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ABSTRACT
Recently, a new way of computing an expected value in the Dempster-Shafer theory
of evidence was introduced by Prakash P. Shenoy. Up to now, when they needed
the expected value of a utility function in D-S theory, the authors usually did it
indirectly: first, they found a probability measure corresponding to the considered
belief function, and then computed the classical probabilistic expectation using this
probability measure. To the best of our knowledge, Shenoy’s operator of expecta-
tion is the first approach that takes into account all the information included in
the respective belief function. Its only drawback is its exponential computational
complexity. This is why, in this paper, we compare five different approaches defining
probabilistic representatives of belief function from the point of view, which of them
yields the best approximations of Shenoy’s expected values of utility functions.

KEYWORDS
Expectation, belief function, probabilistic transform, commonality function, utility,
ambiguity, Choquet integral.

1. Introduction

Criteria for finding optimal decisions are usually based on a maximum expected utility
principle. As Glenn Shafer [Shafer(1986)] wrote already in 1986:

The controversy raised by this book (here he meant Savage’s book [Savage(1954)])
and Savage’s subsequent writings are now part of the past. Many statisticians now use
Savage’s idea of personal probability in their practical and theoretical work. [. . . ] To do
otherwise is to violate a canon of rationality.

This reflects the fact that the maximum expected utility principle is often used not
only when the knowledge from the respective field of application is embodied in a
probabilistic model but also when the applied model is built within the framework of
belief functions. Nevertheless, to compute the necessary value of expected utility, the
respective belief function is usually transformed into an appropriate probability mea-
sure. For this, several procedures were designed - we call them probability transforms
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in this paper. As advocated by Cobb and Shenoy, the only one, which is compati-
ble with the Dempster-Shafer theory of belief functions is the plausibility transform
[Cobb and Shenoy(2006)]. Other transforms are more likely compatible with the the-
ory of belief functions interpreted as generalized probability [Halpern and Fagin(1992)].
This interpretation reflects the fact that a belief function specifies a convex set of prob-
ability measures, which is called a credal set . In this paper we consider widely used
pignistic transform advocated by Philippe Smets [Smets(2005)], two others that are
usually omitted in the context of belief function: maximum entropy and Perez’ barycen-
ter [Perez(1985)], and a new transform, which is a convex combination of belief and
plausibility functions.

In our best knowledge, the first idea of how to compute an expected value for a
belief function directly, i.e., avoiding its transformation into a probability measure, is
due to Prakash P. Shenoy [Shenoy(2018)]. From the theoretical point of view, it is a
concept deserving a further investigation. As we will see in the following paragraph, it
is defined with the help of commonality functions, which means that it suffers from a
great computational complexity. Though there exists a probability transform yielding
exactly the same expectations as Shenoy’s operator (see Section 3), the computation
of the respective probability measure is time demanding, too, so that it is for practical
problems intractable. Therefore, in this paper, we study a problem whether any of the
probability transforms, which can be easily computed from the respective probability
assignment, reasonably approximates the results yielded by Shenoy’s new operator.

To achieve this goal, the rest of the paper is organized as follows. The next sec-
tion is devoted to the introduction of all the necessary notions including Shenoy’s
expectation operator. The notation used in this paper is adopted from [Shenoy(2018),
Shenoy(2019)]. In Section 3, we show that Shenoy’s expectation, if applied to a utility
function, can be computed in an alternative way. Nevertheless, since this alternative
way is also of exponential complexity, Sections 5 and 6 are devoted to the compari-
son of five approximation processes based on five different probabilistic transforms. In
Sections 5, we study the behavior of these approaches when applied to a specific class
of belief function models describing situations in which human decision-makers evince
their ambiguity aversion, and in Section 6, the comparison is made with the help of
randomly generated basic assignments.

