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1. Introduction

The main goal of this paper is to define entropy of belief functions in the Dempster-Shafer’s (D-S) theory [4] [21]
that satisfies a compound distributions property analogous to the one that characterizes Shannon’s definitions of entropy 
and conditional entropy for probability mass functions [25]. If P X,Y is a probability mass function (PMF) of (X, Y ), and it is 
decomposed into PMF P X for X , and conditional probability table P Y |X so that P X,Y = P X ⊗ P Y |X , then Shannon’s definitions 
of entropy and conditional entropy satisfy Hs(P X,Y ) = Hs(P X ) + Hs(P Y |X ). Here, ⊗ denotes probabilistic combination, which 
is pointwise multiplication followed by normalization (if necessary).

In this paper, we provide a definition of entropy of belief functions, and conditional entropy of conditional belief func-
tions, so that if mX,Y is a basic probability assignment (BPA) for (X, Y ) that is constructed from a BPA mX for X , and 
a conditional BPA mY |X for Y given X , such that mX,Y = mX ⊕ mY |X , where ⊕ is Dempster’s combination rule, then our 
definitions satisfy H(mX,Y ) = H(mX ) + H(mY |X ). This is the main contribution of this paper.

Every definition of entropy of D-S belief functions in the literature satisfies a property that for Bayesian belief functions, 
their entropy is the same as Shannon’s entropy on the corresponding PMFs (for a survey on this topic, see [17] and [11]). 
While we believe this property is necessary, we also believe it is grossly insufficient, as it does not include Dempster’s 
combination rule, the centerpiece of the D-S theory. So, we propose a stronger property (that includes Dempster’s rule) 
as follows. Suppose P X,Y = P X ⊗ P Y |X is a joint PMF for (X, Y ), Bayesian BPA mX for X is a representation of P X , BPA 
mY |X for (X, Y ) is a representation of P Y |X , and mX,Y = mX ⊕ mY |X is a representation of P X,Y . Then, we have the follow-
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ing properties: H(mX ) = Hs(P X ), H(mY |X ) = Hs(P Y |X ), and H(mX,Y ) = Hs(P X,Y ). We call this property “strong probability 
consistency,” and our definition is the only one that satisfies it (as a consequence of its decomposability property).

In physics, entropy was introduced as a measure of the amount of disorder in a physical system. In communication the-
ory, entropy was defined by Claude E. Shannon to measure the expected amount of information produced by an information 
source. It equals zero if we are sure of the output of the information source, and the higher the entropy, the less predictable 
we are of the corresponding output. In this way, entropy measures uncertainty. Shannon’s definition can also be interpreted 
as the amount of dissonance in a PMF. There is no dissonance in a PMF that assigns probability 1 to an element of the state 
space, and there is maximum dissonance in an equi-probable PMF. Thus, in probability theory, the semantics of uncertainty 
and dissonance coincide — the PMFs that express high uncertainty also express high dissonance, and the PMFs that express 
low uncertainty also express low dissonance.

Belief functions are more expressive than PMFs. The equi-probable PMF is unable to distinguish between complete igno-
rance and knowledge that all states are equally likely [21]. Complete ignorance is represented by vacuous belief functions, 
and while this has high uncertainty, it has low dissonance. On the other hand, knowledge that all states are equally likely 
are represented by an equiprobable Bayesian belief function, and this has high uncertainty (perhaps not as high as the vac-
uous belief function on the same state space), and higher dissonance than the corresponding vacuous belief function. The 
large number of attempts to define entropy for belief functions suggests that none of them meet all the properties satisfied 
by Shannon’s definition for PMFs. Thus, some authors focus on measuring uncertainty (e.g., [11]), measuring non-specificity 
(e.g., [5], [1]), measuring ambiguity (e.g., [13], [12]), measuring conflict [13], measuring discord (e.g., [15], [14]), and mea-
suring strife [30]. Some of these definitions have small values for vacuous belief functions, which are those that measure 
dissonance (or conflict, discord, strife, etc.). Some definitions have large values for vacuous belief functions, which are those 
that measure uncertainty (or ambiguity, non-specificity, etc.).

In any case, we must distinguish between the myriad properties of Shannon’s entropy, and the compound distributions 
property that Shannon used to axiomatically characterize his definition of entropy. None of the existing definitions of en-
tropy in the D-S literature satisfy a property similar to the compound distributions property. This omission has led to a 
confusion of what D-S belief functions represent — pieces of knowledge that are aggregated by Dempster’s rule, the center-
piece of the D-S theory. A D-S belief function is often confused with a set of PMFs, called a credal set, whose lower bound 
is a belief function ([19], [8], [20], [12]), and whose combination rule is better described by the Fagin-Halpern rule ([6], 
[7]). It is well documented that credal set semantics of belief functions are incompatible with Dempster’s combination rule 
([23], [24], [7]). The definition of entropy proposed in this paper is the only one that satisfies an analogue of the compound 
distributions property, a property that is intimately connected to Dempster’s combination rule.

Why is decomposable entropy important? In machine learning, a goal is to learn a large multi-variate graphical belief 
model from data. Such graphical models are often constructed from conditional distributions, where each conditional distri-
bution involves only a small set of variables. In large graphical models, it is intractable to compute the joint belief function 
for all variables in the model. Such models are nevertheless useful as one can compute the marginals of the joint for some 
variables of interest using local computation, i.e., without explicitly computing the joint [27]. In the process of learning 
graphical models from data, one key question is when should one stop the learning process. One method for deciding when 
to stop the learning process, especially in data-rich domains, is to compute the entropy of the learnt model and stop when 
the entropy has decreased beyond some threshold. This method makes sense regardless of whether entropy measures un-
certainty or dissonance. If one is using a decomposable entropy, then it may be possible to compute the joint entropy of a 
large model. In the case of non-decomposable entropies, the computation of entropy of large graphical models is intractable, 
which raises doubts whether non-decomposable entropies have any practical applications.

In summary, the main contribution of this article is a definition of entropy of D-S belief functions that is decomposable. 
So, it satisfies a key property that is analogous to the one that axiomatically characterizes Shannon’s entropy for PMFs, 
which is necessary for computation of entropies of large graphical belief function models, and which is not satisfied by any 
previous definitions of entropy of D-S belief functions in the literature.

An outline of the remainder of the paper is as follows. In Sec. 2, we briefly review Shannon’s definitions of entropy and 
conditional entropy. In Sec. 3, we review the representations, operators, and conditional belief functions in the D-S theory of 
belief functions. In Sec. 4, we provide new definitions of entropy and conditional entropy for the D-S theory and state and 
prove the main results of the paper. We also describe the relationship between conditional and posterior entropy for the 
case of two binary variables. In Sec. 5, we state and prove other properties of our definition of entropy. Also, we describe a 
small graphical model and compute its entropy. In Sec. 6, we discuss the semantics of our definition of entropy. In Sec. 7, 
we compare our definition of entropy with some definitions from the literature that are similar to ours in the sense that 
entropy measures dissonance. Finally, in Sec. 8, we summarize, discuss future research, and conclude.

2. Shannon’s definition of entropy

In this section, we briefly review Shannon’s definitions of entropy and conditional entropy of PMFs and conditional PMFs, 
respectively, of discrete random variables, and their properties. Most of the material in this section is taken from [25] and 
[18]. Some of the notation (such as probabilistic combination, ⊗) we use is from [26].
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Definition 1 (Entropy of a PMF). Suppose P X is a PMF of discrete random variable X with state space �X . The entropy of P X , 
denoted by Hs(P X ), is defined as

Hs(P X ) = −
∑

x∈�X

P X (x) log2 (P X (x)) . (1)

The traditional definition is to talk about the entropy of X , which is characterized by PMF P X . Here, we change the termi-
nology and talk instead about the entropy of PMF P X . If P X (x) = 0, we will follow the convention that P X (x) log(P X (x)) = 0
as limθ→0+ θ log(θ) = 0. Although we have used logarithm to the base 2, we can use any base and only units will be 
changed. With base 2, entropy is measured in units of bits. Henceforth, we will simply write log for log2.

Suppose P X,Y is a joint PMF of (X, Y ) defined on the joint state space �X,Y = �X ×�Y . Then, the joint entropy of P X,Y , 
denoted by Hs(P X,Y ), is as in Eq. (1), i.e.,

Hs(P X,Y ) = −
∑

(x,y)∈�X,Y

P X,Y (x, y) log
(

P X,Y (x, y)
)
. (2)

Suppose P X,Y is a joint PMF of (X, Y ) with P X as its marginal PMF for X . Suppose we observe X = a for some 
a ∈ �X such that P X (a) > 0. This observation is represented by the PMF P X=a for X such that P X=a(a) = 1. Let 
P Y |a = (P X,Y ⊗ P X=a)

↓Y denote the posterior (or conditional) PMF of Y (recall that ⊗ denotes pointwise multiplication 
followed by normalization, the combination rule in probability theory). The posterior entropy of P Y |a , denoted by Hs(P Y |a), 
is as in Eq. (1), i.e.,

Hs(P Y |a) = −
∑

y∈�Y

P Y |a(y) log(P Y |a(y)). (3)

Shannon [25] derives the expression for entropy of P X axiomatically using three axioms as follows:

1. Axiom 1 (Continuity): H(P X ) should be a continuous function of P X (x) for x ∈ �X .
2. Axiom 2 (Monotonicity): If we have an equally-likely PMF, then H(P X ) should be a monotonically increasing function of 

|�X |.
3. Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its entropy should be the sum of entropies 

of its factors, e.g., P X,Y (x, y) = P X (x) P Y |x(y), then H(P X,Y ) = H(P X ) + ∑
x∈�X

P X (x) H(P Y |x).

