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ABSTRACT
Inspired bymultigridmethods for linear systems of equations, multi-
level optimization methods have been proposed to solve structured
optimization problems. Multilevel methods make more assump-
tions regarding the structure of the optimization model, and as a
result, they outperform single-level methods, especially for large-
scalemodels. The impressive performance ofmultilevel optimization
methods is an empirical observation, and no theoretical explanation
has so far been proposed. In order to address this issue, we study
the convergence properties of amultilevel method that is motivated
by second-order methods. We take the first step toward establish-
ing how the structure of an optimization problem is related to the
convergence rate of multilevel algorithms.
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1. Introduction

Multigrid methods are a well-known and established method for solving differential equa-
tions [3,11,13,23,24,26].When solving a differential equation using numericalmethods, an
approximation of the solution is obtained on a mesh via discretization. The computational
cost of solving the discretized problem, however, varies and it depends on the choice of the
mesh size used. Therefore, by considering different mesh sizes, a hierarchy of discretized
models can be defined. In general, amore accurate solution can be obtainedwhen a smaller
mesh size is chosen, which results in a discretized problem in higher dimensions. We shall
follow the traditional terminology in the multigrid literature and call a fine model to be the
discretization in which its solution is sufficiently close to the solution of the original differ-
ential equation; otherwise we call it a coarse model [3]. Themain idea ofmultigridmethods
is to make use of the geometric similarity between different discretizations. In particular,
during the iterative process of computing the solution of the fine model, one replaces part
of the computations with the information from coarse models. The advantages of using
multigrid methods are twofold. Firstly, coarse models are in lower dimensions compared
to the finemodel, and so the computational cost is reduced. Secondly and interestingly, the
corrections generated by the coarsemodel and finemodel are in fact complementary. It has
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been shown that using the fine model is effective in reducing the high frequency compo-
nents of the residual (error) but ineffective in reducing the low frequency component of
the error. Those low frequency components of the error, however, will become high fre-
quency errors in the coarse model. Thus, they could be eliminated effectively using coarse
models [3,23].

This idea of multigrid was extended to optimization algorithms. Nash [19] pro-
posed a multigrid framework for unconstrained infinite-dimensional convex optimization
problems. Examples of such problems could be found in the area of optimal control.
Following the idea of Nash, many multigrid optimization methods were further devel-
oped [10,16–20,25]. In particular, Wen and Goldfarb [25] provided a line search-based
multigrid optimization algorithm under the framework in [19], and further extended
the framework to nonconvex problems. Gratton et al. [10] provided a sophisticated
trust-region version of multigrid optimization algorithms, which they called it multi-
scale algorithm. In this paper, we will consistently use the name multilevel algorithms
for all these optimization algorithms, but we emphasize that the terms multilevel, multi-
grid and multiscale were used interchangeably in different papers. On the other hand,
we keep the name multigrid methods for the conventional multigrid methods that solve
linear or nonlinear equations that are discretizations arising from partial differential
equations (PDEs).

It is worth mentioning that different multilevel algorithms were developed beyond
infinite-dimensional problems, such as Markov decision processes [14], semidefinite pro-
gramming [6], artificial neural networks [5] and composite optimization for both the
convex [15] and nonconvex case [21]. Also, Calandra et al. [4] proposed a multilevel
algorithm for adaptive cubic regularizationmethod recently. The above algorithms all have
the same aim: to speed up the computations by making use of the geometric similarity
between different models in the hierarchy.

Numerical results from the papers cited above show that multilevel algorithms can take
advantage of the geometric similarity between different discretizations. In particular, they
outperform other state-of-the-art optimization methods, especially for large scale models.
However, to the best of our knowledge, no theoretical result exists that rigorously explain
these empirical observations. The contributions of this paper are:

• We provide a complete view of line search multilevel algorithm, and in particular, we
connect the general framework of the multilevel algorithm with classical optimization
algorithms, such as variable metric methods and block-coordinate type methods.

• We analyse the Newton-type multilevel model. The key feature of the Newton-type
multilevel model is that a coarse model is created from the first and second-order
information of the fine model. We will call this algorithm the Newton-type Multilevel
Optimization (NeMO). A global convergence analysis of NeMO is provided.

• We propose to use the composite rate for analysis of the local convergence of NeMO.
As we will show later, neither linear convergence nor quadratic convergence is suitable
when studying the local convergence of NeMO.

• We study the composite rate of NeMO in a case study of infinite dimensional optimiza-
tion problems. We show that the linear component of the composite rate is inversely
proportional to the smoothness of the residual, which agrees with the findings in
conventional multigrid methods.
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The rest of this paper is structured as follows: In Section 2 we provide backgroundmate-
rial for multilevel algorithms. In Section 3, we study the convergence of NeMO. We first
derive the global convergence rate of NeMO, and then show that NeMO exhibits composite
convergence when the current incumbent is sufficiently close to the optimum. A compos-
ite convergence rate is defined as a linear combination of linear convergence and quadratic
convergence, and we denote r1 and r2 as the coefficient of linear rate and quadratic rate,
respectively. In Section 4, we compute r1 in problems arising from discretizations of one-
dimensional PDE problems and show the relationship between r1 and the structure of
the problem. In Section 5 we illustrate the convergence of NeMO using several numerical
examples.

2. Multilevel models

In this section a broad view of the general multilevel framework will be provided. We
start with a basic setting and the core idea of multilevel algorithms in [10,17,25]. Then we
provide the formulation and details of the core topic of this paper, namely Newton-type
multilevel model.

2.1. Problem formulation

In this paper, we are interested in solving,

min
xh∈RN

fh(xh), (1)

where xh ∈ RN , and the function fh : RN → R is continuous, differentiable and strongly
convex. We clarify the use of the subscript h. Throughout this paper, the lower case h rep-
resents an object or property that this is associated with the fine model, i.e. the model we
actually want to solve. To use multilevel methods, one needs to formulate a hierarchy of
models with reduced dimensions called the coarse models. We only consider two models
in the hierarchy: fine and coarse. In the same manner of using subscript h, we assign the
upper case H to represent the association with coarse model. We assign N and n (n ≤ N)
to be the dimensions of fine model and coarse model, respectively. For instance, any vec-
tor that is within the space RN is denoted with subscript h, and similarly, any vector with
subscript H is within the space Rn.

Assumption 2.1: There exists constants μh, Lh andMh such that

μhI � ∇2fh(x) � LhI, ∀xh ∈ R
n, (2)

and

‖∇2fh(xh) − ∇2fh(yh)‖ ≤ Mh‖xh − yh‖, ∀xh, yh ∈ R
n. (3)

Equation (2) implies

‖∇fh(xh) − ∇fh(yh)‖ ≤ Lh‖xh − yh‖, ∀xh, yh ∈ R
n.

The above assumptions will be used throughout the paper.
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Multilevel methods require mapping information across different dimensions. To this
end,we define amatrixP ∈ RN×n to be the prolongation operatorwhichmaps information
from coarse to fine, and we define a matrix R ∈ Rn×N to be the restriction operator which
maps information from fine to coarse. We make the following assumption on P and R.

Assumption 2.2: The restriction operator R is the transpose of the prolongation operator
P up to a constant c. That is,

P = cRT , c > 0.

Without loss of generality, we take c = 1 throughout this paper to simplify the use of
notation for the analysis. We also assume any useful (nonzero) information in the coarse
model will not become zero after prolongation and thus make the following assumption.

Assumption 2.3: The prolongation operator P has full column rank, and so

rank(P) = n.

Notice that Assumption 2.2 and 2.3 are standard assumptions for multilevel methods
[3,12,25]. Since P has full column rank, we define the pseudoinverse and its norm

P+ = (RP)−1R, and ξ = ‖P+‖. (4)

The coarse model is constructed in the following manner. Suppose in the kth iteration we
have an incumbent solution xh,k and gradient ∇fh,k � ∇fh(xh,k), then the corresponding
coarse model is,

min
xH∈Rn

φH(xH) � fH(xH) + 〈vH , xH − xH,0〉, (5)

where,

vH � −∇fH,0 + R∇fh,k,

xH,0 = Rxh,k, and fH : Rn → R is a function to be specified later. Similar to ∇fh,k, we
denote ∇2fH,0 � ∇2fH(xH,0) and ∇φH,0 � ∇φH(xH,0) to simplify notation. We empha-
size the construction of the coarse model (5) is well-known and it is not original in this
paper. See for example [10,17,25]. Note that when constructing the coarse model (5), one
needs to add an additional linear term to fH(xH). This linear term ensures the following is
satisfied,

∇φH,0 = R∇fh,k. (6)

For infinite-dimensional optimization problems, one can define fh and fH using discretiza-
tion with different mesh sizes. In general, fh is a function that approximates the original
problem sufficiently well, and that can be achieved using a small mesh size. Based on
geometric similarity between discretizations with different meshes, fh ≈ fH even though
n ≤ N.