2. Notation

Suppose X is a random variable with a finite state space ΩX . Let 2ΩX denote the set
of all non-empty1 subsets of ΩX . A basic probability assignment (basic assignment for
short) m for X is a function m : 2ΩX → [0, 1] such that∑

a∈2ΩX

m(a) = 1. (1)

The subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. If m has
only one focal element (it means that m(a) = 1 for some a ∈ 2ΩX ) then m is said to
be deterministic. Among them, a special position is held by a vacuous basic assign-
ment denoted by ιX , for which ιX(ΩX) = 1. This basic assignment represents a total

1Notice that, in correspondence with Shenoy [Shenoy(2018)], we consider only normal basic assignments (i.e.,

basic assignments for which Equality 1 holds true), and therefore the exclusion of the empty set from 2ΩX

simplifies some of the formulas.
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ignorance.
If all focal elements of m are singletons (one-element subsets) of ΩX , then we say

m is Bayesian. In this case, m corresponds to a probability measure. If m is a convex
combination of a Bayesian basic assignment with a vacuous basic assignment, then we
say m is quasi-Bayesian. In this case, focal elements are singletons and the whole ΩX .

Alternatively, a basic assignment m can be equivalently specified by any of the
following three other functions. First two are the well-known belief and plausibility
functions Belm and Plm that are defined

Belm(a) =
∑

b∈2ΩX : b⊆a

m(b), P lm(a) =
∑

b∈2Ω:b∩a 6=∅

m(b),

for all a ∈ 2ΩX . In this paper, we need also a commonality function for m, which is
defined for all a ∈ 2ΩX

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b).

It is obvious directly from their definitions that for all a ∈ 2ΩX , Bel(a) ≤ Pl(a).
For singletons, commonality and plausibility functions coincide:

Qm({x}) = Plm({x}).

Since we consider only normal basic assignments for which
∑

a∈2ΩX m(a) = 1, it is
known ([Shafer(1976)]) that ∑

a∈2ΩX

(−1)|a|+1Qm(a) = 1. (2)

As said above, these types of representation are equivalent to each other in the sense
that if knowledge is represented by any of these functions, one can uniquely compute
the remaining three using the following inverse transformations:

Belm(a) = 1− Plm(ΩX \ a);

m(a) =
∑

b∈2ΩX : b⊆a

(−1)|a\b|Belm(b);

m(a) =
∑

b∈2ΩX : b⊇a

(−1)|b\a|Qm(b).

A credal set interpretation of belief functions is based on the fact that basic as-
signment m specifies the following convex set of probability measures P on ΩX (PΩX

denote the set of all probability measures on ΩX):

P(m) =

{
P ∈ PΩX

:
∑
x∈a

P (x) ≥ Belm(a) for ∀a ∈ 2ΩX

}
.
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From this, one can easily deduce that for all P ∈ P(m), and any a ∈ 2ΩX

Belm(a) ≤ P (a) ≤ Plm(a).

If m is Bayesian, then P(m) contains just one probability measure.
One can see directly from the definitions that belief function Belm (plausibility

function Plm) is superadditive (subadditive), which means that for disjoint a, b ∈ 2ΩX ,
Belm(a ∪ b) ≥ Belm(a) +Belm(b) (Plm(a ∪ b) ≤ Plm(a) + Plm(b), respectively).

Similarly to a probability measure on ΩX , basic assignment (or any other above-
introduced alternative function) expresses knowledge about chances that x ∈ ΩX

occurs. Therefore, knowing a real-valued utility function2 u : ΩX → R, one should
be able to compute the expected value of this utility under the knowledge repre-
sented by a basic assignment m. It has been proposed to compute such an expected
value with the help of the Choquet integral [Choquet(1953)], which is known to have
some advantageous properties especially for superadditive and subadditive capacities
[Gilboa and Schmeidler(1994)]. In particular for getting the respective upper and lower
limits, one can use the Choquet integral of the utility function with respect to the cor-
responding plausibility and belief functions [Coletti, Petturiti, and Vantaggi(2019)].
To compute the Choquet integral of utility function u with respect to the belief func-
tion, consider the set {u(x) : x ∈ ΩX} of all values of the considered utility function u
and order them, so that

{u(x) : x ∈ ΩX} = {α1, α2, . . . , α`},

and α1 < α2 < . . . < α`. Then

∫
C u dBelm =

∑̀
i=1

αi(Belm(ai)−Belm(ai+1)),

where ai = {x ∈ ΩX : u(x) ≥ αi} for i = 1, 2, . . . , ` (a`+1 = ∅). For its application to
decision making see, e.g., [Smets(1981)] and [Coletti, Petturiti, and Vantaggi(2015)].
Its main disadvantage is that the Choquet integral is not linear in its integrand.

