a and b, namely

Fa(x, p, q) = 2
[
q2(

rab(x) − rAb(x) − raB(x) + rAB(x)
)
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+ raB(x) − rAB(x)
]
p2(1 − p),

Fb(x, p, q) = 2
[
p2(

rab(x) − rAb(x) − raB(x) + rAB(x)
)

+ rAb(x) − rAB(x)
]
q2(1 − q).

Let us write

ωab(x) = rab(x) − rAb(x), ωaB(x) = raB(x) − rAB(x),
ωba(x) = rab(x) − raB(x), ωbA(x) = rAb(x) − rAB(x).

This means, for instance, that ωaB measures the advantage (if positive) or disadvantage (if negative) of the
homozygous-recessive aa versus the homozygous-dominant AA (or equivalently versus the heterozygous Aa)
when they are both expressed coupled with the homozygous BB (or equivalently with the heterozygous Bb).
We also set

f(s) = 2s2(1 − s). (5.7)

Writing

wp(x, q) = q2ωab(x) + (1 − q2)ωaB(x)
κ(x) ,

wq(x, p) = p2ωba(x) + (1 − p2)ωbA(x)
κ(x) .

the steady states of the population correspond to the solutions of the Neumann problem associated with the
system ⎧⎨⎩ p′′ + λ wp(x, q)f(p) = 0,

q′′ + λ wq(x, p) f(q) = 0.
(5.8)

Let us define

αa(x) = min{ωab(x), ωaB(x)}
κ(x) , βa(x) = max{ωab(x), ωaB(x)}

κ(x) ,

αb(x) = min{ωba(x), ωbA(x)}
κ(x) , βb(x) = max{ωba(x), ωbA(x)}

κ(x) ,

In order to satisfy (wi,∗), for i = p, q, we require:

(j) there exists two intervals Ip, Iq ⊆ Ω such that αa(x) > 0 for every x ∈ Ip, and αb(x) > 0 for every
x ∈ Iq;

(jj)
∫
Ω

βa(x) dx < 0 and
∫
Ω

βb(x) dx < 0.

These conditions on the sign of the weights means that in some place the environment is favourable, or not,
to the recessive homozygous in one locus not regarding of the genotype in the other locus. We recall, as
briefly mentioned in Section 5.1, that assumptions of this kind are classically required in the one-locus case
and quite natural when looking for multiplicity results. In particular we refer to the series of works inspired
by the “conjecture of Lou and Nagylaki” [31]; we direct the reader to [11] for a recent discussion on this
problem.

Observing that the function f in (5.7) satisfies both (fi,0) and (fi,∗), we have the following straightforward
corollary of Theorem 2.1.

Corollary 5.1. Let Ω be an open bounded interval, κ : Ω → [κ0, +∞[, with κ0 > 0, be a Lebesgue integrable
positive function, and f : [0, 1] → R be defined as in (5.7). Assume that the functions rab, rAb, raB , rAB : Ω →
R are Lebesgue integrable on Ω and satisfy (j) and (jj). Then, there exists λ∗ > 0 such that for every λ > λ∗

there exist at least four fully nontrivial solutions of the Neumann problem associated with (5.8).
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Remark 5.1. We remark that the same construction applies if we consider a model with N loci, instead
of two, with Corollary 5.1 providing the existence of at least 2N fully nontrivial solutions. ◁
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