However, we want to emphasize fh ≈ fH is not a necessary requirement when using
multilevel methods. In principle, fH(xH) can be any function. Newton-type multilevel
model, as we will show later, is a quadratic model where fH is chosen to be a quadratic
approximation of fh at some xh.
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2.2. The general multilevel algorithm

The main idea of multilevel algorithms is to use the coarse model to compute search
directions. When a direction from the coarse model is used we call the iteration a coarse
correction step. When using coarse correction step, we compute the direction by solving
the corresponding coarse model (5) and perform the update,

xh,k+1 = xh,k + αh,kd̂h,k,

with

d̂h,k � P(xH,� − xH,0), (7)

where xH,� is the solution of the coarse model, and αh,k ∈ R+ is the stepsize. We clarify
that the ‘hat’ in d̂h,k is used to identify a coarse correction step.

We should emphasize that xH,� in (7) can be replaced by xH,r for r = 1, 2, . . . , i.e. the
incumbent solution of the coarsemode (5) after the rth iterations of some iterativemethod.
However, for the purpose of this paper and simplicity, we ignore this case and we let (7) be
the (exact) coarse correction step.

It is known that the coarse correction step d̂h,k is a descent direction for fh if fH is convex.
The following lemma states this argument rigorously. Even though the proof is provided
in [25], we provide it with our notation for the completeness of this paper.

Lemma 2.4 ([25]): If fH is a convex function, then the coarse correction step is a descent
direction for fh at xh,k. In particular, in the kth iteration,

∇f Th,kd̂h,k ≤ φH,� − φH,0 ≤ 0.

Proof:

∇f Th,kd̂h,k = ∇f Th,kR
T (xH,� − xH,0

)
,

= (
R∇fh,k

)T (xH,� − xH,0
)
,

= ∇φT
H,0
(
xH,� − xH,0

)
,

≤ φH,� − φH,0.

as required, where the last inequality holds because φH is a convex function. �

Even though Lemma 2.4 states that d̂h,k is a descent direction, using coarse correction
step solely is not sufficient to solve the fine model (1).

Proposition 2.5: Assume that fH is convex. Suppose ∇fh,k �= 0 and ∇fh,k ∈ null(R), then
the coarse correction step

d̂h,k = 0.

Proof: From (6), xH,� = xH,0 when R∇fh,k = 0. Thus, d̂h,k = P(xH,� − xH,0) = 0. �

Recall thatR ∈ Rn×N , and so for n<N, a coarse correction step could be zero andmake
no progress even when the first order necessary condition ∇fh = 0 has not been satisfied.
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2.2.1. Fine correction step
Two approaches can be used when coarse correction step is not progressing nor effective.
The first approach is to compute directions using standard optimization methods. We call
such step the fine correction step. As opposed to coarse correction step d̂h,k, we abandon
the use of ‘hat’ for all fine correction steps and denote them as dh,k’s. To be precise, we can
compute dh,k using the following,

dh,k = argmin
d

1
2
〈d,Qd〉 + 〈∇fh,k, d〉,

= −Q−1∇fh,k. (8)

where Q ∈ RN×N is a positive definite matrix. When Q = I, dh,k is the steepest descent
search direction.WhenQ = ∇2fh,k, dh,k is the search direction byNewton’smethod.When
Q is an approximation of the Hessian, then dh,k is the quasi-Newton search direction.

We perform a fine correction step when a coarse correction step may not be effective.
That is, when one of the following conditions holds:

‖R∇fh,k‖ < κ‖∇fh,k‖ or‖R∇fh,k‖ < ε, (9)

where κ ∈ (0,min(1, ‖R‖)) and ε ∈ (0, 1). The above criteria prevent the use of the coarse
model when xH,0 ≈ xH,�, i.e. the coarse correction step d̂h,k is close to 0. We point out that
these criteria were also proposed in [25]. We also make the following assumption on the
fine correction step throughout this paper.

Assumption 2.6: There exists strictly positive constants νh, ζh > 0 such that

‖dh,k‖ ≤ νh‖∇fh,k‖, and − ∇f Th,kdh,k ≥ ζh‖∇fh,k‖2,

where dh,k is a fine correction step. As a consequence, there exists a constant 
h > 0 such
that

fh,k − fh,k+1 ≥ 
h‖∇fh,k‖2,
where fh,k+1 is updated using a fine correction step.

As we will show later, Assumption 2.6 is not restrictive and
h is known for well-known
cases like gradient descent, Newton method, etc. Using the combination of fine and coarse
correction steps is the standard approach in multilevel methods, especially for PDE-based
optimization problems [10,17,25].

2.2.2. Multiple P’s and R’s
The second approach to overcome issue of ineffective coarse correction step is by creating
multiple coarse models with different P’s and R’s.

Proposition 2.7: Suppose R1,R2, . . . ,Rp are all restriction operators that satisfy Assump-
tions 2.2 and 2.3, where Ri ∈ Rni×N for i = 1, 2, . . . , p. Denote S to be a set that contains
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the rows of Ri’s in RN , for i = 1, 2, . . . , p. If

span(S) = R
N ,

then for ∇fh,k �= 0 there exists at least one Rj ∈ {Ri}pi=1 such that

d̂h,k �= 0 and ∇f Th,kd̂h,k < 0,

where d̂h,k is the coarse correction step computed using Rj.

Proof: Since span(S) = RN , then for∇fh,k �= 0, there exists one Rj such that Rj∇fh,k �= 0.
So the corresponding coarse model would have xH,� �= xH,0, and thus d̂h,kj �= 0. �

Proposition 2.7 shows that if the rows of the restriction operators Ri’s span RN , then at
least one coarse correction step from these restriction operators would be nonzero and thus
effective. In each iteration, one could use the similar idea as in (9) to rule out ineffective
coarse models. However, this checking process could be expensive for large scale problems
with large p (number of restriction operators). To omit this checking process, one could
choose the following alternatives.

(i) Cyclical approach: choose R1,R2, . . . ,Rp in order at each iteration, and choose R1
after Rp.

(ii) Probabilistic approach: assign a probability mass function with {Ri}pi=1 as a sample
space, and choose the coarse model randomly based on the mass function. The mass
function has to be strictly positive for each Ri’s.

We point out that this idea of using multiple coarse models is related to domain
decomposition methods, which solve (non-)linear equations arising from PDEs. Domain
decomposition methods partition the problem domain into several subdomains, and thus
decompose the original problem into several smaller problems. We refer the reader to [7]
for more details about domain decomposition methods.

2.3. Connectionwith variablemetric methods

Using the above multilevel framework, in the rest of this section we will introduce differ-
ent versions of multilevel algorithms: variable metric methods, block-coordinate descent
and stochastic variance reduced gradient. At the end of this section we will introduce the
Newton-type multilevel model, which is an interesting case of the multilevel framework.

Recall that for variable metric methods, the direction dh,k is computed by solving

dh,k = argmin
d

1
2
〈d,Qd〉 + 〈∇fh,k, d〉,

= −Q−1∇fh,k. (10)

where Q ∈ RN×N is a positive definite matrix. When Q = I, dh,k is the steepest descent
search direction.WhenQ = ∇2fh,k, dh,k is the search direction byNewton’smethod.When
Q is an approximation of the Hessian, then dh,k is the quasi-Newton search direction.
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To show the connections between multilevel methods and variable metric methods,
consider the following fH .

fH(xH) = 1
2
〈xH − xH,0,QH(xH − xH,0)〉, (11)

whereQH ∈ Rn×n, and xH,0 = Rxh,k as defined in (5). Applying the definition of the coarse
model (5), we obtain,

min
xH∈Rn

φH(xH) = 1
2
〈xH − xH,0,QH(xH − xH,0)〉 + 〈R∇fh,k, xH − xH,0〉. (12)

Thus from the definition in (7), the associated coarse correction step is,

d̂h,k = P

⎛
⎜⎜⎜⎝arg min

dH∈Rn

1
2
〈dH ,QHdH〉 + 〈R∇fh,k, dH〉︸ ︷︷ ︸

dH=xH−xH,0

⎞
⎟⎟⎟⎠ = −PQ−1

H R∇fh,k. (13)

Therefore, with this specific fH in (11), the resulting coarse model (12) is analogous to
variable metric methods. In a naive case where n = N and P = R = I, the corresponding
coarse correction step (13) would be the same as steepest descent direction, Newton direc-
tion and quasi-Newton direction forQH that is identitymatrix,Hessian and approximation
of Hessian, respectively.