In this paper, we accept as a proper expected value of a real-valued function a
result obtained by the application of a new expectation operator proposed by Shenoy
in [Shenoy(2018)], and more deeply studied in [Shenoy(2019)].

For a real-valued function g : 2ΩX −→ R, Shenoy’s expected value of g with respect
to m is defined by the formula

Em(g) =
∑

a∈2ΩX

(−1)|a|+1g(a)Qm(a). (3)

To be able to apply Formula (3) for computation of expected utility for u : ΩX → R,
we should extend this utility function defined on ΩX to a function defined on 2ΩX .
We denote this extension û. Let us stress that to keep the validity of properties of
the expected values proven by Shenoy in [Shenoy(2019)] we have to follow the idea
he uses when introducing his function vm, which is nothing else than an “extension”
of his real-valued state space ΩX to all subsets of ΩX (assigning a real value to each

2R denotes the set of real numbers.
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subset of ΩX). Therefore, we define for all a ∈ 2ΩX

û(a) =

∑
x∈a

u(x)Qm({x})∑
x∈a

Qm({x})
(4)

(in case that
∑

x∈aQm({x}) = 0 the value û(a) does not influence the resulting ex-
pected value of u and therefore we can choose any reasonable value; for example
û(a) = (minx∈a{u(x)}+ maxx∈a{u(x)})/2). Thus, in this paper, by Shenoy’s expected
utility u with respect to m we understand the value

Em(u) =
∑

a∈2ΩX

(−1)|a|+1û(a)Qm(a), (5)

where, let us stress once more, û is an extension of u according to Formula (4).

There is a long list of properties of Shenoy’s expected utility proven in Section 4.3
of [Shenoy(2019)]. In this paper, we need just the following two3:

(S1) (Linearity of expected value) Suppose that for all x ∈ ΩX

û(x) = αu1(x) + βu2(x) + δ,

where α, β and δ are real constants. Then, for any basic assignment m

Em(û) = αEm(u1) + βEm(u2) + δ.

(S2) (Bounds on expected value)

min{u(x) : x ∈ ΩX} ≤ Em(u) ≤ max{u(x) : x ∈ ΩX}.

3. Probabilistic representation of Shenoy’s expectation

When computing Shenoy’s expected utility Em(u) according to Formula (3), one can
easily get into troubles. Let X be a vector of six binary variables, i.e., ΩX is a state
space of six-dimensional boolean vectors. Thus, |ΩX | = 26 = 64, which means that
the extension û of utility function u must be computed for |2ΩX | = 264 − 1 nonempty
subsets of ΩX , which is hopelessly intractable. Therefore, an opposite approach comes
into consideration. Instead of extending the considered utility function from ΩX to
2ΩX and computing Shenoy’s expected utility Em(u) using Eq. (5), one can find a
probability measure Sh Pm, for which

Em(u) =
∑
x∈ΩX

u(x)Sh Pm(x).

3Though these assertions are not exactly in this wording among those proven in Section 4.3 of [Shenoy(2019)],

one can easily get them from statements 3 (Expected value of a function of X) and 7 (Bounds on expected
value), respectively, using the following simple modification: Shenoy considers real-valued state space, i.e.,

ΩX ⊂ R. Therefore, to show the validity of the above-presented statements (1) and (2) it is enough to consider
Ω̂X = {g(x) : x ∈ Ω} with m̂(y) =

∑
x∈ΩX :g(x)=y m(x). Recall that this transformation is correct because we

extend the considered utility function for all subsets of ΩX in the same way as Shenoy defines his function vm.
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The existence of such a measure is guaranteed by the following assertion.

Proposition 3.1. Consider a basic assignment m for X with a finite state space ΩX .
Define a probability measure Sh Pm for all x ∈ ΩX by Sh Pm(x) = Em(wx), where
the real functions wx : ΩX → R are defined

wx(y) =

{
1, if y = x,

0, otherwise.
(6)

Then for any utility function u : ΩX → R the following equality holds

Em(u) =
∑
x∈ΩX

u(x)Sh Pm(x).