Shannon [25] proves that the only function Hs that satisfies Axioms 1–3 is of the form

Hs(P X ) = −K
∑

x∈�X

P X (x) log(P X (x)),

where K is a positive constant that depends on the choice of units of measurement.
Let P Y |X : �X,Y → [0, 1] be a function such that P Y |X (x, y) = P Y |x(y) for all (x, y) ∈ �X,Y . P Y |x(y) is only defined for 

x ∈ �X such that P X (x) > 0. P Y |X , which is called a conditional probability table (CPT) in the Bayesian network literature, is 
not a PMF, but can be considered as a collection of PMFs. If we combine P X and P Y |X using the probabilistic combination 
rule ⊗, then we obtain P X,Y , i.e., P X,Y = P X ⊗ P Y |X . This means that if we start from a joint PMF P X,Y for (X, Y ), we can 
always find the conditional distribution P Y |X as follows:

P Y |X (x, y) = P X,Y (x, y)/P X (x), (4)

for all x ∈ �X such that P X (x) > 0, and for all y ∈ �Y .

Definition 2 (Conditional entropy). Suppose P Y |X is a CPT for Y given X for all x ∈ �X such that P X (x) > 0. The conditional 
entropy of P Y |X , denoted by Hs(P Y |X ), is defined as

Hs(P Y |X ) =
∑

x∈�X

P X (x) Hs(P Y |x). (5)

From this definition, it follows that

Hs(P Y |X ) =
∑

x∈�X

P X (x) Hs(P Y |x)

= −
∑

P X (x)
∑

P Y |x(y) log(P Y |x(y))
x∈�X y∈�Y
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= −
∑

(x,y)∈�X,Y

P X (x)P Y |x(y) log(P Y |x(y))

= −
∑

(x,y)∈�X,Y

P X (x)P Y |X (x, y) log(P Y |X (x, y)). (6)

Thus, in agreement with Axiom 3,

Hs(P X,Y ) = Hs(P X ⊗ P Y |X ) = Hs(P X ) + Hs(P Y |X ). (7)

If we refer to Hs(P X ) as the marginal entropy (of X), then Eq. (7) is the compound distributions axiom underlying Shannon’s 
entropy expressed in terms of marginal and conditional entropies. Eq. (7) is also called the chain rule of entropy.

Example 1 (Marginal, conditional, and joint entropy). Consider variables X with �X = {x, ̄x}, and Y with �Y = {y, ȳ}. Suppose

P X (x) = 0.6, P Y |x(y) = 0.8, and P Y |x̄(y) = 0.3.

It is easy to confirm that

Hs(P X ) ≈ 0.971, Hs(P Y |x) ≈ 0.722, Hs(P Y |x̄) ≈ 0.881,

Hs(P Y |X ) = 0.6 · Hs(P Y |x) + 0.4 · Hs(P Y |x̄) ≈ 0.786.

Then, Hs(P X ) + Hs(P Y |X ) ≈ 0.971 + 0.786 = 1.757. The joint PMF P X,Y is as follows:

P X,Y (x, y) = 0.48, P X,Y (x, ȳ) = 0.12, P X,Y (x̄, y) = 0.12, and P X,Y (x̄, ȳ) = 0.28,

and its entropy using Eq. (2) is ≈ 1.757. Thus, Hs(P X ) + Hs(P Y |X ) = Hs(P X,Y ). �
3. Basic definitions in the D-S belief functions theory

In this section we review the basic definitions in the D-S belief functions theory. Like several other uncertainty theories, 
D-S belief functions theory includes functional representations of uncertain knowledge, and operations for making inferences 
from such knowledge. Most of the material in Sections 3.1 and 3.2 are taken from [21].

3.1. Representations of belief functions

Belief functions can be represented in many different ways. Here, we focus on basic probability assignments (BPAs), 
plausibility functions (PFs), belief functions (BFs), and commonality functions (CFs).

Basic probability assignment Suppose X is a random variable with a finite state space �X . Let 2�X denote the set of all 
subsets of �X . A basic probability assignment (BPA) m for X is a function m : 2�X → [0, 1] such that

m(∅) = 0, (8)∑
a∈2�X

m(a) = 1. (9)

Thus, a BPA can be regarded as a PMF for the set of all non-empty subsets of �X . The non-empty subsets a ∈ 2�X such 
that m(a) > 0 are called focal elements of m. An example of a BPA for X is the vacuous BPA for X , denoted by ιX , such that 
ιX (�X ) = 1. We say m is deterministic (or categorical) if m has a single focal element (with probability 1). Thus, the vacuous 
BPA for X is deterministic with focal element �X . We say m is consonant if the focal elements of m are nested, i.e., if they 
can be ordered such that a1 ⊂ a2 ⊂ ... ⊂ am , where {a1, ..., am} denotes the set of all focal elements of m. Deterministic 
BPAs are trivially consonant. We say m is quasi-consonant1 if the intersection of all focal elements of m is non-empty. A 
BPA that is consonant is also quasi-consonant, but not vice-versa. Thus, a BPA with focal elements {x1, x2} and {x1, x3} is 
quasi-consonant, but not consonant.

If all focal elements of m are singleton subsets of �X , then we say m is Bayesian. In this case, m is equivalent to the PMF 
P for X such that P (x) = m({x}) for each x ∈ �X . A Bayesian BPA with two or more focal elements is neither consonant nor 
quasi-consonant. Let mu denote the Bayesian BPA with uniform probabilities, i.e., mu({x}) = 1

|�X | for all x ∈ �X . If �X is a 
focal element of m, then we say m is non-dogmatic, and dogmatic otherwise. Thus, a Bayesian BPA is dogmatic.

The information in a BPA can be represented in several other ways. Here we describe plausibility function, belief function 
and commonality functions. All of these functions have exactly the same information as in a corresponding BPA.

1 Dubois and Prade [5] refer to the quasi-consonant property as ‘consistent,’ a term that we believe is overloaded. We prefer the terminology quasi-
consonant.
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Plausibility function Suppose m is a BPA for X with state space �X . The plausibility function (PF) corresponding to m, 
denoted by Plm , is defined as follows:

Plm(a) =
∑

b∈2�X : b∩a �=∅
m(b), for all a ∈ 2�X . (10)

It follows from Eq. (10) that 0 ≤ Plm(a) ≤ 1, Plm(∅) = 0, and Plm(�X ) = 1. Also, it is non-decreasing, i.e., if a ⊆ b, then 
Plm(a) ≤ Plm(b). If m is a Bayesian BPA, then Plm({x}) = m({x}) for all x ∈ �X . If m is a quasi-consonant BPA, then Plm(a) = 1
for all focal elements of m. For the vacuous BPA ι, Plι(a) = 1 for all ∅ �= a ∈ 2�X .

Belief function The information in a BPA m can also be represented by a corresponding belief function Belm that is defined 
as follows:

Belm(a) =
∑

b∈2�X : b⊆a

m(b) = 1 − Plm(�X \ a), for all a ∈ 2�X . (11)

It follows from Eq. (11) that 0 ≤ Belm(a) ≤ 1, Belm(∅) = 0, and Belm(�X ) = 1. Also, Belm is non-decreasing, i.e., if a ⊆ b, 
then Belm(a) ≤ Belm(b), and Belm(a) ≤ Plm(a) for all a ∈ 2�X . For the vacuous BPA ι for X , Belι(a) = 0 for all �X �= a ∈ 2�X , 
and Belι(�X ) = 1.

Commonality function The information in a BPA m can also be represented by a corresponding commonality function (CF) 
Q m that is defined as follows:

Q m(a) =
∑

b∈2�X : b⊇a

m(b), for all a ∈ 2�X . (12)

First, it follows from Eq. (12) that 0 ≤ Q m(a) ≤ 1. Second, it follows from Eqs. (8)-(9) that Q m(∅) = 1. Third, CFs are 
non-increasing in the sense that if a ⊆ b, then Q (a) ≥ Q (b). Fourth, a CF Q m has exactly the same information as in the 
corresponding BPA m. Given a CF Q , let mQ denote the corresponding BPA. We can recover mQ from Q as follows [21]:

mQ (a) =
∑

b∈2�X : b⊇a

(−1)|b\a| Q (b). (13)

Thus, it follows that Q : 2�X → [0, 1] is a well-defined CF iff

Q (∅) = 1, (14)∑
b∈2�X : b⊇a

(−1)|b\a| Q (b) ≥ 0, for all ∅ �= a ∈ 2�X , and (15)

∑
∅�=a∈2�X

(−1)|a|+1 Q (a) = 1. (16)

The left-hand side of Eq. (15) is mQ (a), and the left-hand side of Eq. (16) can be shown to be 
∑

∅�=a∈2�X mQ (a). Eq. 
(16) can be regarded as a normalization condition for a CF. If we have a function Q : 2�X → [0, 1] that satisfies Eqs. 
(14) and (15), but not (16), then we can divide each of the values of the function for non-empty subsets in 2�X by K =∑

∅�=a∈2�X (−1)|a|+1 Q m(a), and the resulting function will then qualify as a CF.

For the vacuous BPA ι for X , the CF Q ι corresponding to BPA ι is given by Q ι(a) = 1 for all a ∈ 2�X . If m is a Bayesian 
BPA for X , then Q m is such that Q m(a) = m(a) if |a| = 1, and Q m(a) = 0 if |a| > 1. If m is non-dogmatic, then Q m(a) > 0
for all a ∈ 2�X .

3.2. Operations in the D-S theory

There are two main operations in the D-S theory — Dempster’s combination rule, and marginalization.

Dempster’s combination rule In the D-S theory, we can combine two BPAs m1 and m2 representing distinct pieces of evidence 
by Dempster’s rule [4] and obtain the BPA m1 ⊕ m2, which represents the combined evidence. Dempster referred to this 
rule as the product-intersection rule, as the product of the BPA values are assigned to the intersection of the focal elements, 
followed by normalization. Normalization consists of discarding the value assigned to ∅, and normalizing the remaining 
values so that they add to 1. In general, Dempster’s rule of combination can be used to combine two BPAs for arbitrary sets 
of variables.

Projection of states simply means dropping extra coordinates; for example, if (x, y) is a state of (X, Y ), then the projec-
tion of (x, y) to X , denoted by (x, y)↓X , is simply x, which is a state of X .
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Projection of subsets of states is achieved by projecting every state in the subset. Suppose b ∈ 2�X,Y . Then b↓X = {x ∈
�X : (x, y) ∈ b}. Notice that b↓X ∈ 2�X .