2.4. Connectionwith block-coordinate descent

Interestingly, the coarse model (12) is also related to block-coordinate type methods. Sup-
pose we have p coarse models with prolongation and restriction operators, {Pi}pi=1 and
{Ri}pi=1, respectively. For each coarse model, we let (11) be the corresponding fH with
QH = I, and we further restrict our setting with the following properties.

(1) Pi ∈ RN×ni , ∀i = 1, 2, . . . , p.
(2) Pi = RT

i , ∀i = 1, 2, . . . , p.
(3) [P1 P2 . . .Pp] = I.

From (13), the above setting results in d̂h,ki = −PiRi∇fh,k, where d̂h,ki is the coarse
correction step for the ith model. Notice that

(PiRi∇fh,k)j =

⎧⎪⎪⎨
⎪⎪⎩

(∇fh,k)j if
i−1∑
q=1

nq < j ≤
i∑

q=1
nq,

0 otherwise.

Therefore, d̂h,ki is equivalent to a block-coordinate descent update [1]. When ni = 1,
for i = 1, 2, . . . , p, it becomes a coordinate descent method. When 1 < ni < N, for i =
1, 2, . . . , p, it becomes a block-coordinate descent. When Pi’s and Ri’s are chosen using
the cyclical approach, then it would be a cyclical (block)-coordinate descent. When Pi’s
and Ri’s are chosen using the probabilistic approach, then it would be a randomized
(block)-coordinate descent method.
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2.5. The Newton-typemultilevel model

We end this section with the core topic of this paper–the Newton-type multilevel model.
The Newton-type multilevel coarse model is a special case of (12) where,

QH = ∇2
Hfh,k � R∇2fh,kP, (14)

and so the Newton-type multilevel (coarse) model is,

min
xH∈Rn

φH(xH) = 1
2
〈xH − xH,0,∇2

Hfh,k(xH − xH,0)〉 + 〈R∇fh,k, xH − xH,0〉. (15)

According to (13), the corresponding coarse correction step is

d̂h,k = −P[R∇2fh,kP]−1R∇fh,k = −P[∇2
Hfh,k]

−1R∇fh,k. (16)

In the context of multilevel optimization, to the best of our knowledge, this coarse model
was first considered in [10]. In [10] a trust-region type multilevel method is proposed
to solve PDE-based optimization problems, and the Newton-type multilevel model is
described as a ‘radical strategy’. In a later paper from Gratton et al. [9], a trust-region type
multilevel method was tested numerically and the Newton-type multilevel model showed
promising numerical results.

It is worthmentioning that the above coarse correction step is equivalent to the solution
of the system of linear equations,

R∇2fh,kPdH = −R∇fh,k. (17)

which is the general case of the Newton’s method in which P = R = I. Using Assump-
tion 2.3, we can show that ∇2

Hfh,k is positive definite and so Equation (17) has a unique
solution.

Proposition 2.8: R∇2fh(xh)P is positive definite, and in particular,

μhξ
−2I  R∇2fh(xh)P  Lhω2I

where ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖.

Proof:

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≤ Lh‖Px‖2 ≤ Lhω2‖x‖2.

Also,

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≥ μh‖Px‖2 ≥ μh

‖P+‖2 ‖x‖2 = μh

ξ 2
‖x‖2.

So we obtain the desired result. �
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3. Convergence of NeMO

In this section we analyse NeMO (Algorithm 1). The fine correction steps in Algorithm 1
are deployed by a variable metric method, and an Armijo rule is used as stepsize strategy
for both fine and coarse correction steps. We will first show that Algorithm 1 achieves a
sublinear rate of convergence.We then analyse the maximum number of coarse correction
steps that would be taken by Algorithm 1, and the condition that when the coarse cor-
rection steps yield quadratic reduction in the gradients in the subspace. At the end of this
section, we will provide the composite convergence rate for the coarse correction steps.

Algorithm 1 NeMO
Input: P ∈ RN×n and R ∈ RN×n which satisfy Assumption 2.2 and 2.3, κ ∈
(0,min(1, ‖R‖)), ε, ρ1 ∈ (0, 0.5), βls ∈ (0, 1).
Initialization: xh,0 ∈ RN

for k = 0, 1, 2, . . . do
Compute the direction

d =
{
d̂h,k in (16) if ‖R∇fh,k‖ > κ‖∇fh,k‖ and ‖R∇fh,k‖ > ε,
dh,k in (10) otherwise.

Find the smallest q ∈ N such that for stepsize αh,k = β
q
ls,

fh(xh,k + αh,kd) ≤ fh,k + ρ1αh,k∇Tfh,kd.

Update

xh,k+1 � xh,k + αh,kd.

end for

Toprovide convergence propertieswhen the coarse correction step is used, the following
quantity will be used

χH,k � [(R∇fh,k)T[∇2
Hfh,k]

−1R∇fh,k]1/2.

Notice that χH,k is analogous to the Newton decrement, which is used to study the
convergence of the Newton method [2]. In particular, χH,k has the following properties.

(1) ∇f Th,kd̂h,k = −χ2
H,k.

(2) d̂Th,k∇2fh,kd̂h,k = χ2
H,k.

We omit the proofs of the above properies since these can be done by using direct
computation and the definition of χH,k.
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3.1. The sublinear rate

Wewill show that Algorithm 1 will achieve a sublinear rate of convergence. We will deploy
the techniques from [1] and [2]. Starting with the following lemma, we state reduction in
function value using coarse correction steps. We would like to clarify that even though
NeMO is considered as a special case in [25], we take advantage of this simplification and
specification to provide analysis with results that are easier to interpret. In particular, the
analysis of stepsizes αh,k’s in [25] relies on the maximum number of iterations taken. This
result is unfavourable and unnecessary for the setting we consider.

Lemma 3.1: The coarse correction step d̂h,k in Algorithm 1will lead to reduction in function
value

fh,k − fh(xh,k + αh,kd̂h,k) ≥ ρ1κ
2βlsμh

ω2L2h
‖∇fh,k‖2,

where ρ1, κ and βls are user-defined parameters in Algorithm 1. Lh and μh are defined in
Assumption 2.1. ω is defined in Proposition 2.8.

Proof: By convexity,

fh(xh,k + αd̂h,k) ≤ fh,k + α〈∇fh,k, d̂h,k〉 + Lh
2

α2‖d̂h,k‖2,

≤ fh,k − αχ2
H,k + Lh

2μh
α2χ2

H,k,

since

μh‖d̂h,k‖2 ≤ d̂Th,k∇2fh(xk)d̂h,k = χ2
H,k.

Notice that for α̂ = μh/Lh, we have

−α̂ + Lh
2μh

α̂2 = −α̂ + Lh
2μh

μh

Lh
α̂ = −1

2
α̂,

and

fh(xh,k + α̂d̂h,k) ≤ fh,k − α̂

2
χ2
H,k,

≤ fh,k + α̂

2
∇f Th,kd̂h,k,

< fh,k + ρ1α̂∇f Th,kd̂h,k,

which satisfies the Armijo condition. Therefore, line search will return stepsize αh,k ≥ α̂ =
(βlsμh)/Lh. Using the fact that

1
ω2Lh

‖R∇fh(xk)‖2 ≤ (R∇fh,k)T[∇2
Hfh,k]

−1R∇fh,k = χ2
H,k,

we obtain

fh(xh,k + αh,kd̂h,k) − fh,k ≤ ρ1αh,k∇f Th,kd̂h,k,

≤ −ρ1α̂χ2
H,k,
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≤ −ρ1
βlsμh

ω2L2h
‖R∇fh,k‖2,

≤ −ρ1κ
2βlsμh

ω2L2h
‖∇fh,k‖2,

as required. �

Using the result in Lemma 3.1, we derive the guaranteed reduction in function value in
the following two lemmas.