Proof. Notice that the considered utility function can be expressed as a weighted sum
of functions wx: u(x) =

∑
x∈ΩX

u(x)wx. Therefore, due to Statement (S1) (Linearity
of expected value) from the preceding section

Em(u) = Em

(∑
x∈ΩX

u(x)wx

)
=
∑
x∈ΩX

u(x)Em(wx) =
∑
x∈ΩX

u(x)Sh Pm(x).

Thus, to prove the proposition, it remains to prove that Sh Pm(x) is a probability
measure. Sh Pm(x) is nonnegative because it is an expected value of nonnegative
“utility” function wx – see Statement (S2) (Bounds on expected value). Taking the
constant utility function u1(x) = 1, one gets

Em(u1) = Em

(∑
x∈ΩX

1wx

)
=
∑
x∈ΩX

Em(wx) =
∑
x∈ΩX

Sh Pm(x),

and, simultaneously, using Statement (S2) (Bounds on expected value), Em(u1) = 1,
which finishes the proof. �

The presented Proposition 3.1 theoretically gives instructions on how to find a
probability measure with the help of which one can compute expected values for utility
functions even for state spaces of high dimensions. However, the process of computation
of the probability measure is computationally too time and space demanding even for
small dimensions. Therefore, the rest of the paper is devoted to the comparison of
several probability transforms that are for this purpose used. We will concentrate on
their ability to approximate Shenoy’s operator of expectation.

4. Probability transforms

In this paper, we study the properties of the following five mappings that assign a
probability measure to each basic assignment. For other probability transforms see,
e.g., [Cuzzolin(2012)]. Perhaps, the most famous is a pignistic transform, defined for
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all x ∈ ΩX by the formula

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a|
.

Another transform is so called plausibility transform, which is a normalized plausibility
function on singletons. Formally it is defined for all x ∈ ΩX

Pl Pm(x) =
Plm({x})∑

y∈ΩX

Plm({y})
.

The main reason why we take this transform into consideration is that, as showed
in [Cobb and Shenoy(2006)], it is the only transform compatible with the Dempster’s
rule of combination.

The other three probability transforms select a specific representative from the
corresponding credal set. One is the Maximum entropy element of P(m), i.e.,

Me Pm(x) = arg max
P∈P(m)

H(P ),

where H(P ) is the Shannon entropy of probability measure P

H(P ) = −
∑
x∈ΩX

P (x) log2 P (x).

The second is the Perez’ barycenter [Perez(1985)] that has undeservedly fallen into
oblivion:

Bac Pm(x) = arg min
P∈P(m)

max
Q∈P(m)

Div(Q;P ),

where Div(Q;P ) denote the well-known relative entropy (also called Kullback-Leibler
divergence)

Div(Q;P ) =


+∞, if ∃ x ∈ ΩX : P (x) > 0 = Q(x);∑
x∈ΩX

P (x) log
(
P (x)
Q(x)

)
, otherwise3.

The third one is the element of the credal set that can be expressed as a convex
combination of belief and plausibility functions

Cs Pm(x) = δBelm({x}) + (1− δ)Plm({x}),

where

δ =

(∑
x∈ΩX

Plm({x})
)
− 1(∑

x∈ΩX
Plm({x})

)
−
(∑

x∈ΩX
Belm({x})

) .
3We always take 0 log

(
0
0

)
= 0.
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In a way, it is surprising that we have not found this probability transform in the
literature, though, in our opinion, it suggests itself by its simplicity. Its interesting
property is expressed in the following assertion.

Proposition 4.1. For any quasi-Bayesian basic assignment m for X (with a finite
state space ΩX)

Cs Pm(x) = Bet Pm(x).

Proof. For quasi-Bayesian m, obviously, Belm({x}) = m({x}), and Plm({x}) =
m({x}) +m(ΩX) = Belm({x}) +m(ΩX). Therefore,

Cs Pm(x) = δBelm({x}) + (1− δ)Plm({x})
= δBelm({x}) + (1− δ)(Belm({x}) +m(ΩX))

= Belm({x}) + (1− δ)m(ΩX).