Vacuous extension of a subset of states of X to a subset of states of (X, Y ) is a cylinder set extension, i.e., if a ∈ 2�X , 
then a↑(X,Y ) = {a} × �Y .

Earlier we defined a BPA for a variable X with state space �X . If X is a set of variables with state space �X = ×X∈X�X , 
then a BPA m for X is a function m : 2�X → [0, 1] such that

m(∅) = 0, and∑
∅�=a∈2�X

m(a) = 1.

Suppose X1 and X2 are arbitrary (finite) sets of variables, and m1 and m2 are BPAs for X1 and X2, respectively. Then 
m1 ⊕ m2 is a BPA for X1 ∪X2 =X given by:

(m1 ⊕ m2)(a) =

⎧⎪⎨
⎪⎩

0 if a = ∅,

K −1 ∑
b1⊆X1, b2⊆X2: b↑X

1 ∩b↑X
2 = a

m1(b1)m2(b2) otherwise, (17)

for all a ∈ 2�X , where K is a normalization constant given by:

K = 1 −
∑

b1⊆X1, b2⊆X2: b
↑X
1 ∩b

↑X
2 = ∅

m1(b1)m2(b2). (18)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero. If K = 0, then the two BPAs m1
and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Dempster’s rule can also be described in terms of CFs [21]. Suppose Q 1 and Q 2 are CFs corresponding to BPAs m1 and 
m2, respectively. The CF Q 1 ⊕ Q 2 corresponding to BPA m1 ⊕ m2 is defined as follows:

(Q 1 ⊕ Q 2)(a) =
{

1 if a = ∅,

K −1 Q 1(a↓X1) Q 2(a↓X2) otherwise,
(19)

for all a ∈ 2�X , where K is a normalization constant given by:

K =
∑

∅�=a∈2
�X1∪X2

(−1)|a|+1 Q 1(a
↓X1) Q 2(a

↓X2). (20)

It is shown in [21] that the normalization constant K in Eq. (20) is exactly the same as in Eq. (18).
In terms of CFs, Dempster’s rule is pointwise multiplication of CFs followed by normalization, which is similar to the 

probabilistic combination rule of pointwise multiplication of probability potentials followed by normalization. Where as 
probability potentials for X are functions from �X → [0, 1], CFs are functions from 2�X → [0, 1]. Also, while normalization 
of probability potentials is achieved by dividing by the sum, normalization of CFs is achieved by dividing by the Möbius sum 
(with alternating signs). This similarity with probability theory is one of the motivation behind our definitions of entropy 
and conditional entropy in Section 4.

Next, we define vacuous extension of BPAs and CFs.

Vacuous extension of a BPA Suppose mX is a BPA for X . Then the vacuous extension of mX to (X, Y ), denoted by m↑(X,Y )
X , is 

the BPA for (X, Y ) such that

m↑(X,Y )
X (a↑(X,Y )) = mX (a), (21)

for all a ∈ 2�X , i.e., all focal elements of m↑(X,Y )
X are vacuous extensions of focal elements of mX to (X, Y ), and the corre-

sponding focal elements have the same values. Notice that vacuous extension can also be described in terms of Dempster’s 
rule as follows:

m↑(X,Y )
X = mX ⊕ ιY . (22)

Vacuous extension of a CF Suppose Q X is a CF for X . Then, the vacuous extension of Q X to (X, Y ), denoted by Q ↑(X,Y )
X , is 

the CF for (X, Y ) such that

Q ↑(X,Y )
X = Q X ⊕ Q ιY . (23)

Eq. (23) implies that if Q X is parametrized by k parameters, and X ∈ X , then Q ↑X
X is also parametrized by the same k

parameters, i.e., vacuous extension does not create new parameters (or distinct values).
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Marginalization Marginalization in D-S theory is summation of values of BPAs. Suppose m is a BPA for (X, Y ). Then, the 
marginal of m for X , denoted by m↓X , is a BPA for X such that for each a ∈ 2�X ,

m↓X (a) =
∑

b∈2�X,Y : b↓X = a

m(b). (24)

It follows from Eq. (24), that if m(b) > 0, then m↓X1 (b↓X1 ) > 0, for all b ∈ 2�X .
The marginalization can also be defined in terms of CFs. Suppose Q is a CF for (X, Y ). Then, for all a ∈ 2�X ,

Q ↓X (a) =
∑

b∈2�X,Y :b↓X =a

(−1)(|b|−|a|) Q (b). (25)

As in the case of a BPA, it can be shown that if Q (b) > 0, then Q ↓X (b↓X ) > 0.

3.3. Conditional belief functions

In probability theory, it is common to construct joint probability mass functions for a set of variables by using conditional 
probability distributions. For example, we can construct joint PMF for (X, Y ) by first assessing PMF P X of X , and conditional 
PMFs P Y |x for Y , one for each x ∈ �X such that P X (x) > 0. Let P Y |X denote a CPT for (X, Y ) such that P Y |X (x, y) = P Y |x(y)

for all (x, y) ∈ �X,Y such that P X (x) > 0. Then, P X,Y = P X ⊗ P Y |X . We can construct a joint BPA for (X, Y ) in a similar 
manner.

Consider a BPA mX for X and x ∈ �X such that mX ({x}) > 0. Suppose that there is a BPA for Y expressing our belief 
about Y if we know that X = x, and denote it by mY |x . Notice that mY |x : 2�Y → [0, 1], for which 

∑
b∈2�Y mY |x(b) = 1. We 

can embed this conditional BPA for Y into a conditional BPA for (X, Y ), which is denoted by mx,Y , in the way that the 
following four conditions hold:

1. mx,Y tells us nothing about X , i.e., m↓X
x,Y (�X ) = 1.

2. mx,Y tells us nothing about Y , i.e., m↓Y
x,Y (�Y ) = 1.

3. If we combine mx,Y with the deterministic BPA mX=x for X such that mX=x({x}) = 1 using Dempster’s rule, and 
marginalize the result to Y we obtain mY |x , i.e., (mx,Y ⊕ mX=x)

↓Y = mY |x .
4. If we combine mx,Y with the deterministic BPA mX=x̄ for X (x̄ �= x) such that mX=x̄({x̄}) = 1 using Dempster’s rule, and 

marginalize the result to Y we obtain the vacuous BPA for Y , i.e., (mx,Y ⊕ mX=x̄)
↓Y = ιY .

One way to obtain such an embedding is suggested by Smets [28] (see also, Shafer [22], Xu and Smets [31], and Al-
mond [2]), called conditional embedding. It consists of taking each focal element b ∈ 2�Y of mY |x , and converting it to the 
corresponding focal element

({x} × b) ∪ ((�X \ {x}) × �Y ) ∈ 2�X,Y (26)

of mx,Y with the same mass. It is easy to confirm that this method of embedding satisfies all four conditions mentioned 
above.

Example 2 (Conditional embedding). Consider variables X and Y , with �X = {x, ̄x} and �Y = {y, ȳ}. Suppose that mX is a BPA 
for X such that mX ({x}) > 0 and mX ({x̄}) > 0. If we have a conditional BPA mY |x for Y given X = x as follows:

mY |x({y}) = 0.8,

mY |x(�Y ) = 0.2,

then its conditional embedding into BPA mx,Y for (X, Y ) is

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mx,Y (�X,Y ) = 0.2.

Similarly, if we have a conditional BPA mY |x̄ for Y given X = x̄ as follows:

mY |x̄({ ȳ}) = 0.3,

mY |x̄(�Y ) = 0.7,

then its conditional embedding into BPA mx̄,Y for (X, Y ) is
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mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3,

mx̄,Y (�X,Y ) = 0.7.

These two conditional BPAs, and their corresponding embeddings mx,Y and mx̄,Y are distinct, and can be combined with 
Dempster’s rule of combination, resulting in the conditional BPA mY |X = mx,Y ⊕ mx̄,Y for (X, Y ) as follows:

mY |X ({(x, y), (x̄, ȳ)}) = 0.24,

mY |X ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.56,

mY |X ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.06,

mY |X (�X,Y ) = 0.14.

The reader can easily verify that mY |X has the following properties. First, m↓X
Y |X = ιX . Second, m↓Y

Y |X = ιY . Third, if we 
combine mY |X with deterministic BPA mX=x({x}) = 1 for X , and marginalize the combination to Y , then we get mY |x , i.e., 
(mY |X ⊕ mX=x)

↓Y = mY |x . Fourth, (mY |X ⊕ mX=x̄)
↓Y = mY |x̄ . Fifth, in the Dempster’s combination of mx,Y and mx̄,Y , the 

normalization constant K = 1. mY |X is the belief function equivalent of CPT P Y |X in probability theory. �
Conditional embedding can also be described using CFs. Suppose we start with a CF Q X for X (with corresponding BPA 

mX for X), and want to get a conditional CF Q Y |X for (X, Y ). The conditional CF Q Y |X may include only those non-vacuous 
conditional CF Q x,Y for (X, Y ) such that mX ({x}) > 0. If there is only one such conditional, then Q Y |X = Q x,Y . If we have 
more than one, then Q Y |X is obtained by Dempster’s combination of all such conditionals:

Q Y |X =
⊕

x∈�X :mX ({x})>0

Q x,Y . (27)

Next, we combine CFs Q X for X and Q Y |X for (X, Y ) to obtain the joint CF Q X,Y for (X, Y ), i.e., Q X,Y = Q X ⊕ Q Y |X . 
First, notice that from our method of construction of Q X,Y , the normalization constant K in the Dempster combination of 
Q X and Q Y |X is equal to one. It follows from the definition of Dempster’s rule in Eq. (19) that

Q X,Y (a) = Q X (a↓X ) · Q Y |X (a), (28)

for all a ∈ 2�X . If a ∈ 2�X is such that Q X (a↓X ) > 0, then it follows from Eq. (28) that Q Y |X (a) = Q X,Y (a)/Q X (a↓X ). If 
a ∈ 2�X is such that Q X (a↓X ) = 0, then it follows from Eq. (28) that Q X,Y (a) = 0. If we restrict our attention to subsets in 
{b ∈ 2�X : Q X,Y (b) > 0}, then

Q Y |X (a) = Q X,Y (a)/Q X (a↓X ), (29)

for all a ∈ {b ∈ 2�X : Q X,Y (b) > 0}.
We caution the reader that Eq. (29) is only valid for those joint CFs Q X,Y for (X, Y ) that are constructed using Eq. (28). 