Lemma 3.2: Let 
 � min{
h, ρ1κ
2βlsμh

ω2L2h
}, then the step d in Algorithm 1 will lead to

fh,k − fh,k+1 ≥ 
‖∇fh,k‖2,

where ρ1, κ and βls are user-defined parameters in Algorithm 1. Lh and μh are defined in
Assumption 2.1. 
h is defined in Assumption 2.6. ω is defined in Proposition 2.8.

Proof: This is a direct result from Lemma 3.1 and Assumption 2.6. �

Let xh,� denote the exact solution of (1) and let fh,� � f (xh,�).

Lemma 3.3: Suppose

R(xh,0) � max
xh∈RN

{‖xh − xh,�‖ : fh(xh) ≤ fh(xh,0)},

the step in Algorithm 1 will guarantee

fh,k − fh,k+1 ≥ 


R2(xh,0)
(
fh,k − fh,�

)2 ,
where 
 is defined in Lemma 3.2.

Proof: By convexity, for k = 0, 1, 2, . . .,

fh,k − fh,� ≤ 〈∇fh,k, xh,k − xh,�〉,
≤ ‖∇fh,k‖ ‖xh,k − xh,�‖,
≤ R(xh,0)‖∇fh,k‖.

Using Lemma 3.2, we have

fh,k − fh,� ≤ R(xh,0)
√


−1
(
fh,k − fh,k+1

)
,(

fh,k − fh,�
R(xh,0)

)2
≤ 
−1 (fh,k − fh,k+1

)
,



OPTIMIZATION METHODS & SOFTWARE 13




(
fh,k − fh,�
R(xh,0)

)2
≤ fh,k − fh,k+1,

as required. �

The constant 
 in Lemma 3.3 depends on 
h, which is introduced in Assumption 2.6.
This constant depends on both the fine correction step chosen and the user-defined
parameter ρ1 in Armijo rule. For instance,


h =

⎧⎪⎨
⎪⎩

ρ1μh

L2h
if dh,k = −[∇2fh,k]−1∇fh,k,

ρ1

Lh
if dh,k = −∇fh,k.

The above results can be derived via direct computation on bounding the Armijo condi-
tion. In order to derive the convergence rate in this section, we use the following lemma
on nonnegative scalar sequences.

Lemma 3.4 ([1]): Let {Ak}k≥0 be a nonnegative sequence of the real numbers satisfying

Ak − Ak+1 ≥ γA2
k, k = 0, 1, 2, . . . ,

and

A0 ≤ 1
qγ

for some positive γ and q. Then

Ak ≤ 1
γ (k + q)

, k = 0, 1, 2, . . . ,

and so

Ak ≤ 1
γ k

, k = 0, 1, 2, . . . .

Proof: See Lemma 3.5 in [1]. �

Combining the above results, we obtain the rate of convergence.

Theorem 3.5: Let {xk}k≥0 be the sequence that is generated by Algorithm 1. Then,

fh,k − fh,� ≤ R2(xh,0)



1
2 + k

,

where 
 andR(·) are defined as in Lemma 3.2 and 3.3, respectively.
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Proof: From Lemma 3.3,

fh,k − fh,k+1 ≥ 


R2(xh,0)
(
fh,k − fh,�

)2 .
and so

(fh,k − fh,�) − (fh,k+1 − fh,�) ≥ 


R2(xh,0)
(
fh,k − fh,�

)2 .
Also, we have

fh,0 − fh,� ≤ Lh
2

‖xh,0 − xh,�‖2 ≤ Lh
2
R2(xh,0) ≤ L2hR2(xh,0)

2μh
≤ L2hR2(xh,0)

2μhβlsκ2ρ1
,

≤ R2(xh,0)
2


,

where the first inequality holds because of first order condition and the definition of
Lh in Assumption 2.1. Let’s Ak � fh,k − fh,�, γ � 
/R2(xh,0), and q � 2. By applying
Lemma 3.4, we have

fh,k − fh,� ≤ R2(xh,0)



1
2 + k

,

as required. �

Theorem 3.5 provides the sublinear convergence of Algorithm 1.We emphasize that the
rate is inversely proportional to 
 = min{
h, ρ1κ2μh/L2h}, and so small κ would result in
slow convergence. Therefore, even though κ could be arbitrary small, it is not desirable in
terms of worse case complexity. Note that κ is a user-defined parameter for determining
whether the coarse correction step should be used. If κ is chosen to be too large, then
it is less likely that the coarse correction step would be used. In the extreme case where
κ ≥ ‖R‖, the coarse correction step would not be deployed because,

‖R∇fh,k‖ ≤ ‖R‖‖∇fh,k‖,
and so Algorithm 1 reduces to the standard variable metric method. Therefore, there is a
trade-off between the worse case complexity and the likelihood that the coarse correction
step is deployed.

3.2. Maximumnumber of iterations of coarse correction step

We now discuss the maximum number of coarse correction steps in Algorithm 1. The
following lemma will state the sufficient conditions for not taking any coarse correction
step.

Lemma 3.6: No coarse correction step in Algorithm 1 will be taken when

‖∇fh,k‖ ≤ ε

ω
,

where ω = max{‖P‖, ‖R‖}, and ε is a user-defined parameter in Algorithm 1.
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Proof: Recall that in Algorithm 1, the coarse step is only taken when ‖R∇fh,k‖ > ε. We
have,

‖R∇fh,k‖ ≤ ω‖∇fh,k‖ ≤ ω
ε

ω
= ε,

and so no coarse correction step will be taken. �

The above lemma states the conditionwhen the coarse correction stepwould not be per-
formed. We then investigate the maximum number of iterations to achieve that sufficient
condition.

Lemma 3.7: Let {xk}k≥0 be a sequence generated by Algorithm 1. Then, ∀ε̄, k̄ > 0 such that,

k̄ ≥
(
1
ε̄

)2 R2(xh,0)

2 − 2,

we obtain

‖∇fh(xh,k̄)‖ ≤ ε̄,

where 
 andR(·) are defined as in Lemma 3.2 and 3.3, respectively.

Proof: From Lemma 3.2, we know that


‖∇fh,k‖2 ≤ fh,k − fh,k+1.

Also, from Theorem 3.5, we have,

fh,k − fh,� ≤ R2(xh,0)



1
2 + k

.

Therefore,

‖∇fh,k‖2 ≤ 1



(
fh,k − fh,k+1

)
,

≤ 1



(
fh,k − fh,�

)
,

≤ R2(xh,0)

2

1
2 + k

.

For

k =
(
1
ε̄

)2 R2(xh,0)

2 − 2,

we have

‖∇fh,k‖ ≤
√
R2(xh,0)


2
1

2 + k
≤
√
R2(xh,0)


2 (ε̄)2

2

R2(xh,0)
= ε̄,

as required. �
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By integrating the above results, we obtain themaximumnumber of iterations to achieve
‖∇fh,k‖ ≤ ε/ω. That is, no coarse correction step will be taken after

(ω

ε

)2 R2(xh,0)

2 − 2 iterations.

Notice that the smaller ε, the more coarse correction step will be taken. Depending on the
choice ofdh,k, the choice of ε could be different. For example, ifdh,k is chosen as theNewton
step where dh,k = −[∇2fh,k]−1∇fh,k, one good choice of ε could be 3ω(1 − 2ρ1)μ2

h/Lh if
μh and Lh are known. This is because Newton’s method achieves quadratic rate of conver-
gence when ‖∇fh,k‖ ≤ 3(1 − 2ρ1)μ2

h/Lh [2]. Therefore, for such ε, no coarse correction
step would be taken when the Newton method is in its quadratically convergent phase.

3.3. Quadratic phase in subspace

We now state the required condition for stepsize αh,k = 1, and then we will show that
when ‖R∇fh,k‖ is sufficiently small, the coarse correction step would reduce ‖R∇fh,k‖
quadratically. The results below are analogous to the analysis of theNewton’smethod in [2].

Lemma 3.8: Suppose coarse correction step d̂h,k in Algorithm 1 is taken, then αh,k = 1when

‖R∇fh,k‖ ≤ η = 3μ2
h

Mh
(1 − 2ρ1),

where ρ1 is an user-defined parameter in Algorithm 1. Mh and μh are defined in Assump-
tion 2.1.