It means that the mass m(ΩX) is uniformly divided among the all elements of ΩX .
This is also the property of the pignistic transform, which, for quasi-Bayesian m, can
be rewritten into the form

Bet Pm(x) = Belm({x}) +
m(ΩX)

|ΩX |
.

�

As said above, the next two sections are devoted to the comparison of Shenoy’s
expected values with the approximations computed as probabilistic expected values
considering the above-introduced five probability transforms. First, we do it for ba-
sic assignments describing situations under which human decision-makers evince the
ambiguity aversion (like the famous Ellsberg’s paradox [Ellsberg(1961)]).

5. Basic assignments with strong ambiguity

The examples presented in this section describe situations under which psychologists
study human decision making under ambiguity. We consider situations when a color
ball is drawn from an urn. We consider ΩX = {r, b, y, g, w}, and the random variable
X achieves its value in correspondence whether the color of a drawn ball is red, blue,
yellow, green, or white.

Though quite uninteresting from the point of view of this paper (we will see later
why it appears uninteresting), we cannot avoid the vacuous basic assignment ιX rep-
resenting a total ignorance. In this case, we do not have any other information about
the balls in the urn but

• there is at least one ball in the urn (∅ is excluded from 2ΩX );
• the urn contains only balls of the specified colors.

We will also consider a situation described by the famous Ellsberg’s example
[Ellsberg(1961)]. He considers the urn containing ninety balls, thirty of them are red,
the remaining balls are either blue or yellow with unknown proportion. It may even
happen that all of the remaining sixty balls are of the same color – blue or yellow.
This situation is well described by a basic assignment me with two focal elements:
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me({r}) = 1
3 and me({b, y}) = 2

3 . (For a totally different treatment of this problem
see [Pfeifer and Pankka(2017)].)

Like the Ellsberg’s example, a one-red-ball example [Jiroušek and Shenoy(2017)]
describes a situation in which the behavior of human decision-makers is considered
paradoxical. In this example we know the total number of balls in the urn (it equals
n) and that one and only one ball is red. The proportion of the remaining colors in
the urn is unknown. The situation is depicted by basic assignment mr,n with two focal
elements: mr,n({r}) = 1

n and mr,n({b, y, g, w}) = n−1
n . In this section we consider

several such basic assignments with different total numbers of balls. Thus, e.g., for
n = 5 we consider mr,5({r}) = 1

5 and mr,5({b, y, g, w}) = 4
5 .

An interesting situation is got when we consider a basic assignment expressing the
knowledge that, like in the Ellsberg’s example, only balls of three colors (red, blue,
and yellow) are in the urn, and we know that at least 20 % of them are red and
not more than 30 % are yellow. This knowledge is expressed by the following basic
assignment mq: mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3. Notice that in
this case the focal elements of mq are nested ({r} ⊆ {r, b} ⊆ {r, b, y}) , and therefore
the corresponding belief function is known to be a possibilistic measure.

Another possibilistic measure is the following basic assignment mp, for which:
mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3, mp({r, b, y, g}) = 0.2, mp(Ω) =
0.2.

The last basic assignment considered in this section is pseudo-Bayesain, i.e., the
focal elements are only singletons and the whole space ΩX : mb({r}) = 0.5, mb({b}) =
0.05, mb({y}) = 0.05, mb({g}) = 0.05, mb({w}) = 0.05, mb(Ω) = 0.3.

Table 1.: Basic assignments

denotation values of all focal elements

ιX ιX(Ω) = 1

me me({r}) = 1
3 , me({b, y}) = 2

3

mr,3 mr,3({r}) = 1
3 , mr,n({b, y, g, w}) = 2

3

mr,5 mr,5({r}) = 1
5 , mr,n({b, y, g, w}) = 4

5

mr,15 mr,15({r}) = 1
15 , mr,n({b, y, g, w}) = 14

15

mq mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3

mp mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3,

mp({r, b, y, g}) = 0.2, mp(Ω) = 0.2

ma ma({r, b}) = 0.2, ma({y, g, w}) = 0.3, ma(Ω) = 0.5

mb mb({r}) = 0.5, mb({b}) = 0.05, mb({y}) = 0.05,

mb({g}) = 0.05, mb({w}) = 0.05, mb(Ω) = 0.3

For a survey of all basic assignments, which are considered in this section see Table 1.
In this table, only focal elements are presented. In other words, if a set a ∈ 2Ω does
not explicitly appear in the table, it means that its corresponding basic assignment
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equals 0. The corresponding probability transforms are in Table 2.
For the purpose of this section, we use just eight utility functions; see Table 3.