If we start with an arbitrary CF Q for (X, Y ) such that Q (a) > 0 for all a ∈ 2�X,Y , compute the marginal CF Q ↓X for X
(using Eq. (25)), and then construct a function Q Y |X using Eq. (29), then Q Y |X may fail to be a CF because the condition in 
Eq. (15) is violated.

In summary, given any joint PMF P X,Y for (X, Y ), we can always factor this into P X for X , and P Y |X for (X, Y ), such 
that P X,Y = P X ⊗ P Y |X . This is not true in D-S belief function theory. Given a joint BPA mX,Y for (X, Y ), we cannot always 
find a belief function mY |X for (X, Y ) such that mX,Y = m↓X

X,Y ⊕ mY |X . However, we can always construct joint BPA mX,Y for 
(X, Y ) by first assessing mX for X , and assessing conditionals mY |xi for Y for those xi that we have knowledge about and 
such that mX (xi) > 0, embed these conditionals into conditional BPAs for (X, Y ), and combine all such BPAs to obtain the 
conditional BPA mY |X for (X, Y ). We can then construct mX,Y = mX ⊕ mY |X .

Suppose CF Q X,Y is constructed from Q X for X and conditional CF Q Y |X , i.e., Q X,Y = Q X ⊕ Q Y |X . It is easy to confirm 
that, similarly to probability theory, for such joint CF, Q X = Q ↓X

X,Y , and

Q Y |X (a) = Q X,Y (a)/Q X (a↓X ), (30)

for all a ∈ {b ∈ 2�X : Q X (b) > 0}. Eq. (30) is the belief function analog of Eq. (4) in probability theory.
This completes our brief review of the D-S belief function theory. For further details, the reader is referred to [21].

4. A decomposable entropy for the D-S theory

In this section, we provide a new definition of entropy of belief functions in the D-S theory, and describe its proper-
ties. This new definition is designed to satisfy a compound distributions property analogous to the compound distribution 
property that characterizes Shannon’s entropy of PMFs.
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4.1. Definition of entropy for D-S belief functions

Definition 3 (Entropy of a CF Q X ). Suppose Q X is a CF for X with state space �X . Then, the entropy of Q X , denoted by 
H(Q X ), is defined as

H(Q X ) =
∑

a∈2�X

(−1)|a| Q X (a) log(Q X (a)). (31)

The definition of entropy of Q X in Eq. (31) is well-defined as it follows from the definition of a CF in Eq. (12) that for 
all a ∈ 2�X that Q X (a) ≥ 0. If Q X (a) = 0, we will follow the convention that Q X (a) log(Q X (a)) = 0 as limθ→0+ θ log(θ) = 0. 
Thus, in computing the entropy H(Q X ) as defined in Definition 3, it is sufficient that the summation in the right-hand side 
of Eq. (31) is restricted to a ∈ 2�X such that Q X (a) > 0.

This is a new definition of entropy that has not been proposed earlier in the literature. The closest definitions are due to 
Höhle [9], Smets [29], and Yager [32]. We will compare our definition with these definitions in Section 7.

Example 3 (Entropy of Q ). Suppose CF Q for X with state space �X = {x, ̄x} is as follows: Q (∅) = 1, Q ({x}) = 0.7, Q ({x̄}) =
0.4, and Q ({x, ̄x}) = 0.1. If mQ denotes the BPA corresponding to Q , then notice that mQ ({x}) = Q ({x}) − Q ({x, ̄x}) =
0.7 − 0.1 = 0.6 ≥ 0, mQ ({x̄}) = Q ({x̄}) − Q ({x, ̄x}) = 0.4 − 0.1 = 0.3 ≥ 0, and mQ ({x, ̄x}) = Q ({x, ̄x}) = 0.1 ≥ 0. Also, Q ({x}) +
Q ({x̄}) − Q ({x, ̄x}) = 0.7 + 0.4 − 0.1 = 1. Therefore, Q is a well-defined CF. Then, H(Q ) = −0.7 · log(0.7) − 0.4 · log(0.4) +
0.1 · log(0.1) ≈ 0.557. �

If Q X,Y is a joint CF for (X, Y ), then its entropy is defined as in Eq. (31), i.e.,

H(Q X,Y ) =
∑

a∈2�X,Y

(−1)|a| Q X,Y (a) log(Q X,Y (a)). (32)

We refer to H(Q X,Y ) as the joint entropy of Q X,Y .
Suppose Q X,Y is a CF for (X, Y ) with state space �X × �Y . Suppose we observe X = a. Let Q X=a denote the CF for 

X corresponding to BPA mX=a for X such that mX=a({a}) = 1. Let Q Y |a = (Q X,Y ⊕ Q X=a)
↓Y denote the posterior CF for Y . 

Then, the posterior entropy of Q Y |a is as in Eq. (31), i.e.,

H(Q Y |a) =
∑

a∈2�Y

(−1)|a| Q Y |a(a) log(Q Y |a(a)). (33)

4.2. Conditional entropy

In Subsection 3.3, we showed that the conditional commonality function, if it exists, can be expressed as Q Y |X (a) =
Q X,Y (a)/Q X (a↓X ) (see Eq. (29)). In this subsection, we will define the conditional entropy of a conditional CF. It would be 
incorrect to use Eq. (31) to compute the entropy of Q Y |X as our belief of X is not included in conditional CF Q Y |X . We 
define the conditional entropy of Q Y |X similar to the definition of conditional entropy of P Y |X in the probabilistic case (see 
Eq. (6)).

Definition 4 (Conditional entropy). Suppose Q X is a CF for X , and suppose Q Y |X is a conditional CF for (X, Y ). Then, the 
conditional entropy of Q Y |X , denoted by H(Q Y |X ), is defined as follows:

H(Q Y |X ) =
∑

a∈2�X,Y :Q X (a↓X )>0

(−1)|a| Q X (a↓X ) Q Y |X (a) log(Q Y |X (a)). (34)

Notice that as Q X (a↓X ) Q Y |X (a) = Q X,Y (a) for all a ∈ 2�X,Y , we can rewrite Eq. (34) as follows:

H(Q Y |X ) =
∑

a∈2�X,Y :Q X (a↓X )>0

(−1)|a| Q X,Y (a) log(Q Y |X (a)) (35)

Next, we state and prove the main result of this paper.

Theorem 1 (Compound distributions). Suppose Q X is a CF for X, and suppose Q Y |X is a conditional CF for (X, Y ). Let Q X,Y = Q X ⊕
Q Y |X . Then,

H(Q X,Y ) = H(Q X ) + H(Q Y |X ). (36)
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Proof.

H(Q X,Y ) =
∑

a∈2�X,Y

(−1)|a| Q X,Y (a) log
(

Q X,Y (a)
)

=
∑

b∈2�X

∑
a∈2�X,Y :a↓X =b

(−1)|a| Q X,Y (a) log

(
Q X,Y (a)

Q X (b)

Q X (b)

)

=
∑

b∈2�X

∑
a∈2�X,Y :a↓X =b

(−1)|a| Q X,Y (a) log (Q X (b))

+
∑

b∈2�X

∑
a∈2�X,Y :a↓X =b

(−1)|a| Q X,Y (a) log

(
Q X,Y (a))

Q X (b)

)

=
∑

b∈2�X

∑
a∈2�X,Y :a↓X =b

(−1)|b|(−1)|a|−|b| Q X,Y (a) log (Q X (b))

+
∑

b∈2�X

∑
a∈2�X,Y :a↓X =b

(−1)|a| Q X,Y (a) log
(

Q Y |X (a)
)

=
∑

b∈2�X

(−1)|b| log (Q X (b))
∑

a∈2�X,Y :a↓X =b

(−1)|a|−|b| Q X,Y (a)

+
∑

a∈2�X,Y

(−1)|a| Q X,Y (a) log
(

Q Y |X (a)
)

=
∑

b∈2�X

(−1)|b| log (Q X (b)) Q X (b) + H(Q Y |X ) (using Eqs. (25), (35))

= H(Q X ) + H(Q Y |X ). �
Corollary 1. Suppose Q X is a CF for X, and Q Y is a CF for Y . Let Q X,Y denote Q X ⊕ Q Y . Then H(Q X,Y ) = H(Q X ) + H(Q Y ).

Proof. As Q X,Y = Q X ⊕ Q Y , it follows from Dempster’s rule that Q X,Y (a) = Q X (a↓X ) Q Y (a↓Y ). Thus, Q Y |X (a) =
Q X,Y (a)/Q X (a↓X ) = Q Y (a↓Y ). Thus,

H(Q Y |X ) =
∑

a∈2�X,Y

(−1)|a| Q X,Y (a) log(Q Y |X (a))

=
∑

a∈2�X,Y

(−1)|a| Q X (a↓X ) Q Y (a↓Y ) log(Q Y (a↓Y ))

=
∑

b∈2�Y

(−1)|b| Q Y (b) log(Q Y (b))
∑

a∈2�X,Y :a↓Y =b

(−1)|a|−|b| Q X (a↓X )

=
∑

b∈2�Y

(−1)|b| Q Y (b) log(Q Y (b))

= H(Q Y )

Therefore, it follows from Theorem 1 that H(Q X,Y ) = H(Q X ) + H(Q Y ). �
Example 4 (Marginal, conditional, and joint entropy). Suppose BPA m for X is as in Example 3, and suppose conditional BPAs 
mY |x and mY |x̄ are as follows:

mY |x({y}) = 0.8,mY |x({ ȳ}) = 0.1,mY |x({y, ȳ}) = 0.1,

mY |x̄({y}) = 0.3,mY |x̄({ ȳ}) = 0.6,mY |x̄({y, ȳ}) = 0.1.