Proof: By Lipschitz continuity (3),

‖∇2fh(xh,k + αd̂h,k) − ∇2fh,k‖ ≤ αMh‖d̂h,k‖,
which implies

‖d̂Th,k(∇2fh(xh,k + αd̂h,k) − ∇2fh,k)d̂h,k‖ ≤ αMh‖d̂h,k‖3.

Let f̃ (α) = fh(xh,k + αd̂h,k), then the above inequality can be rewritten as

|f̃ ′′(α) − f̃ ′′(0)| ≤ αMh‖d̂h,k‖3,
and so

f̃ ′′(α) ≤ f̃ ′′(0) + αMh‖d̂h,k‖3.
Since f̃ ′′(0) = d̂Th,k∇2fh,kd̂h,k = χ2

H,k,

f̃ ′′(α) ≤ χ2
H,k + αMh‖d̂h,k‖3.

By integration,

f̃ ′(α) ≤ f̃ ′(0) + αχ2
H,k + (α2/2)Mh‖d̂h,k‖3.
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Similarly, f̃ ′(0) = ∇f Th,kd̂h,k = −χ2
H,k, and so

f̃ ′(α) ≤ −χ2
H,k + αχ2

H,k + (α2/2)Mh‖d̂h,k‖3.

Integrating the above inequality, we obtain

f̃ (α) ≤ f̃ (0) − αχ2
H,k + (α2/2)χ2

H,k + (α3/6)Mh‖d̂h,k‖3.

Recall that μh‖d̂h,k‖2 ≤ d̂Th,k∇2fh,kd̂h,k = χ2
H,k; thus,

f̃ (α) ≤ f̃ (0) − αχ2
H,k + α2

2
χ2
H,k + α3Mh

6μ3/2
h

χ3
H,k.

Let α = 1,

f̃ (1) − f̃ (0) ≤ −χ2
H,k + 1

2
χ2
H,k + Mh

6μ3/2
h

χ3
H,k,

≤ −
(
1
2

− Mh

6μ3/2
h

χH,k

)
χ2
H,k.

Using the fact that

‖R∇fh,k‖ ≤ η = 3μ2
h

Mh
(1 − 2ρ1),

and

χH,k = ((R∇fh,k)T[∇2
Hfh,k]

−1R∇fh,k)1/2 ≤ 1√
μh

‖R∇fh,k‖,

we have

χH,k ≤ 3μ3/2
h

Mh
(1 − 2ρ1) ⇐⇒ ρ1 ≤ 1

2
− Mh

6μ3/2
h

χH,k.

Therefore,

f̃ (1) − f̃ (0) ≤ −ρ1χ
2
H,k = ρ1∇f Th,kd̂h,k,

and we have αh,k = 1 when ‖R∇fh,k‖ ≤ η. �

The above lemma yields the following theorem.

Theorem 3.9: Suppose the coarse correction step d̂h,k in Algorithm 1 is taken and αh,k = 1,
then

‖R∇fh,k+1‖ ≤ ω3ξ 4Mh

2μ2
h

‖R∇fh,k‖2,

where Mh and μh are defined in Assumption 2.1, ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖.
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Proof: Since αh,k = 1, we have

‖R∇fh,k+1‖ = ‖R∇fh(xh,k + d̂h,k) − R∇fh,k − R∇2fh,kPd̃H,i�‖
≤ ‖R‖ ‖∇fh(xh,k + d̂h,k) − ∇fh,k − ∇2fh,kd̂h,k‖

≤ ω

∣∣∣∣
∣∣∣∣
∫ 1

0
(∇2fh(xh,k + td̂h,k) − ∇2fh,k)d̂h,k dt

∣∣∣∣
∣∣∣∣

≤ ω
Mh

2
‖d̂h,k‖2,

where d̃H,i� is the direction d̂h,k at coarse level, i.e. Pd̃H,i� = d̂h,k. Notice that

‖d̂h,k‖ = ‖P[R∇2fh,kP]−1R∇fh,k‖
≤ ‖P‖ ‖[R∇2fh,kP]−1‖ ‖R∇fh,k‖

≤ ωξ 2

μh
‖R∇fh,k‖.

Thus,

‖R∇fh,k+1‖ ≤ ω3ξ 4Mh

2μ2
h

‖R∇fh,k‖2,

as required. �

The above theorem states the quadratic convergence of ‖∇fh,k‖ within the subspace
range(R). However, it does not give insight in the convergence behaviour on the full space
RN . To address this, we study the composite rate of convergence in the next section.

3.4. Composite convergence rate

At the end of this section, we study the convergence properties of the coarse correction step
when the incumbent is sufficiently close to the solution. In particular, we deploy the idea of
composite convergence rate in [8], and consider the convergence of the coarse correction
step as a combination of linear and quadratic convergence.

The reason of proving composite convergence is due to the broadness of NeMO. Sup-
pose that P = R = I, then the coarse correction step in NeMO becomes Newton’s method.
In such case we expect quadratic convergence when the incumbent is sufficiently close to
the solution. On the other hand, suppose P is any column of I andR = PT , then the coarse
correction step is a (weighted) coordinate descent direction. One should not expect more
than linear convergence in that case. Therefore, both quadratic convergence and linear
convergence are not suitable for NeMO, and one needs the combination of them. In this
paper, we propose to use a composite convergence, and show that it can better explain the
convergence of NeMO.

We would like to emphasize the difference between our setting compared to [8]. To the
best of our knowledge, composite convergence rate was used in [8] to study subsampled
Newtonmethods formachine learning problemswithout dimensionality reduction. In this
paper, the class of problems that we consider is not restricted to machine learning, and we
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focus on the Newton-type multilevel model, which is a reduced dimension model. The
results presented in this section are not direct results of the approach in [8]. In particular,
if the exact analysis of [8] is taken, the derived composite rate would not be useful in our
setting, because the coefficient of the linear component would be greater than 1.

Theorem 3.10: Suppose the coarse correction step d̂h,k in Algorithm 1 is taken and αh,k = 1,
then

‖xh,k+1 − xh,�‖ ≤ ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I − PR)(xh,k − xh,�)‖

+ Mhω
2ξ 2

2μh
‖xh,k − xh,�‖2, (18)

where Mh and μh are defined in Assumption 2.1, ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖. The
operator ∇2

H is defined in (14).

Proof: Denote

Q̃ =
∫ 1

0
∇2f (xh,� − t(xh,k − xh,�)) dt,

we have

xh,k+1 − xh,� = xh,k − xh,� − P[∇2
Hfh,k]

−1R∇fh,k,

= xh,k − xh,� − P[∇2
Hfh,k]

−1RQ̃(xh,k − xh,�),

=
(
I − P[∇2

Hfh,k]
−1RQ̃

)
(xh,k − xh,�),

= (
I − P[∇2

Hfh,k]
−1R∇2fh,k

)
(xh,k − xh,�)

+
(
P[∇2

Hfh,k]
−1R∇2fh,k − P[∇2

Hfh,k]
−1RQ̃

)
(xh,k − xh,�),

= (
I − P[∇2

Hfh,k]
−1R∇2fh,k

)
(I − PR)(xh,k − xh,�)

+ P[∇2
Hfh,k]

−1R
(
∇2fh,k − Q̃

)
(xh,k − xh,�).

Note that

‖∇2fh,k − Q̃‖ =
∥∥∥∥∇2fh,k −

∫ 1

0
∇2f (xh,� − t(xh,k − xh,�)) dt

∥∥∥∥ ≤ Mh

2
‖xh,k − xh,�‖.

Therefore,

‖xh,k+1 − xh,�‖ ≤ ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I − PR)(xh,k − xh,�)‖

+ ‖P[∇2
Hfh,k]

−1R‖Mh

2
‖xh,k − xh,�‖2,
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≤ ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I − PR)(xh,k − xh,�)‖

+ Mhω
2ξ 2

2μh
‖xh,k − xh,�‖2,

as required. �

Theorem 3.10 provides the composite convergence rate for the coarse correction step.
However, some terms remain unclear, in particular ‖I − P[∇2

Hfh,k]
−1R∇2fh,k‖. Notice that

in the case when rank(P) = N (i.e. P is invertible),

‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖I − P[R∇2fh,kP]−1R∇2fh,k‖,
= ‖I − PP−1[∇2fh,k]−1R−1R∇2fh,k‖,
= 0.