Notice that the first four utility functions correspond to the Ellsberg’s example.
In this section, we describe results obtained from the experimental computations.

For each pair, a basic assignment from Table 1 and a utility function from Table 3 we
compute six values:

• Shenoy’s expected utility value;
• expected utility value computed using the pignistic transform;
• expected utility value computed using the plausibility transform;
• expected utility value computed using the maximum entropy transform;
• expected utility value computed using the Perez’ barycenter transform.
• expected utility value computed using the convex combination transform.

Each expected utility value computed using a probability transform is then com-
pared with the corresponding Shenoy’s expected utility value. Thus, for each prob-
ability transform, we receive 8 × 9 = 72 matrix of values expressing the difference
between the results achieved with the help of the corresponding probability transform
and those achieved by Shenoy’s operator. This difference is expressed in percentage:
by how many percents the expected value computed with the help of the respective
probability transform differs from Shenoy’s expected value. To make it visually more
attractive, we depict in Figure 1 each such matrix by an 8 × 9 table, where each dif-
ference corresponds to one box. The darker the box, the greater the corresponding
difference.

We see that the first row in all tables corresponding to ιX is empty. It means that
under the condition of total ignorance all the considered approaches yield the same
expected utility (all probability transforms give the uniform probability measure).
On the other side, one can immediately see that none of the considered probability
transforms yields the same expected utility values as Shenoy’s expectation operator
for mq,mp,ma and mb. From a brief look, one can guess that the convex combination
and pignistic transforms may yield the best approximations and that the behavior of
the plausibility transform is from this point of view the least felicitous.

Another (for some readers a more appropriate) comparison of the five considered
probability transforms may be got with the help of the Kullback-Leibler divergence. In
Table 4, rows show results achieved for different basic assignment from Table 1. Recall
that values of divergence Div(Q;Sh Pm) express the dissimilarity of Sh Pm and Q,
where Q stands for probability measures received from the respective basic assignment
m by the considered five probability transforms, and Sh Pm denote the probability
measure received by the process described in Proposition 3.1. The higher these values,
the greater the difference between Sh Pm and Q. The respective probability measures
are in Table 2. The comparison of values from Table 4 confirms the conclusions men-
tioned in the previous paragraph: in general, the convex combination and pignistic
transforms yield the best approximations, the plausibility transform is from this point
of view the worst. Nevertheless, one has to take these simple conclusions with great
care. A more detailed look at Table 4 shows that for mq the best approximation is
given by the plausibility transform.

10



Table 2.: Probability measures corresponding to basic assignments

basic type of corresponding probability measure

assignment transform r b y g w
Sh Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Bet Pm 0.2000 0.2000 0.2000 0.2000 0.2000

ιX Pl Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Me Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Bac Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Cs Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Sh Pm 0.3333 0.3333 0.3333 0.0000 0.0000
Bet Pm 0.3333 0.3333 0.3333 0.0000 0.0000

me Pl Pm 0.2000 0.4000 0.4000 0.0000 0.0000
Me Pm 0.3333 0.3333 0.3333 0.0000 0.0000
Bac Pm 0.3333 0.3333 0.3333 0.0000 0.0000
Cs Pm 0.3333 0.3333 0.3333 0.0000 0.0000
Sh Pm 0.3333 0.1666 0.1666 0.1666 0.1666
Bet Pm 0.3333 0.1666 0.1666 0.1666 0.1666