The vacuous extension of m to (X, Y ), the conditional embedding of mY |x , and the conditional embedding of mY |x̄ are shown 
in Table 1. The commonality functions corresponding to these three BPAs are also shown in Table 1. As mY |X is obtained by 
mx,Y ⊕ mx̄,Y , the corresponding commonality function Q mY |X (shown in Table 1 is obtained by pointwise multiplication of 
Q mx,Y and Q mx̄,Y (the normalization constant K = 1). The commonality function corresponding to mX,Y = m ⊕ mY |X , shown 
in the last column of Table 1, is obtained by pointwise multiplication of Q m↑(X,Y ) and Q mY |X (the normalization constant 
K = 1).
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Table 1
BPAs, commonality functions, and entropies in Example 4.

a m↑(X,Y ) mx,Y mx̄,Y Q m↑(X,Y ) Q mx,Y Q mx̄,Y Q mY |X Q mX,Y

{(x, y)} 0.7 0.9 1 0.9 0.63
{(x, ȳ)} 0.7 0.2 1 0.2 0.14
{(x, y), (x, ȳ)} 0.6 0.7 0.1 1 0.1 0.07

{(x̄, y)} 0.4 1 0.4 0.4 0.16
{(x̄, ȳ)} 0.4 1 0.7 0.7 0.28
{(x̄, y), (x̄, ȳ)} 0.3 0.4 1 0.1 0.1 0.04

{(x, y), (x̄, y)} 0.1 0.9 0.4 0.36 0.036
{(x, y), (x̄, ȳ)} 0.1 0.9 0.7 0.63 0.063
{(x, ȳ), (x̄, y)} 0.1 0.2 0.4 0.08 0.008
{(x, ȳ), (x̄, ȳ)} 0.1 0.2 0.7 0.14 0.014
{(x, y), (x, ȳ), (x̄, y)} 0.3 0.1 0.1 0.4 0.04 0.004
{(x, y), (x, ȳ), (x̄, ȳ)} 0.6 0.1 0.1 0.7 0.07 0.007
{(x, y), (x̄, y), (x̄, ȳ)} 0.8 0.1 0.9 0.1 0.09 0.009
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.1 0.1 0.2 0.1 0.02 0.002

�X,Y 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.001

H 0.557 0.161 0.167 0.328 0.885

The entropies (rounded to 3 decimal places) in units of bits are as follows. H(m↑(X,Y )) ≈ 0.557, which is the same as 
H(m), computed in Example 3. The entropies of conditional BPAs H(mx,Y ) ≈ 0.161, H(mx̄,Y ) ≈ 0.167, and H(mY |X ) ≈ 0.328. 
The computation of these entropies involve Q m↑(X,Y ) (or Q m). Notice that H(mY |X ) = H(mx,Y ) + H(mx̄,Y ). Finally, the entropy 
H(mX,Y ) ≈ 0.885, which is equal to H(m) + H(mY |X ). mX,Y is not a conditional BPA, and therefore, H(mX,Y ) is computed 
only from Q mX,Y . �

Next, we show that a probability model for (X, Y ) consisting of PMF P X for X (for simplicity, we will assume that 
P X (x) > 0 for all x ∈ �X ), and a CPT P Y |X for Y given X can be replicated exactly in the D-S theory using Bayesian BPA mX

for X representing P X , a conditional BPA mY |X for (X, Y ) representing P Y |X . Furthermore, our definition of entropy for all 
BPAs will coincide with Shannon’s entropy of the corresponding probabilistic function.

Suppose P X is a PMF for X such that P X (x) > 0 for all x ∈ �X , and P Y |X is a CPT for Y given X , i.e., P Y |X (x, y) = P Y |x(y), 
where P Y |x is the conditional PMF for Y given X = x for all (x, y) ∈ �X,Y . Let P X,Y = P X ⊗ P Y |X . Let mX denote the Bayesian 
BPA corresponding to P X , let mY |x denote the Bayesian conditional BPA for Y corresponding to conditional PMF P Y |x for Y
given X = x. Let mx,Y denote the conditional BPA for (X, Y ) obtained by conditional embedding of mY |x . Let mY |X denote ⊕

x∈�X
mx,Y . Let mX,Y denote mX ⊕ mY |X .

Theorem 2 (Strong probability consistency). Consider the situation described in the preceding paragraph. Then, mX,Y is a Bayesian 
BPA for (X, Y ) corresponding to PMF P X,Y such that:

H(mX,Y ) = Hs(P X,Y ), (37)

H(mX ) = Hs(P X ), (38)

H(mY |X ) = Hs(P Y |X ). (39)

Notice that mx,Y and mY |X are not Bayesian BPAs.

Proof. It follows from our construction that mX,Y is a Bayesian BPA corresponding to P X,Y . For a Bayesian BPA m cor-
responding to PMF P , Q m({x}) = m({x}) = P (x), and for non-singleton subsets a, Q m(a) = 0. Therefore, it follows that 
H(m) = Hs(P ). This property is called “probability consistency” [16]. As mX and mX,Y are Bayesian BPAs, Eqs. (37)
and (38) hold. It follows from Shannon’s definition of entropy of P X and P X,Y , and conditional entropy of P Y |X that 
Hs(P X,Y ) = Hs(P X ) + Hs(P Y |X ). It follows from the compound distributions property that H(mX,Y ) = H(mX ) + H(mY |X ). 
Thus, Eq. (39) must hold also. �
Example 5 (Strong probability consistency). Consider the PMFs P X , P Y |x , and P Y |x̄ as in Example 1. mX is a Bayesian BPA 
corresponding to P X , and its vacuous extension to (X, Y ) is shown in the second column of Table 2. Although mX is 
Bayesian, its vacuous extension is not Bayesian. Let mx,Y denote the conditional embedding of Bayesian BPA mY |x that 
corresponds to P Y |x (it is shown in the third column). Similarly, mx̄,Y is shown in the fourth column. The commonality 
functions corresponding to m↑{X,Y }

X , mx,Y , and mx̄,Y are shown in the next three columns. Q mY |X is obtained by Dempster’s 
combination of Q mx,Y and Q mx̄,Y (the normalization constant K = 1). Notice that mY |X is not Bayesian. Finally, Q mX,Y is 
obtained by Dempster’s combination of Q ↑{X,Y } and Q mY |X (the normalization constant K = 1). mX,Y is a Bayesian BPA.
mX
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Table 2
BPAs, commonality functions, and entropies in Example 5.

a m↑(X,Y )
X mx,Y mx̄,Y Q

m↑(X,Y )
X

Q mx,Y Q mx̄,Y Q mY |X Q mX,Y

{(x, y)} 0.6 0.8 1 0.8 0.48
{(x, ȳ)} 0.6 0.2 1 0.2 0.12
{(x, y), (x, ȳ)} 0.6 0.6 1

{(x̄, y)} 0.4 1 0.3 0.3 0.12
{(x̄, ȳ)} 0.4 1 0.7 0.7 0.28
{(x̄, y), (x̄, ȳ)} 0.4 0.4 1

{(x, y), (x̄, y)} 0.8 0.3 0.24
{(x, y), (x̄, ȳ)} 0.8 0.7 0.56
{(x, ȳ), (x̄, y)} 0.2 0.3 0.06
{(x, ȳ), (x̄, ȳ)} 0.2 0.7 0.14
{(x, y), (x, ȳ), (x̄, y)} 0.3 0.3
{(x, y), (x, ȳ), (x̄, ȳ)} 0.7 0.7
{(x, y), (x̄, y), (x̄, ȳ)} 0.8 0.8
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.2 0.2

�X,Y

H 0.971 0.433 0.353 0.786 1.757

The entropies H(m↑(X,Y )
X ), H(mx,Y ), and H(mx̄,Y ) are shown in the last row (to 3 decimal places). Notice that H(mX ) =

H(m↑{X,Y }
X ) = Hs(P X ) ≈ 0.971, H(mY |X ) = Hs(P Y |X ) ≈ 0.786, and H(mX,Y ) = Hs(P X,Y ) ≈ 1.757. �

4.3. Conditional and posterior entropy

Suppose Q X,Y is a joint CF for (X, Y ). Let Q X denote the marginal CF for X computed from Q X,Y , Q X = Q ↓X
X,Y . Let 

mX denote the BPA for X corresponding to CF Q X . Now consider the situation where we observe X = x for some x ∈ �X

such that mX ({x}) > 0. Let mX=x denote the deterministic BPA for X such that mX=x({x}) = 1, and let Q X=x denote the 
corresponding CF for X . The posterior CF for Y , denoted by Q Y |x , is given by Q Y |x = (Q X,Y ⊕ Q X=x)

↓Y . The entropy of Q Y |x
is described by Eq. (33), which is given by Definition 3 applied to CF Q Y |x for Y . Now, suppose we consider Q Y |x as a CF for 
Y in the context X = x and conditionally embed it obtaining CF Q x,Y for (X, Y ). We can consider CF Q x,Y as a conditional 
for Y given X = x. As discussed earlier, we cannot use Definition 3 to compute the entropy of Q x,Y as the belief of X = x
is not included in CF Q x,Y . Instead, we use Eq. (34) in Definition 4 to compute the entropy H(Q x,Y ), which reads in this 
context as

H(Q x,Y ) =
∑

a∈2�X,Y

(−1)|a| Q X (a↓X ) Q x,Y (a) log(Q x,Y (a)). (40)

So a natural question that arises is: What is the relationship between posterior entropy H(Q Y |x) and conditional entropy 
H(Q x,Y )? In what follows, we will describe this relationship for the special case where X and Y are binary-valued variables.