It is intuitive to consider that ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ should be small and less than 1
when rank(P) is close to but not equal to N. However, the above intuition is not true, and
we prove this in the following lemma.

Lemma 3.11: Suppose rank(P) �= N, then

1 ≤ ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ ≤
√

Lh
μh

,

where Lh and μh are defined in Assumption 2.1. The operator ∇2
H is defined in (14).

Proof: Since∇2fh,k is a positive definitematrix, consider the eigendecomposition of∇2fh,k,

∇2fh,k = U�UT ,

where � is a diagonal matrix containing the eigenvalues of ∇2fh,k, and U is a orthogonal
matrix where its columns are eigenvectors of ∇2fh,k. We then have

I − P[∇2
Hfh,k]

−1R∇2fh,k

= I − P[R∇2fh,kP]−1R∇2fh,k,

= U�−1/2�1/2UT − U�−1/2�1/2UTP[RU�1/2�1/2UTP]−1RU�1/2�1/2UT ,

= U�−1/2�1/2UT

− U�−1/2(�1/2UTP)[(�1/2UTP)T(�1/2UTP)]−1(�1/2UTP)T�1/2UT ,

= U�−1/2(I − ��1/2UTP)�
1/2UT ,

where ��1/2UTP is the orthogonal projection operator onto the range of �1/2UTP, and so

‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖U�−1/2(I − ��1/2UTP)�
1/2UT‖,

= ‖�−1/2(I − ��1/2UTP)�
1/2‖.
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For the upper bound, we have

‖�−1/2(I − ��1/2UTP)�
1/2‖ ≤ ‖�−1/2‖‖(I − ��1/2UTP)‖‖�1/2‖ ≤

√
Lh
μh

,

since I − ��1/2UTP is an orthogonal projector and ‖(I − ��1/2UTP)‖ ≤ 1. For the lower
bound, we have

‖�−1/2(I − ��1/2UTP)�
1/2‖

= ‖�−1/2(I − ��1/2UTP)(I − ��1/2UTP)�
1/2‖,

= ‖�−1/2(I − ��1/2UTP)�
1/2�−1/2(I − ��1/2UTP)�

1/2‖,
≤ ‖�−1/2(I − ��1/2UTP)�

1/2‖‖�−1/2(I − ��1/2UTP)�
1/2‖,

= ‖�−1/2(I − ��1/2UTP)�
1/2‖2.

The assumption rank(P) �= N implies

I �= ��1/2UTP and ‖�−1/2(I − ��1/2UTP)�
1/2‖ �= 0.

Therefore, 1 ≤ ‖�−1/2(I − ��1/2UTP)�
1/2‖, as required. �

Lemma 3.11 clarifies the fact that the term ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ is at least 1 when
n<N. This fact reduces the usefulness of the composite convergence rate in Theorem 3.10.
In Section 4, we will investigate the term ‖(I − PR)(xh,k − xh,�)‖ and show that it is
sufficiently small in a specific case.

4. PDE-based problems: one-dimensional case

In this section, we study the Newton-type multilevel model that arises from PDE-based
problems. We begin with introducing the basic setting, and then we analyse the coarse
correction step in this specific case. Building upon the composite rate in Section 3.4, at
the end of this section we re-derive the composite rate with a more insightful bound of
‖(I − PR)(xh,k − xh,�)‖. As mentioned in Section 3, this quantity is critical in analysing
the performance and complexity of NeMO.

For the simplicity of the analysis, we consider specifically the one-dimensional case, i.e.
the decision variable of the infinite dimensional problems is a functional in R. We further
assume that the decision variable is discretized uniformly over [0, 1] with value 0 on the
boundary. We would like to clarify that the approach of analysis in this section could be
applied to more general and high-dimensional settings.

4.1. Newton-typemultilevel model by one-dimensional interpolations

For one-dimensional problems, we consider the standard linear prolongation operator and
restriction operator. Based on the traditional setting in multigrid research, we define the
following Newton-type multilevel model.

• N is an even number,
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• the (fine) discretized decision variable is in RN−1, and
• the coarse model is in RN/2−1.

For interpolation operator P ∈ R(N−1)×(N/2−1), we consider

P = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
1 1

2
1

. . . 1
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

and the restriction operator

R = 1
2
PT ∈ R

(N/2−1)×(N−1). (20)

Notice that the P and R in (19) and (20) have geometric meanings, and they are one of the
standard pairs of operators in multilevel and multigrid methods [3]. As shown in Figure 1,
P is an interpolation operator such that one point is interpolated linearly between every
two points. On the other hand, from Figure 2, R performs restriction by doing weighted
average onto every three points. These two operators assume the boundary condition is
zero for both end points. We emphasize that the approach of convergence analysis in this

Figure 1. P in (19).

Figure 2. R in (20).
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section is not restricted for this specific pair of P and R. We believe the general approach
could be applied to interpolation type operators, especially operators that are designed for
PDE-based optimization problems.

4.2. Analysis

With the definitions (19) and (20), we investigate the convergence behaviour of the coarse
correction step. The analytical tool we used in this section is Taylor’s expansion. To deploy
this technique, we consider interpolations over the elements of vectors. In particular, we
consider interpolations that are twice differentiable with the following definition.

Definition 4.1: For any vector r ∈ RN−1, we denoteFN−1
r to be the set of twice differen-

tiable functions such that ∀w ∈ FN−1
r ,

w(0) = w(1) = 0, and wi = w(yi) = (r)i,

where yi = i/N for i = 1, 2, . . . ,N − 1.

Using the definitions (19) and (20), we can estimate the ‘information loss’ via interpo-
lations using the following proposition.

Proposition 4.2: Suppose P and R are defined in (19) and (20), respectively. For any vector
rh ∈ RN−1, we denote (rh)0 = (rh)N = 0 and obtain

(PRrh)j =
{

1
4 ((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,
1
8 ((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd,

for j = 1, 2, . . . ,N − 1.

Proof: By the definition of R and P, we have

(Rrh)j = 1
4
((rh)2j−1 + 2(rh)2j + (rh)2j+1), 1 ≤ j ≤ n

2
− 1.

So

(PRrh)j = (Rrh)j/2 = 1
4
((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,

and

(PRrh)j = 1
2
(
(Rrh)(j−1)/2 + (Rrh)(j+1)/2

)
,

= 1
8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd.

So we obtain the desired result. �

Using the above proposition and Taylor’s expansion, we obtain the following lemma.
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Lemma 4.3: Suppose P and R are defined in (19) and (20), respectively. For any vector rh ∈
RN−1,

‖(I − PR)rh‖∞ ≤ min
w∈FN−1

rh

max
y∈[0,1]

|w′′(y)| 3
4N2 .

Note that the definition of FN−1
rh follows from Definition 4.1.

Proof: Using Proposition 4.2 and Taylor’s Theorem, in the case that j is even, we obtain

1
4
((rh)j−1 + 2(rh)j + (rh)j+1) = 1

4
(
w
(
yj−1

)+ 2w
(
yj
)+ w

(
yj+1

))
,

= w
(
yj
)+ w′′(yc1)

8
1
N2 + w′′(yc2)

8
1
N2 ,

= (rh)j + w′′(yc1) + w′′(yc2)
8

1
N2 ,

where w(·) ∈ FN−1
rh , yj−1 ≤ yc1 ≤ yj, and yj ≤ yc2 ≤ yj+1. Similarly, in the case that j is

odd, we have

1
8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2)

= (rh)j + 4w′′(yc3) + 2w′′(yc4) + 2w′′(yc5) + 4w′′(yc6)
16

1
N2 , (21)

where yj−2 ≤ yc3 ≤ yj, yj−1 ≤ yc4 ≤ yj, yj ≤ yc5 ≤ yj+1, and yj ≤ yc6 ≤ yj+2. Therefore,

‖(I − PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3
4N2 for ∀w(·) ∈ FN−1

rh .

So we obtain the desired result. �

Lemma 4.3 provides upper bound of ‖(I − PR)rh‖∞, for any rh ∈ RN−1. This result can
be used to derive the upper bound of ‖(I − PR)(xh,k − xh,�)‖, where rh = xh,k − xh,�. As
we can see, if |w′′(y)| = O(1), where w ∈ FN−1

rh , then ‖(I − PR)rh‖∞ = O(N−2). This
can be explained by the fact that when the mesh size is fine enough (i.e. large N), linear
interpolation and restriction provide very good estimations of the fine model.