mr,3 Pl Pm 0.1111 0.2222 0.2222 0.2222 0.2222
Me Pm 0.3333 0.1666 0.1666 0.1666 0.1666
Bac Pm 0.3333 0.1666 0.1666 0.1666 0.1666
Cs Pm 0.3333 0.1666 0.1666 0.1666 0.1666
Sh Pm 0.4676 0.3405 0.1918 0.0000 0.0000
Bet Pm 0.5500 0.3500 0.1000 0.0000 0.0000

mq Pl Pm 0.4762 0.3810 0.1429 0.0000 0.0000
Me Pm 0.3500 0.3500 0.3000 0.0000 0.0000
Bac Pm 0.6004 0.3212 0.0784 0.0000 0.0000
Cs Pm 0.5368 0.3368 0.1263 0.0000 0.0000
Sh Pm 0.3121 0.2421 0.1923 0.1430 0.1106
Bet Pm 0.3900 0.2900 0.1900 0.0900 0.0400

mp Pl Pm 0.3125 0.2812 0.2188 0.1250 0.0625
Me Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Bac Pm 0.4206 0.2924 0.1752 0.0777 0.0341
Cs Pm 0.3613 0.2613 0.2032 0.1161 0.0581
Sh Pm 0.2130 0.2130 0.1913 0.1913 0.1913
Bet Pm 0.2000 0.2000 0.2000 0.2000 0.2000

ma Pl Pm 0.1842 0.1842 0.2105 0.2105 0.2105
Me Pm 0.2000 0.2000 0.2000 0.2000 0.2000
Bac Pm 0.1742 0.1742 0.2172 0.2172 0.2172
Cs Pm 0.1842 0.1842 0.2105 0.2105 0.2105
Sh Pm 0.5154 0.1212 0.1212 0.1212 0.1212
Bet Pm 0.5600 0.1100 0.1100 0.1100 0.1100

mb Pl Pm 0.3636 0.1591 0.1591 0.1591 0.1591
Me Pm 0.5000 0.1250 0.1250 0.1250 0.1250
Bac Pm 0.5393 0.1152 0.1152 0.1152 0.1152
Cs Pm 0.5600 0.1100 0.1100 0.1100 0.1100
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Table 3.: Utility functions

r b y g w

u1 100 0 0 0 0
u2 0 100 0 0 0
u3 100 0 100 0 0
u4 0 100 100 0 0
u5 0 100 200 300 0
u6 0 100 0 200 0
u7 100 0 0 200 100
u8 50 150 70 220 30

Table 4.: Kullback-Leibler divergences

basic Div( · ;Sh Pm)

assignment Bet Pm Pl Pm Me Pm Bac Pm Cs Pm

ιX 0 0 0 0 0
me 0 0.0437 0 0 0
mr,3 0 0.1336 0 0 0
mr,5 0 0.0810 0 0 0
mr,15 0 0.0270 0 0 0
mq 0.0337 0.0092 0.0423 0.0611 0.0162
mp 0.0547 0.0184 0.0663 0.0770 0.0234
ma 0.0014 0.0069 0.0014 0.0126 0.0009
mb 0.0040 0.0465 0.0005 0.0011 0.0009

average 0.0104 0.0407 0.0123 0.0169 0.0046

6. Comparison on randomly generated basic assignments

In addition to the computational experiments described in the previous Section, we
also realized comparisons with randomly generated basic assignments. Let us stress at
the very beginning that, because of the exponential complexity of computation Sh Pm,
all the comparisons presented were done for five-element state space ΩX only.

Because of its relative simplicity following (among others) from Proposition 4.1,
and because of its popularity in applications, we start comparisons with a class of
quasi-Bayesian basic assignments. We randomly generated 100 quasi-Bayesian basic
assignments, for each of them, we found the corresponding Sh Pm and computed the
respective probability transforms. The average divergences expressing dissimilarity of
Sh Pm and the computed probability transforms are depicted in Table 5. In this table,
we present not only the average Kullback-Leibler divergence but also the average total
variance

V ar(Q;P ) =
∑
x∈ΩX

|q(x)− p(x)|,

which is preferred by some authors. From this table, one can see that, in this very spe-
cial situation, Perez’ barycenter is the best approximation of Sh Pm. It holds not only
on average; for 97 quasi-Bayesian basic assignments (from 100 randomly generated)