Theorem 3 (Conditional Entropy 1). Suppose X and Y are binary-valued variables. Suppose mX is a BPA for X such that mX ({x}) > 0. 
Suppose mY |x denotes the posterior BPA for Y given X = x, and let Q Y |x denote the corresponding CF for Y . Let mx,Y denote the 
conditional BPA for (X, Y ) obtained from mY |x by conditional embedding, and let Q x,Y denote the corresponding CF. Then,

H(Q x,Y ) = mX ({x})H(Q Y |x). (41)

Proof. Suppose �X = {x, ̄x}, and �Y = {y, ȳ}. Suppose Q X is as follows: Q X ({x}) = a, Q X ({x̄}) = b, and Q X ({x, ̄x}) = c, where 
a > c ≥ 0, b ≥ c, and a + b − c = 1. Let mX denote the BPA corresponding to Q X . Then, mX ({x}) = a − c, mX ({x̄}) = b − c, and 
mX ({x, ̄x}) = c. Also, suppose that Q Y |x is as follows: Q Y |x({y}) = d, Q Y |x({ ȳ}) = e, and Q Y |x({y, ȳ}) = f , where d ≥ f ≥ 0, 
e ≥ f , and d + e − f = 1. Let mY |x denote the BPA corresponding to CF Q Y |x . Thus, mY |x({y}) = d − f , mY |x({ ȳ}) = e − f , and 
mY |x({y, ȳ}) = f .

From Eq. (33), it follows that H(mY |x) = −d log(d) − e log(e) + f log( f ). Consider Table 3. We make the following obser-
vations.

Consider a partition of 2�X,Y as follows: Let b{x} denote {a ∈ 2�X,Y : a↓X = {x}}. Similarly we define b{x̄} , and b�X . From 
Eq. (12), it follows that Q m↑(X,Y ) (a) = a for a ∈ b{x} , Q m↑(X,Y ) (a) = b for a ∈ b{x̄} , and Q m↑(X,Y ) (a) = c for a ∈ b�X .

Next, consider a refinement of the partition {b{x}, b{x̄}, b�X } as follows: Let b{x}×{y} = {a ∈ b{x} : a↓Y = {y}}. Similarly, we 
define b{x}×{ ȳ} , and b{x}×�Y . Similarly, we partition b{x̄} into b{x̄}×{y} , b{x̄}×{ ȳ} , and b{x̄}×�Y , and partition b�X into b�X ×{y} , 
b�X ×{ ȳ} , and b�X ×�Y . It follows from the definition of conditional embedding of mY |x into mx,Y that the values of Q mx,Y

are as shown in Table 3. The rows in this table are arranged by the partition {b{x}, b{x̄}, b�X } with each set separated by a 
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Table 3
BPAs, and CFs in Theorem 3.

a ∈ 2�X,Y mX (a↓x) mx,Y (a) Q X (a↓x) Q x,Y (a)

{(x, y)} a d
{(x, ȳ)} a e
{(x, y), (x, ȳ)} a − c a f

{(x̄, y)} b 1
{(x̄, ȳ)} b 1
{(x̄, y), (x̄, ȳ)} b − c b 1

{(x, y), (x̄, y)} c d
{(x, ȳ), (x̄, ȳ)} c e
{(x, y), (x̄, ȳ)} c d
{(x, ȳ), (x̄, y)} c e
{(x, y), (x, ȳ), (x̄, y)} c f
{(x, y), (x, ȳ), (x̄, ȳ)} c f
{(x, y), (x̄, y), (x̄, ȳ)} d − f c d
{(x, ȳ), (x̄, y), (x̄, ȳ)} e − f c e
�X,Y c f c f

solid horizontal line, and the refinement of this partition is shown using dashed lines. First, notice that Q mx,Y (a) = 1 for 
all a ∈ b{x̄} . This is because (mx,Y ⊕ mX=x′ )↓Y = ιY for all x′ ∈ �X such that x′ �= x. Second, Q mx,Y (a) = d for a ∈ b{x}×{y} , 
Q mx,Y (a) = e for a ∈ b{x}×{ ȳ} , and Q mx,Y (a) = f for a ∈ b{x}×{y, ȳ} .

The conditional entropy H(Q x,Y ) is computed as follows. Let H(Q x,Y )|b{x} denote the portion of H(Q x,Y ) from subsets in 
b{x} , etc. It follows from our observations above that:

H(Q x,Y )|b{x} = a(−d log(d) − e log(e) + f log( f )) = aH(mY |x), and

H(Q x,Y )|b{x̄} = 0.

Also,

H(Q x,Y )|b{x,x̄} = −c(−d log(d) − e log(e) + f log( f )) = −cH(mY |x).

Thus,

H(Q x,Y ) = (a − c)H(Q Y |x) = mX (x)H(Q Y |x). �
If �X = {x, ̄x} and assuming mX (x̄) > 0, it follows from Eq. (34) that conditional entropy of CF Q x̄,Y is given by

H(Q x̄,Y ) =
∑

a∈2�X,Y

(−1)|a| Q X (a↓X )Q x̄,Y (a) log(Q x̄,Y (a)).

If Y is also binary, then it follows from Theorem 3 that

H(mx̄,Y ) = mX ({x̄})H(mY |x̄). (42)

Also, as the contexts in mx,Y and mx̄,Y are disjoint, and the beliefs of the contexts are described by the same BPA mX

such that mX (x) > 0 and mX (x̄) > 0, we have the following result.

Theorem 4 (Conditional Entropy 2). Suppose X and Y are binary-valued variables. Suppose mX is a BPA for X such that mX (x) > 0
and mX (x̄) > 0. Suppose Q x,Y and Q x̄,Y are conditional CFs for Y given X = x and X = x̄, respectively. Let Q Y |X denote Q x,Y ⊕ Q x̄,Y . 
Then,

H(Q Y |X ) = mX ({x}) H(Y |x) + mX ({x̄}) H(Y |x̄). (43)

Notice that the result in Eq. (43) is analogous of the definition of conditional entropy in Eq. (6) in the probabilistic case.

Proof. Let �X = {x, ̄x} and �y = {y, ȳ}. Let Q mX ({x}) = a, Q mX ({x̄}) = b, and Q mX (�X ) = c, where a > c ≥ 0, b > c and 
a + b − c = 1. Let Q mY |x ({y}) = d, Q mY |x ({ ȳ}) = e, and Q mY |x ({y, ȳ}) = f , such that d ≥ f ≥ 0, e ≥ f , and d + e − f = 1. 
Finally, let Q mY |x̄ ({y}) = g , Q mY |x̄ ({ ȳ}) = h, and Q mY |x̄ ({y, ȳ}) = i, where g ≥ i ≥ 0, h ≥ i and g + h − i = 1. Given these 9 
parameters, the various BPA and CFs are shown in Table 4. In this table, mx,Y is obtained by conditional embedding of mY |x , 
mx̄,Y is obtained by conditional embedding of mY |x̄ , Q mY |X is obtained by Dempster combination of Q mx,Y and Q mx̄,Y . Given 
that mx,Y and mx̄,Y are obtained by conditional embedding, and the intersection of a focal element of mx,Y with a focal 
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Table 4
BPAs, and CFs in Theorem 4.

a m↑(X,Y )
X mx,Y mx̄,Y Q

m↑(X,Y )
X

Q mx,Y Q mx̄,Y Q mY |X Q mX,Y

{(x, y)} a d 1 d a · d
{(x, ȳ)} a e 1 e a · e
{(x, y), (x, ȳ)} a − c a f 1 f a · f

{(x̄, y)} b 1 g g b · g
{(x̄, ȳ)} b 1 h h b · h
{(x̄, y), (x̄, ȳ)} b − c b 1 i i b · i

{(x, y), (x̄, y)} c d g d · g c · d · g
{(x, y), (x̄, ȳ)} c d h d · h c · d · h
{(x, ȳ), (x̄, y)} c e g e · g c · e · g
{(x, ȳ), (x̄, ȳ)} c e h e · h c · e · h
{(x, y), (x, ȳ), (x̄, y)} g − i c f g f · g c · f · g
{(x, y), (x, ȳ), (x̄, ȳ)} h − i c f h f · h c · f · h
{(x, y), (x̄, y), (x̄, ȳ)} d − f c d i d · i c · d · i
{(x, ȳ), (x̄, y), (x̄, ȳ)} e − f c e i e · i c · e · i

�X,Y c f i c f i f · i c · f · i

element of mx̄,Y is always non-empty, the normalization constant K in the Dempster combination for these two BPAs is 
equal to 1.

Consider the partition of 2�X,Y as described in the proof of Theorem 4. Notice from Table 4 that:

H(mY |X )|b{x} = a(−d log(d) − e log(e) + f log( f ))

= a H(mY |x) (44)

Similarly, we can show that

H(mY |X )|b{x̄} = b H(mY |x̄) (45)

Finally,

H(mY |X )|b{x,x̄} = c((d · g) log(d · g) + (d · h) log(d · h) + (e · g) log(e · g))

+c((e · h) log(e · h) − ( f · g) log( f · g) − ( f · h) log( f · h))

−c((d · i) log(d · i) − (e · i) log(e · i) + ( f · i) log( f · i))

= −c((−d log(d))(g + h − i) − (e log(e))(g + h − i))

−c( f log( f ))(g + h − i))

−c((−g log(g))(d + e − f ) − h log(h)(d + e − f ))

−c(i log(i)(d + e − f ))

= −c (H(mY |x) + H(mY |x̄)) (46)

Thus,

H(mY |X ) = a H(mx,Y ) + b H(mx̄,Y ) − c(H(mmY |x) + H(mY |x̄))
= (a − c)H(mY |x) + (b − c)H(mY |x̄)
= H(mx,Y ) + H(mx̄,Y )

= mX ({x})H(mY |x) + mX ({x̄})H(mY |x̄) � (47)

We have stated and proved Theorems 3 and 4 only for the case of binary-valued variables X and Y . We do not have a 
proof for the general case.

5. Other properties of entropy for D-S belief functions

Some properties of our definition in Eq. (31) are as follows.