In the following lemma, we provide an upper bound of |w′′| in terms of the original
vector rh. The idea is to specify the interpolation method in which we construct w, and
we will use cubic spline in particular. Cubic spline is one of the standard interpolation
methods, and the output interpolated function w satisfies the setting in Definition 4.1 and
Lemma 4.3.
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Lemma 4.4: Suppose P and R are defined in (19) and (20), respectively. For any vector rh ∈
RN−1, we obtain

‖(I − PR)rh‖∞ ≤ 9
4N2 ‖Arh‖∞,

where

A = N2

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Proof: We follow the notation in Definition 4.1. For w ∈ FN−1
rh that is constructed via

cubic spline, in the interval (yi, yi+1), we have

w(y) = Awi + Bwi+1 + Cw′′
i + Dw′′

i+1,

where

A = yi+1 − y
yi+1 − yi

,

B = y − yi
yi+1 − yi

,

C = 1
6
(A3 − A)(yi+1 − yi)2,

D = 1
6
(B3 − B)(yi+1 − yi)2.

It is known from [22] that

d2w
dy2

= Aw′′
i + Bw′′

i+1, (22)

and

yi − yi−1

6
w′′
i−1 + yi+1 − yi−1

3
w′′
i + yi+1 − yi

6
w′′
i+1 = wi+1 − wi

yi+1 − yi
− wi − wi−1

yi − yi−1
, (23)

and for i = 1, 2, . . . ,N − 1. Using the above Equation (22), at the interval (yi, yi+1), we
obtain ∣∣∣∣d2wdy2

∣∣∣∣ = ∣∣Aw′′
i + Bw′′

i+1
∣∣ =

∣∣∣∣ yi+1 − y
yi+1 − yi

w′′
i + y − yi

yi+1 − yi
w′′
i+1

∣∣∣∣,
≤
∣∣∣∣ yi+1 − y
yi+1 − yi

∣∣∣∣|w′′
i | +

∣∣∣∣ y − yi
yi+1 − yi

∣∣∣∣|w′′
i+1|,

≤ max{|w′′
i |, |w′′

i+1|}.
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Suppose j ∈ argmaxi{|w′′
i |}i, then from (23) and the fact that yj+1 − yj = 1/N,

yj+1 − yj−1

3
w′′
j = wj+1 − wj

yj+1 − yj
− wj − wj−1

yj − yj−1
− yj − yj−1

6
w′′
j−1 − yj+1 − yj

6
w′′
j+1,

2
3N

w′′
j = N(wj+1 − wj) − N(wj − wj−1) − 1

6N
w′′
j−1 − 1

6N
w′′
j+1,

2w′′
j = 3N2(wj+1 − 2wj + wj−1) − 1

2
w′′
j−1 − 1

2
w′′
j+1.

Thus,

|2w′′
j | ≤ 3N2|wj+1 − 2wj + wj−1| + 1

2
|w′′

j−1| + 1
2
|w′′

j+1|,

2|w′′
j | ≤ 3N2|wj+1 − 2wj + wj−1| + 1

2
|w′′

j | + 1
2
|w′′

j |,
|w′′

j | ≤ 3N2|wj+1 − 2wj + wj−1|.

Therefore,

|w′′
i | ≤ max

i
3N2|wi+1 − 2wi + wi−1|,

and so,

‖(I − PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3
4N2 ≤ max

i

9|wi+1 − 2wi + wi−1|
4

= 9
4N2 ‖Arh‖∞,

as required. �

Lemma 4.4 provides the discrete version of the result presented in Lemma 4.3. The
matrix A is the discretized Laplacian operator, which is equivalent to twice differentiation
using finite difference with a uniform mesh.

4.3. Convergence

With all the results, we revisit the composite convergence rate with the following Corollary.

Corollary 4.5: Suppose P and R are defined in (19) and (20), respectively. If the coarse
correction step d̂h,k in (16) is taken with αh,k = 1, then

‖xh,k+1 − xh,�‖ ≤
√

Lh
μh

min
w∈FN−1

xh,k−xh,�

max
y∈[0,1]

|w′′(y)| 3
4N3/2 + Mhω

2ξ 2

2μh
‖xh,k − xh,�‖2,

≤ 9
4N3/2

√
Lh
μh

‖A(xh,k − xh,�)‖ + Mhω
2ξ 2

2μh
‖xh,k − xh,�‖2,

where A is defined in Lemma 4.4. Note that Mh, Lh and μh are defined in Assumption 2.1,
ω = max{‖P‖, ‖R‖}, and ξ = ‖P+‖.
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Proof:

‖xh,k+1 − xh,�‖ ≤ ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I − PR)(xh,k − xh,�)‖

+ Mhω
2ξ 2

2μh
‖xh,k − xh,�‖2,

≤
√

Lh
μh

min
w∈FN−1

xh,k−xh,�

max
y∈[0,1]

|w′′(y)| 3
4N3/2 + Mhω

2ξ 2

2μh
‖xh,k − xh,�‖2,

≤ 9
4N3/2

√
Lh
μh

‖A(xh,k − xh,�)‖ + Mhω
2ξ 2

2μh
‖xh,k − xh,�‖2,

as required. �

Corollary 4.5 provides the convergence of usingNewton-typemultilevelmodel for PDE-
based problems thatwe considered. This result shows the complementary of fine correction
step and coarse correction step. Suppose the fine correction step can effectively reduce
‖A(xh,k − xh,�)‖, then the coarse correction step could yield major reduction based on the
result shown in Corollary 4.5.

5. Numerical experiments

In this section, we verify our convergence results with a numerical example. This exam-
ple satisfies the assumptions of Section 4, and it is an one-dimensional Poisson’s equation,
which is a standard example in numerical analysis andmultigrid algorithms. In the second
part of this section, we will compare NeMO with other algorithms.

5.1. Poisson’s equation

We consider an one-dimensional Poisson’s equation

− d2

dq2
u = w(q) in [0, 1], u(0) = u(1) = 0,

where w(q) is chosen as

w(q) = sin(4πq) + 8 sin(32πq) + 16 sin(64πq).

We discretize the above problem and denote x, b ∈ RN−1, where (x)i = u(i/N) and (b)i =
w(i/N), for i = 1, 2, . . . ,N − 1. By using finite difference, we approximate the above
equation with

min
x∈RN−1

1
2
xTAx − bTx, (24)

where A is defined as in Lemma 4.4, which is a discretized Laplacian operator.
Figure 3 shows the convergence results of solving (24) with differentN’s. In this example

we use the prolongation and restriction operators that are defined in (19) and (20). Steep-
est descent is used to compute the fine correction step. The pink stars in Figures 3 and 4
indicate where coarse correction steps were used.



28 C. P. HO ET AL.

Figure 3. Convergence of solving Poisson’s equation with different N’s.

Figure 4. The smoothing effect with different N’s.

As expected from Corollary 4.5, the performance of convergence is inversely propor-
tional to the discretization level N. More interestingly, one can see the complementary
of fine correction step and coarse correction step. From Figure 3, fine correction steps
are often deployed after coarse correction steps. Each pair of fine and coarse correction
steps provides significant improvement in convergence. Figure 4 shows the smoothing
effect of the fine correction step by looking at the quantity ‖A(xh,k − xh,�)‖, where A is
the discretized Laplacian operator, as defined in Lemma 4.4. As opposed to coarse cor-
rection steps, fine correction steps are effective in reducing ‖A(xh,k − xh,�)‖. Once the
error is smoothed, coarse correction steps provide large reduction in error, as shown
in Figure 3.

5.2. Numerical performance

Algorithm 1 offers great flexibility with respect to the choice of its various components,
such as the interpolation operator, fine-level smoother, linear solver, etc. In our numerical
experiments, we have used two variants:
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A1.1. The fine-level smoother is the damped Newton method with Armijo line search.
Linear systems

Hhd = −gh

arising in the Newton method are solved by a direct solver, namely, by the Matlab’s
backslash operator.

A1.2. The smoother is the Newton method as in A1.1. However, assuming that we have
an interpolation and a restriction operators P and R at our disposal, we can use it
to solve the fine-level linear equation

Hhd = −gh

by a two-grid method withHH = RHhP.

