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Abstract. Multidimensional probability distributions that are too large
to be stored in computer memory can be represented by a compositional
model - a sequence of low-dimensional probability distributions that
when composed together try to faithfully estimate the original multidi-
mensional distribution. The decomposition to the compositional model is
not satisfactorily resolved. We offer an approach based on search traver-
sal through the decomposable model class using likelihood-test statistics.
The paper is a work sketch of the current research.
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1 Introduction

Many real-life problems can be solved using a decomposing strategy, excellently
summarized by George Pólya in his famous book [1]: If you cannot solve a
problem, then there is an easier problem you can solve: find it. The basic idea
is simple. A problem, or a complex system, can be decomposed into a sub-
problems/subsystems that are easier to describe/understand. Unfortunately, the
art of decomposing is not always straightforward.

Thanks to the massive use of computers, we have a huge amount of data in
various areas of human activity. Using these data sets we can describe complex
systems that may appear as black-boxes to us. The key is to extract knowl-
edge from the data set and use it as a support for future decision making or
predictions.

A set of vital tools to work with large data-sets is accessible through a proba-
bility framework where records from the data set are considered to be realizations
of random variables. In this paper, we assume problems/systems that can be de-
scribed using a set of random variables. By an event, we understand a moment
when we measure values of the random variables and we assume the existence of
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a data set with records of such measurements in history. As a typical example
can serve a patient in a hospital with a database of various diseases, symptoms,
and related laboratory test results. It is very difficult to cover all the depen-
dencies between symptoms, test results, and diseases. Still, people are trying to
do exactly that. A desire for a tool that, for example, automatically alerts you
to a possible threat based on the results of a common medical test is obvious.
Similarly, we can imagine the area of financial markets with records of stock
market movements and related tool for automatic trading, etc.

In our case, we assume random variables with a discrete finite domain. Each
random variable has a probability distribution, which specifies the probability
of its values. Set of random variables has a joint probability distribution.

1.1 Knowledge Representation

Suppose that knowledge can be represented using a probability distribution de-
fined over a set of corresponding random variables. Of course, the size of such a
probability distribution would be enormous. Moreover, even if we were able to
store it, we would need a similarly large amount of data to estimate its param-
eters well. This phenomenon is called curse of dimensionality. Here comes the
concept of conditional independence. It is well known that in case of indepen-
dence among variables we can express the corresponding probabilistic distribu-
tion as a product of smaller probability distributions (i.e. distributions defined
over a smaller set of variables). To save even more space, some weak (conditional)
dependencies can be modeled by independencies as well.

1.2 Compositional Models

The basic idea of compositional models is simple - to describe global knowl-
edge from an application area using pieces of local knowledge. Local knowledge
can be easily obtained, easily stored in a computer, and easily understand by
a user/expert. On the other hand, is some cases, the global knowledge of the
problem of interest is so complicated that it is beyond human capabilities to
describe it. Note that the word compositional stands for the fact that prob-
ability distribution representing the knowledge about the system is composed
from a set of low-dimensional distributions and model because the composed
probability distribution is of course just a simplification/estimate of the original
multidimensional distribution. (To simplify the model, some weak conditional
dependencies are modeled by independence relations.)

To handle the knowledge hidden in a compositional model (decomposed prob-
ability distribution) one can use the standard tools from probability framework
like marginalization, conditioning, and inference. The methods are of course cus-
tomized to handle the decomposed structure and efficiently implemented using
local computations.
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2 Notation and Essentials

Let us consider a finite system of random variables with indices from a non-
empty set N . Each variable from this system {Xi}i∈N has a finite (and non-
empty) set of values Xi. All the probability distributions discussed in the paper
will be denoted by Greek letters. For K ⊂ N , κ(xK) denotes a distribution of
variables XK = {Xi}i∈K , which is defined on all subsets of a Cartesian product
XK =

∏
i∈K Xi. Thus xK denotes a |K|-dimensional vector of variable values

{Xi}i∈K and XK represents the set of all such vectors. Having a probability
distribution κ(xK) and L ⊂ K we shall denote its marginal distribution by
κ(xL). To emphasize the marginalization process, we can also use κ↓L.

The symbol Π(K) denotes the set of all probability distributions defined
for variables XK . For two distributions defined over the same set of variables
κ, λ ∈ Π(K) we say that λ dominates κ (κ � λ) if ∀x ∈ XN : (λ(x) = 0 =⇒
κ(x) = 0). The distributions κ ∈ Π(K) and λ ∈ Π(L) are said to be consistent if
for all x ∈ XK∩L κ(x) = λ(x).

Definition 1 (Operator of Composition). For arbitrary two distributions
κ ∈ Π(K) and λ ∈ Π(L) for which 4 κ↓K∩L � λ↓K∩L their composition is
defined by the following formula

(κ . λ)(x) =
κ(x↓K)λ(x↓L)

λ↓K∩L(x↓K∩L)
. (1)

Otherwise, it remains undefined.

The operator of composition is used to construct multidimensional compo-
sitional models. Composing two distributions, we can define a distribution of a
dimensionality higher than any of the original ones. The resulting distribution
is defined over the union of involved random variables.

By a compositional model of a multidimensional probability distribution we
understand a sequence of low-dimensional distributions that assembled together
using the operator of composition represent a multidimensional distribution that
would be difficult to handle otherwise. In another words, the multidimensional
distribution which can be written in the following way

κ1 . κ2 . κ3 . . . . . κn = (. . . ((κ1 . κ2) . κ3) . . . .) . κn. (2)

where we expect κi to be defined over variables with indices from Ki. The se-
quence κ1, κ2, . . . , κn is called the generating sequence of the model.