1. (Non-negativity) Suppose m is a BPA for X and suppose |�X | = 2. Then, H(m) ≥ 0.
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Proof. Let m({x1}) = p, m({x2}) = q, and m(�X ) = 1 − p − q, where 0 ≤ p, 0 ≤ q, and p + q ≤ 1. In this case, H(m) =
−(1 − q) log(1 − q) − (1 − p) log(1 − p) + (1 − p − q) log(1 − p − q). It is easy to verify that H(m) = 0 if p = 0 or q = 0, 
and ∂

∂ p H(m) = log(1 − p) − log(1 − p − q) ≥ 0, and ∂
∂q H(m) = log(1 − q) − log(1 − p − q) ≥ 0. Thus, H(m) ≥ 0. �

For |�X | > 2, H(m) does not satisfy the non-negativity property as shown in Example 6.

Example 6 (Negative entropy). Consider a BPA m for X with �X = {a, b, c} such that

m({a,b}) = m({a, c}) = m({b, c}) = 1

3
.

Then Q m is as follows:

Q m({a}) = Q m({b}) = Q m({c}) = 2

3
,

Q m({a,b}) = Q m({a, c}) = Q m({b, c}) = 1

3
, and

Q m({a,b, c}) = 0.

Then it follows that H(m) = −3 · 2
3 log( 2

3 ) + 3 · 1
3 log( 1

3 ) = log( 3
4 ) ≈ −0.415. �

Suppose m is a BPA for X with n = |�X |. We conjecture that

H(m) ≥ log

(
n

2(n − 1)

)
.

This is based on a BPA m whose focal elements are only doubleton subsets with equal probabilities. If the conjecture is 
true, H(m) would be on the scale from [log( n

2(n−1)
), log(n)], where n = |�X |, n ≥ 3. Also, as

lim
n→∞ log

(
n

2(n − 1)

)
= −1,

H(m) would be on the scale (−1, ∞)). Lack of non-negativity is not a serious drawback. Shannon’s definition of entropy 
for continuous random variables characterized by probability density functions can be negative [25].

2. (Quasi-consonant) Suppose m is a BPA for X . If m is quasi-consonant, then H(m) = 0. As consonant BPAs are also 
quasi-consonant, H(m) = 0 for consonant BPAs.

Proof. We will prove this property for the case |�X | = 3 (from which the idea for the proof for a general state space 
will be almost obvious). Suppose �X = {x, y, z}, and suppose m is quasi-consonant. Therefore, there exists x ∈ �X such 
that x belongs to all focal elements of m. Let Q denote the CF for X corresponding to BPA m. First, it is clear that 
Q ({x}) = 1. Moreover, for the remaining elements y, z of �X it holds

Q ({y}) =
∑

a∈2�X :a⊇{y}
m(a) =

∑
a∈2�X :a⊇{x,y}

m(a) = Q (X, Y ),

and in the same way also Q ({z}) = Q ({x, z}). Similarly, we can show that Q ({y, z}) = Q ({x, y, z}), and therefore

H(m) = −Q ({x}) log(Q ({x}))
+ (−Q ({y}) log (Q ({y})) + Q ({x, y}) log(Q ({x, y})))
+ (−Q ({z}) log(Q ({z})) + Q ({x, z}) log(Q ({x, z})))
+ (Q ({y, z}) log(Q ({y, z})) − Q ({x, y, z}) log(Q ({x, y, z})))

= 0.

For a general �X , the proof is similar. It is enough to realize that Q m({x}) = 1, and that for all a ∈ 2�X such that x /∈ a
it holds that Q m(a) = Q m(a ∪ {x}). If we exclude the singleton {x}, the mapping between sets containing x and those, 
which do not contain x is a bijection. Moreover, |a ∪ {x}| = |a| + 1, and therefore for all b ∈ 2�X there exist another set 
b′ ∈ 2�X (b and b′ differ from each other only in that one contains x, the other does not contain it), which contribute to 
the sum defining H(m) by the same value but with different signs. Therefore H(m) = −Q m({x}) log(Q m({x})) = 0. �
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3. (Vacuous extension) Vacuous extension of a CF does not change its entropy. If Q X is a CF for X , and Q ↑(X,Y )
X is the 

vacuous extension of Q X to (X, Y ), then H(Q ↑(X,Y )
X ) = H(Q X ).

Vacuous extension is a mathematical operation that has no bearing on the knowledge encoded in Q X . The knowledge 
that is encoded in Q X is exactly the same as the knowledge that is encoded in Q ↑(X,Y )

X . Thus, it is reassuring that our 
definition of entropy assigns the same value to both.

Proof. As stated in Section 3.2, vacuous extension can be stated in terms of Dempster’s rule as follows. Suppose Q X is 
a CF for X . Then, Q ↑(X,Y )

X = Q X ⊕ Q ιY , where ιY is the vacuous CF for Y . It follows from Corollary 1 that H(Q ↑(X,Y )
X ) =

H(Q X ) + H(Q ιY ) = H(Q X ). �
5.1. Computing entropy of a graphical model

In Section 1, we made some remarks about the advantages of decomposable entropy. We will demonstrate this by means 
of a small graphical model with three binary variables. We will compute the joint entropy of the graphical model without 
computing the joint belief function, using local computation as described in [27].

Example 7 (Computing entropy of a graphical model). We have to meet a colleague at Kansas City airport (MCI), who is flying 
out of Los Angeles (LAX). The flight has a layover in Denver (DEN). Consider the following variables: O D L A X (on-time 
departure from LAX) with possible values 1 (true) and 0 (false). Similarly, we have Boolean variables O D D E N (on-time 
departure from DEN) and O AMC I (on-time arrival at MCI). Clearly, O D L A X and O AMC I are conditionally independent given 
O D D E N . So, we have a directed acyclic graphical model: O D L A X → O D D E N → O AMC I . We assume we have the following 
BPAs/conditional BPAs:

• mL for O D L A X : mL({1}) = 0.6, mL({0}) = 0.3, mL({1, 0}) = 0.1.
• mD|1 for O D D E N given O D L A X = 1: mD|1({1}) = 0.8, mD|1({0}) = 0.1, mD|1({1, 0}) = 0.1.
• mD|0 for O D D E N given O D L A X = 0: mD|0({1}) = 0.1, mD|0({0}) = 0.8, mD|0({1, 0}) = 0.1.
• mM|1 for O AMC I given O D D E N = 1: mM|1({1}) = 0.9, mM|1({0}) = 0.05, mM|1({1, 0}) = 0.05.
• mM|0 for O AMC I given O D D E N = 0 is vacuous, i.e., mM|0({1, 0}) = 1.

Let m1,D denote the BPA for (O D L A X , O D D E N ) after conditional embedding of mD|1. Similarly, we have m0,D for 
(O D L A X , O D D E N ), and m1,M and m0,M for (O D D E N , O AMC I ). Let m denote the joint BPA for (O D L A X , O D L A X , O AMC I ), 
i.e., m = mL ⊕m1,D ⊕m0,D ⊕m1,M ⊕m0,M . It follows from Theorem 1 that H(m) = H(mL) + H(m1,D) + H(m0,D) + H(m1,M) +
H(m0,M). We can compute H(m1), H(m1,D) and H(m0,D) directly using Definitions 3 and 4.

To compute H(m1,M) and H(m0,M) using Definition 4, we need the marginal BPA for O D D E N . This can be done using 
local computation. If we marginalize O AMC I from m1,M ⊕m0,M , we get the vacuous BPA for O D D E N as both m1,M and m0,M

are conditionals. Next we marginalize O D L A X from mL ⊕ m1,D ⊕ m0,D , obtaining the marginal BPA for O D D E N , which can 
then be used for computing H(m1,M) and H(m0,M) (using Definition 4). Let mD denote the marginal BPA for O D D E N . The 
results are as follows (rounded to 3 decimal places):

• H(mL) ≈ 0.557, H(m1,D) ≈ 0.161, H(m0,D) ≈ 0.081.
• mD({1}) = 0.518, mD({0}) = 0.308, mD({1, 0}) = 0.174.
• H(m1,M) ≈ 0.097, H(m0,M) = 0.

Thus, the joint entropy of the graphical model is: H(m) = 0.557 + 0.161 + 0.081 + 0.097 + 0 = 0.895. �
6. Semantics of our definition of entropy

In previous sections, we have provided a mathematical definition of entropy of D-S belief functions, and some of its 
mathematical properties. In this section, we discuss the meaning of our definition of entropy and its significance.

Mathematical information theory was introduced by Claude Shannon in 1948 in the context of a theory of communica-
tion [25]. He starts with an information source consisting of a alphabet, i.e., a finite set of n symbols, and corresponding 
probabilities p1, . . . , pn . He poses the question of constructing a measure H(p1, . . . , pn) of “how much choice is involved 
in the selection of an event” or “how uncertain we are of the outcome.” He postulates three assumptions, called continu-
ity, monotonicity, and compound distributions (as described in Section 2), and using these assumptions proves a theorem 
that the only function H that satisfies the three assumptions is H(p1, . . . , pn) = −K

∑n
i=1 pi log(pi), where K is a positive 

constant that depends merely on the choice of units of measurement. Thus, Shannon’s entropy H(p1, . . . , pn) has two key 
semantics: a measure of the choice involved in the selection of a symbol from the given alphabet, which corresponds to the 
expected information received when learning a symbol from the alphabet, and a measure of the uncertainty in the outcome 
(of a random variable described by the PMF (p1, . . . , pn)).
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Fig. 1. Two measures of dissonance. If p denotes ∑y �=x P X (y), then the linear function is p, and the non-linear function is − log(1 − p). The x-axis has 
values of p ∈ (0, 1).

Given a PMF P X of X with state space �X , Shannon’s states a number of properties of the definition of H(P X ) that 
reinforces the semantic that H(P X ) is a measure of uncertainty in PMF P X .

1. H(P X ) = 0 if and only if there is a x ∈ �X such that P X (x) = 1. Otherwise it is positive.
2. H(P X ) has its maximum value (of log(n)) when P X is the equally-likely PMF (with P X (x) = 1/n for each x ∈ �X ).
3. Any change in P X that makes it more equal will increase its uncertainty. Thus, if P X (x1) < P X (x2), and we increase 

P X (x1) (by an amount smaller than P X (x2) − P X (x1)) and decrease P X (x2) by an equal amount so that P X (x1) and 
P X (x2) are more nearly equal, then H(P X ) will increase.