12
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Figure 1.: Relative differences between Shenoy’s expected utility values and those
computed using probability transforms

Perez’ barycenter approximated Sh Pm best.
However, quite different results were achieved in a general case. We randomly gen-

erated 300 basic assignments for |ΩX | = 5. Reflecting the fact that in practical appli-
cations one usually defines basic assignments with a limited number of focal elements,
we put on the randomly generated basic assignments the following restrictions: 100 of
them did not have more than 3 focal elements, 100 of them did not have more than
6 focal elements and 100 of the did not have more than 11 focal elements. Since we
did not find an interesting difference concerning the number of focal elements, in what
follows we refer to the whole group of 300 basic assignments.

Again, for each randomly generated basic assignment, we computed the correspond-
ing Sh Pm, and all the five considered probability transforms: pignistic and plausibility
transforms, the maximum entropy representative, Perez’ barycenter and the convex
combination transform. The corresponding average values of the Kullback-Leibler di-
vergence and the total variance for the whole group of 300 randomly generated basic
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Table 5.: Average of divergences for 100 randomly generated quasi-Bayesian basic
assignments

Div( · ;Sh Pm) Var( · ;Sh Pm)
Bet Pm = Cs Pm 0.0041 0.0549

Pl Pm 0.0070 0.0858
Me Pm 0.0131 0.1087
Bac Pm 0.0004 0.0152

assignments are shown in Table 6. In contrast to the results concerning quasi-Bayesian
basic assignment, we do not see a strictly“dominant” probability transform. The aver-
age divergences from Table 6 are neither too reflective of the numbers, how many times
the individual probability transforms approximated the probability measure Sh Pm

best, which is reported in the last column of Table 6. I.e., pignistic transform yielded
53x (out of 300 basic assignments) the best approximation of the probability mea-
sure Sh Pm, plausibility transform” 74x, and so on (notice the sum of these numbers
exceeds 300 because it happens quite often that two or more probability transforms
yield the same probability measure). In a way, the numbers from Table 6 may slightly
support the observation from the previous Section: the convex combination and the
pignistic transforms may yield better approximations than other probability trans-
forms.

Table 6.: Average of divergences for 300 randomly generated basic assignments

Div( · ;Sh Pm) Var( · ;Sh Pm)
Bet Pm 0.0245 0.1655 53
Pl Pm 0.0315 0.1994 74
Me Pm 0.0357 0.1868 104
Bac Pm 0.0309 0.1835 44
Cs Pm 0.0226 0.1597 92

7. Conclusions

We showed that Shenoy’s expected utility can be computed in two ways: either ex-
tending the utility function to whole 2ΩX and computing its expected value using
Shenoy’s Formula (3), or finding the respective probability measure by the process de-
scribed in Proposition 3.1, and computing the respective probabilistic expected value.
However, because of their great computational complexity, both these procedures can
be used only for small examples. Therefore, we considered five probability transforms
that were, in our opinion, the best candidates from all the probability transforms de-
scribed in the literature, and made a number of computational experiments trying to
answer the question whether any of them is better than the others regarding their
ability to approximate Shenoy’s expectation. Based on specifically selected nine basic
assignments described in Section 5, it seemed that, though not for all situations, usu-
ally the best approximation could be got with the help of convex combination and/or
pignistic transforms. Let us recall that the pignistic transform was strongly advocated
for decision-making applications by Philippe Smets [Smets(1989), Smets(2005)].
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Quite different results were achieved with randomly generated quasi-Bayesian ba-
sic assignments. For this class of basic assignments, which is popular in applications
because of their simple interpretability, the best approximations were undoubtedly
yielded by Perez’ barycenter transform. Unfortunately, such an unquestionable con-
clusion holds just for quasi-Bayesian basic assignments. In a general case, the achieved
results are not convincing, they just slightly support observations achieved for specif-
ically selected basic assignments described in Section 5.

Eventually, it is important to pinpoint the fact that all the commented results
are based on the computations with a small state space (|ΩX | = 5), and that one can
hardly make analogous computational experiments with cardinalities of a practical size
because of the computational complexity connected with Shenoy’s expected utility.
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