We will compare the above two methods with the MG/OPT algorithm [19]

A1.3. As in A1.1 but with the coarse level matrixHH being the exact Hessian of the coarse
level problem.

A1.4. As in A1.2 but with the coarse level matrixHH being the exact Hessian of the coarse
level problem.

Further details common to all the above variants:

• Linear systems on the coarse level were solved by a direct method (Matlab backslahs
operator).

• Initial point: Set as in Matlab as

rng(’default’);
x = 5.*randn(n,1);

We did not use the obvious choice x = 0, as this is, for most examples, too close to the
region of quadratic convergence of the Newton method. We wanted to see the effect of
NeMO when most of the iterations lie outside this region.

• Stopping tolerance: Assuming that we minimize a function f ; Algorithm 1 has been
stopped when ‖∇f (x)‖ ≤ εstop, with εstop = 10−9 unless specified otherwise.

• The control parameters κ and ε have been chosen as κ = nH
nh

and ε = 0.1, unless spec-

ified otherwise. (Here nh and nH is the number of variables on the fine and the coarse
level, respectively.)

• The parameter of the standard Armijo line search is set to 0.01.
• In Algorithms A1.2 and A1.4, the fine-level multigrid method was stopped as soon as

the scaled residuum of the Newton equation was below 0.1.

In all examples, matrix A is the discretized two-dimensional Laplace operator. The dis-
cretization was performed on a square domain using the finite difference method and we
considered homogeneous Dirichlet boundary conditions. When defining the levels, we
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started with an initial 3 × 3 grid as ‘level 1’. Each next level used regular refinement dou-
bling the number of discretization points in each coordinate. Hence ‘level 2’ corresponds to
5 × 5 and the corresponding matrix A ∈ R9×9 (after elimination of the boundary points)

A = 1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 −1 0 −1 −1 0 0 0 0
−1 8 −1 −1 −1 −1 0 0 0
0 −1 8 0 −1 −1 0 0 0

−1 −1 0 8 −1 0 −1 −1 0
−1 −1 −1 −1 8 −1 −1 −1 −1
0 −1 −1 0 −1 8 0 −1 −1
0 0 0 −1 −1 0 8 −1 0
0 0 0 −1 −1 −1 −1 8 −1
0 0 0 0 −1 −1 0 −1 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We use up to 10 discterization levels with ‘level 10’ corresponding to a problem with
1, 050, 625 × 1, 050, 625 matrix A, i.e. a problem with 1,050,625 variables.

The interpolation operators P = Pk+1
k from level k to level k+ 1 are based on the nine-

point interpolation scheme defined by the stencil

( 1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

)
. We use the full weighting

restriction operators defined by R = 1
4 (P

k+1
k )T ; see, e.g. [11]. The interpolation operator

between levels k and k+ p is defined by P = Pk+p
k+p−1 P

k+p−1
k+p−2 · · · Pk+1

k and analogously for
the restriction operator R.

Example 5.1: Minimize the following function

f (x) := 1
2
xTAx + hλ

n∑
i=1

(x2ex − ex) − bTx,

where λ = 10 and h = 1/(n + 1). Here A is a matrix resulting from discretization of the
Laplacian operator on a regular finite element mesh, using bilinear quadrilateral elements
and b is the discretization of function

b(x1, x2) =
(
9π2 + e(x

2
1−x31) sin(3πx2)(x21 − x31) + 6x1 − 2

)
sin(3πx1)

on the same mesh.

Table 1 gives results obtained by NeMO variant A1.1 with a direct solver on all levels.
In this (and the next) table the columns show the coarse level used (with 0 being the finest
level); number of variables in the coarse level; total number of NeMO iterations; number
of NeMO iteration on the fine level (i.e. number of times the fine-level Newton equation
has been solved); total CPU time on a MacBook Pro with 2.3 GHz Intel Core i5 processor
running Matlab 2017b.

The first row of Table 1 shows results with coarse level zero, i.e. for the standard damped
Newton metod on the fine level. Hence we compare this line with the remaining NeMO
results. Indeed, once we consider coarse level 2 and more, NeMO is substantially faster
than the Newton method, in terms of the CPU time. For instance, for coarse level 2, we
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Table 1. Example 5.1, Algorithm A1.1 with direct solver on both levels.

Coarse level Coarse variables Total iter Fine iter CPU time

0 1,046,529 20 20 88.1
1 261,121 23 6 42.4
2 65,025 25 5 35.3
3 16,129 30 6 37.9
4 3969 36 8 47.1
5 961 47 11 60.6

Figure 5. Example 5.1, levels visited in every iteration; 1 stands for the coarse level and 2 for the fine
level.

only have to visit the fine level in 5 iteration, the ‘rest of the work’ is performed on the
coarse level. Figure 5 shows the iteration history of NeMO with coarse level 2: most of the
initial iteration are performed on the coarse level, while the final iterations are done on the
fine level

Table 1 confirms the advantage of NeMO as compared to the Newton method. How-
ever, assuming that we have an interpolation and a restriction operators P and R at our
disposal, we can use it to solve the fine-level linear equation Hhd = −gh by a two-grid
methodwithHH = RHhP. Table 2 shows the result with this version of NeMO. In addition
to the columns presented in Table 1, we also give the total number of two-grid iterations
on the fine level (column ‘mg iter’). As before, we first solve the problem using only the
fine level (coarse level 0); the method then becomes equivalent to the standard nonlinear
(Newton) multigrid method. The first three rows of Table 2 show results with this method
using coarse levels 1, 2 and 3 for the two-grid method. As we can see, this method is much
more efficient then the Newton method with a direct solver (first row of Table 1). In the
next rows of Table 2 we combine NeMO with the two-grid method for the linear equa-
tions on the fine level. As we can see, the advantage of NeMO to the nonlinear multigrid

Table 2. Example 5.1, Algorithm A1.2 with two-grid solver on fine level.

Coarse level
for NeMO

Coarse level
for mg Coarse level variables Total iter Fine iter mg iter CPU time

0 1 1 046 529 20 20 20 37.5
0 2 1 046 529 20 20 22 27.9
0 3 1 046 529 21 21 33 29.8
1 2 261 121 25 8 26 43.6
2 2 65 025 31 10 19 31.8
3 2 16 129 30 9 11 26.2
4 2 3 969 33 10 12 28.3
5 2 961 48 12 14 36.8



32 C. P. HO ET AL.

Table 3. Example 5.1, two-level MG/OPT with direct solver on the fine level (Algorithm A1.3) and with a
two-grid solver on the fine level (Algorithm A1.4).

Fine level solver
Coarse level
for MG/OPT Coarse level variables Total iter Fine iter mg iter CPU time

Direct 1 261 121 14 5 – 30.3
2 65 025 21 6 – 32.7
3 16 129 28 7 – 37.8
4 3 969 33 9 – 47.1
5 961 28 12 – 51.6

mg 1 261 121 19 6 23 37.1
2 65 025 28 8 25 35.8
3 16 129 36 10 12 29.1
4 3 969 41 10 12 31.0
5 961 29 12 14 24.1

method is not so obvious in this case. NeMO with coarse level 3 is still the fastest method
but only just.

Finally, to have a complete overview, we give in Table 3 results for theMG/OPTmethod
[19,25] when the coarse level matrix for the linear system is computed as an exact Hessian
of the objective function discretized on the coarse level. Again, the fine-level linear system
is either solved by a direct method (first part of Table 3) or by the two-grid method as
above. One can see that using the two-grid solver would be slightly beneficial when the
number of coarse level variables is small.

6. Comments and perspectives

In this paper, we analysed a Newton-type multilevel optimization (NeMO) algorithm. We
argued that the appropriate convergence rate for this multilevel algorithm should be com-
posite i.e. it should have both a linear and quadratic component.We then studied the linear
component of the composite rate, and we showed how the hierarchical structure of the
model could be used to improve it. To our knowledge, this is the first time a connection
between the hierarchal structure of the model and the rate of convergence of a multilevel
optimization algorithm has been made. The results presented in this paper can be gen-
eralized and refined. The local composite rate of convergence when solving PDE-based
optimization can be extended to cases beyond one-dimensional problems or uniform dis-
cretization. These extensionswould requiremore careful analysis, but the general approach
presented in Section 4 can be applied.
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