4. Suppose P X,Y is a joint PMF of (X, Y ) with marginals P X for X and P Y for Y . Then, H(P X,Y ) ≤ H(P X ) + H(P Y ), with 
equality only if X and Y are independent, i.e., P X,Y (x, y) = P X (x) · P Y (y), for all (x, y) ∈ �X ×�Y . Thus, the uncertainty 
in P X,Y is less than or equal to the sum of the individual uncertainties.

5. Shannon defines conditional entropy of P Y |X as in Definition 2, which is a measure of uncertainty in Y on an average 
when X is known, and shows that H(P Y |X ) = H(P X,Y ) − H(P X ). Thus, H(P X,Y ) = H(P X ) + H(P Y |X ), i.e., the uncertainty 
in P X,Y is the uncertainty in P X plus the uncertainty in P Y |X .

6. From the fourth and fifth properties, it follows that the uncertainty in P Y is greater than or equal to the uncertainty in 
P Y |X , i.e., the uncertainty in P Y is never increased by knowledge of X .

Bronevich and Klir [3] argue that Shannon’s entropy H(P X ) can also be interpreted as a measure of dissonance (or 
conflict). Their argument goes as follows. H(P X ) can be written as

H(P X ) = −
∑

x∈�X

P X (x) log

⎛
⎝1 −

∑
y �=x

P X (y)

⎞
⎠ . (48)

For each x ∈ �X , the term 
∑

y �=x P X (y) represents the total probability that conflicts with the probability P X (x) of state x. 
The function

Dis(x) = − log

⎛
⎝1 −

∑
y �=x

P X (y)

⎞
⎠ (49)

expresses the same conflict, but on a different scale (see Fig. 1). Thus, from Eqs. (48) and (49), Shannon’s entropy of P X

measures the expected value of dissonance in PMF P X .
Now, notice that all six properties of H(P X ) listed in the previous paragraph reinforce the idea that H(P X ) is a measure 

of dissonance in P X .

1. There is no dissonance in P X if there exists x ∈ �X such that P X (x) = 1.
2. There is maximum dissonance in an equally-likely PMF.
3. Any change in P X that makes it more equal will increase its dissonance.
4. Suppose P X,Y is a joint PMF of (X, Y ) with marginals P X for X and P Y for Y . Then the dissonance in P X,Y is less than 

or equal to the sum of the dissonance of P X and P Y , with equality only if X and Y are independent.
5. The dissonance in P X,Y is equal to the dissonance in P X plus the dissonance in P Y |X .
6. The dissonance in P Y is greater than or equal to the dissonance in P Y |X , i.e., the dissonance is never increased by 

knowledge of X .
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In probability theory, we are unable to distinguish between the semantics of uncertainty and the semantics of dissonance. 
In the D-S theory, the two semantics diverge. We have maximum uncertainty in the vacuous BPA ιX for X , but we have 
low (zero) dissonance. Vacuously extending BPA mX for X to BPA m↑(X,Y )

X for (X, Y ) does not increase its dissonance, but 
may increase its uncertainty. Quasi-consonant BPAs have low (zero) dissonance. It is our conjecture that the BPA with the 
smallest dissonance is the one where the focal elements are all doubletons with equal probabilities. Dissonance is measured 
on the scale (−1, ∞). Thus, negative entropy means lower dissonance than zero entropy, and zero entropy is lower than 
positive entropy.

In summary, our definition of entropy is a measure of dissonance, and not uncertainty. While we cannot distinguish 
between uncertainty and dissonance for probability theory, the semantics of these two terms diverge for the D-S theory. It 
is also our contention that the notion of dissonance is more fundamental in the D-S theory (in the sense that it decomposes) 
than the notion of uncertainty.

7. Comparison with other measures of dissonance

In this section, we compare our definition of entropy with some definitions from the literature that are similar to ours 
in the sense that entropy is a measure of dissonance rather than uncertainty.

7.1. Comparison with Höhle’s definition

Höhle [9] was one of the earliest to define entropy of a BPA.

Definition 5. Suppose m is a BPA for X . Höhle’s entropy of m, denoted by Ho(m), is defined as follows:

Ho(m) = −
∑

a∈2�X

m(a) log(Belm(a)). (50)

Notice that the summation in Eq. (50) can be restricted to the set of focal elements of m.
Some properties of Höhle’s definition of entropy are as follows. Ho(m) = 0 if and only if m is deterministic [5]. Thus, 

Ho(ιX ) = 0, but Ho(m) is not necessarily 0 for consonant BPAs m. Ho(m) is maximal (= log(|�X |) for the equiprobable 
Bayesian BPA mu for X [5]. There is no definition of conditional entropy, so the question of satisfaction of the compound 
distribution property is moot.

7.2. Comparison with Yager’s definition

Yager [32] proposes several measures of entropy for D-S belief functions and describes their properties. The definition 
that is closest to ours is based on a BPA and plausibility function representation of a belief function.

Definition 6 (Yager’s definition of entropy). Suppose m is a BPA for X with state space �X , and let Plm denote the plausibility 
function corresponding to m. Then, Yager’s entropy of m, denoted by H y(m) is defined as follows:

H y(m) = −
∑

a∈2�X

m(a) log(Plm(a)), for all a ∈ 2�X . (51)

Notice that the summation in Eq. (51) can be restricted to the set of focal elements of m.
Yager’s entropy has the following properties:

1. H y(m) ≥ 0. This follows from Eq. (51) and the fact that m(a) ≥ 0, and 0 ≤ Plm(a) ≤ 1.
2. If m is a consonant BPA, then H y(m) = 0. This is because for focal elements of m, Pl(a) = 1, and therefore, log(Pl(a)) =

0, and for non-focal elements of m, m(a) = 0.
3. If BPA m is such that for every pair of focal elements ai and a j of m, ai ∩ a j �= ∅, then H y(m) = 0. For such BPAs, if ai

is a focal element of m, then Plm(ai) = 1.
4. If mu is an equiprobable Bayesian BPA for X , then H y(mu) = log(|�X |). It is shown in [32] that H y(m) ≤ log(|�X |).

It is clear from the properties of Yager’s definition of entropy enumerated above that it has similar properties as our 
definition. The main difference is that Yager’s definition is not decomposable as demonstrated in Example 8.

Example 8 (Yager’s definition of entropy). Suppose BPA m for X is as in Example 3, and suppose conditional BPAs mY |x and 
mY |x̄ is as in Example 4. Then H y(m) = 0.705, H y(mY |X ) = 0.229, and H y(mX,Y ) = 1.436. Thus, H y(m) + H y(mY |X ) ≈
0.705 + 0.229 = 0.934 �= 1.436. Yager does not have a definition of conditional entropy, so we have used Yager’s definition 
of entropy for conditionals. It seems natural to weight the entropy of conditionals by weights m(a↓X ). If we do so, then 
H(mY |X ) = 0.023 and in this case it is still doesn’t satisfy the decomposition property. �
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7.3. Comparison with Smets’ definition

Smets [29] has a definition of entropy based on the commonality function as follows.

Definition 7 (Smets’ definition of entropy). Suppose Q is a CF for X corresponding to a non-dogmatic BPA m for X . Then, 
Smets’ entropy of Q , denoted by Ht(Q ) is defined as follows

Ht(Q ) = −
∑

a∈2�X

log (Q (a)) . (52)

As Q is assumed to be non-dogmatic, Q (a) > 0 for all a ∈ 2�X . If m is dogmatic, Ht(Q ) is defined as +∞. Our definition 
holds for all CFs. Also, our sum is an alternating sum whose sign depends on the cardinality of subset a. If m1 and m2 are 
two non-conflicting non-dogmatic BPAs for X , then Ht(m1 ⊕ m2) = Ht(m1) + Ht(m2). If ιX is the vacuous BPA for X , then 
Ht(ιX ) = 0. For consonant non-dogmatic BPAs, Ht(m) is not necessarily 0. There is no definition of conditional entropy. The 
main virtue of Smets’ definition is the additivity property for the class of non-conflicting non-dogmatic CFs.

8. Summary & conclusion

The most important property of our definition of entropy is the compound distributions property. Such a property is not 
satisfied by any of the past definitions of entropy starting from Höhle in 1982 [9] to Jiroušek-Shenoy in 2018 [11]. A review 
of most definitions of entropy for BPAs can be found in [11]. We conjecture that our definition in this paper is the only one 
that satisfies the compound distributions property.

An additivity property, which states that H(mX ⊕ mY ) = H(mX ) + H(mY ), where mX and mY are distinct BPAs for X and 
Y , respectively, and which is satisfied by all past definitions, is too weak to be of much significance. Even definitions that 
are inconsistent with Dempster’s combination rule (e.g., [19], [8], and [12]) satisfy this property. As an alternative, we have 
proposed a strong probability consistency property (Theorem 2), which is satisfied by our definition.

We should also note that the compound distributions property only applies to belief functions that are constructed from 
marginals and conditional belief functions. Given an arbitrary joint belief function, it is not always possible to factor it into 
marginals and conditionals that produce the given joint. Thus, our new definition is of particular interest for the class of 
joint belief functions that do factor into marginals and conditionals. In particular, it applies to graphical belief functions that 
are constructed from directed acyclic graphs models, also known as Bayesian networks, but whose potentials are described 
by belief functions [2].

One virtue of the compound distributions property is that we can compute the entropy of the full joint belief function 
described by a graphical model (assuming that each conditional only includes a small number of variables) even though it 
may be intractable to compute the joint belief function.

We have several conjectures regarding properties of our definition that need to be resolved. First, we conjecture that for 
X with n = |�X | ≥ 3, a BPA with the smallest entropy is one that has focal elements of size 2 with values 1/

(n
2

)
. Also, we 

conjecture that an equiprobable Bayesian BPA has the highest entropy (= log(n)). Finally, we conjecture that Theorems 3
and 4 hold also for non-binary valued variables X and Y . In Section 7, we compare our definition of entropy with those by 
Höhle [9], Yager [32], and Smets [29]. A more complete comparison with all definitions of entropy of D-S belief function 
literature remains to be done.
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