In this paper, we will focus on the models composed from the marginal dis-
tributions of an input distribution obtained from data. Thus there are no in-
consistent distributions and the operator of composition is always defined. The
sequence of sets of variables (or precisely their indices) K1, . . . ,Kn is called the

4 κ(M)� λ(M) denoted that the distribution κ is absolutely continues with respect
to distribution λ, which in our finite settings means that whenever κ is positive also
λmustbepositive.
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structure of the model. Note that the ordering of sets is important since operator
. is neither commutative nor associative. Because of the nature of the paper, we
can simplify the notation and highlight the structure we denote the model from
(2) in the following manner:

(K1 ·K2 · · · · ·Kn)κ

Note that compositional models represent a generalization of Bayesian net-
works. In other words, every Bayesian network can be represented using an
equivalent compositional model. Note that structure K1, . . . ,Kn has a similar
meaning as graphs in case of Bayesian networks. It represents the system of
conditional independencies valid for the model.

For the purpose of the following text, we will introduce a degenerated model,
the so-called full model:

Definition 2 (Full model). Compositional model κ of the form κ = κ(xN ) is
called full model.

In the case of the full model, the sequence of sets of variable indices is formed
only by one set N . It means that no composition is performed. Thus, the original
data distribution (containing all variables) is a full model.

Definition 3 (Running Intersection Property). The sets L1, L2, . . . , Ln
fulfill the Running Intersection Property (RIP) if

∀i ∈ {2, . . . , n} ∃k < i Li ∩

⋃
j<i

Lj

 ⊆ Lk.
Definition 4 (Decomposability). The compositional model (K1 ·K2 ·· · ··Kn)κ
is said to be decomposable if the ordering of sets in its structure K1,K2, . . . ,Kn

fulfills the RIP property.

Definition 5 (Conditional independence (CI)). For distribution κ(xK) and
for mutually disjoint A,B,C ⊆ K such that A 6= ∅ and B 6= ∅ we write
XA⊥⊥XB |XC [κ] (groups of variables XA and XB are conditionally independent
given XC with respect to the distribution κ) if

κ(xA∪B∪C)κ(xC) = κ(xA∪C)κ(xB∪C)

for all xA∪B∪C ∈ XA∪B∪C . Note that in case of C = ∅ we speak about uncondi-
tional independence and we denote it as XA⊥⊥XB [κ].

The use of the operator of composition embeds a conditional independence
relation. This fact can be easily shown from both Definitions 1 and 5. (See also,
e.g., Lemma 5.2 in [2] where also other basic properties of compositional models
are formulated).
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3 Decomposability

By a decomposition is usually understood the result of a process that, with the
goal of simplification, divides an original object into its sub-objects. Thus, for
example, a problem is decomposed into two (or more) simpler sub-problems,
decomposition of a positive integer into prime numbers, etc. In the latter case,
an elementary decomposition is a decomposition of an integer into two factors,
the product of which gives the original integer. When repeating the process of
decomposition long enough we end up with elementary sub-objects that cannot
be further decomposed.

It can be easily deduced from the above-presented properties that the process
of a repeatedly performed decomposition of an arbitrary (finite) object into
elementary sub-objects (i.e., sub-objects that cannot be further decomposed) is
always finite.

In case of a finite two-dimensional probability distribution κ ∈ Π(k,l) (k, l are
singletons), simpler sub-objects are just one-dimensional distributions: a distri-
bution of variable Xk and a distribution of variable Xl. The process of decompo-
sition corresponds to marginalization - i.e. the sub-objects are κ(xk) and κ(xl).
Note that the process of marginalization is well defined. Nevertheless, except
for a degenerate case when Xk⊥⊥Xl[κ], we cannot unambiguously reconstruct
the original two-dimensional distribution from its one-dimensional marginals.
In that case, a compositional model composed from one dimensional marginal
would be just a very bad estimate of the original distribution.

Having a general probability distribution, one can be interested in the way
how to decompose it into a set of its marginals in a way that if composed back
together (using the operator of composition), it faithfully reflects the original
distribution. Or in other words, if we convert a data set into a probability dis-
tribution using e.g. frequency analysis, we would like to learn its compositional
model.

The following section deals with a special type of compositional models -
decomposable models. The reason why we restricted ourselves to this subclass
is clarified later.

4 Hierarchy in Decomposable Models Space

The notion of decomposability has been already established in a class of proba-
bilistic models. Following Definition 4, one can notice that decomposability is a
structural property in case of compositional models. I.e., it is related to the struc-
ture of a compositional model only, not to respective properties of probability
distributions from its generating sequence.

Similarly, in the case of Bayesian networks (representant of another approach
to probabilistic modeling), decomposability is also a structural property. Re-
call that in the case of Bayesian networks, a directed acyclic graph is used to
represent its structure and we say that a Bayesian network is decomposable if
the graph is decomposable. Graph decomposability is equivalent to many other
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strong graph properties: graph chordality, graph triangularity, the existence of
a perfect elimination ordering of nodes, the existence of a junction tree of graph
cliques, etc. Simply said, decomposability is a very strong structural property
and, what makes it so special, it is closely related to efficient local computations.

By local computation, we understand a possibility to perform complex com-
putations with a probability distribution represented by a compositional model
(like marginalization, conditioning, and inference) without the necessity to apply
the operator of composition between members of the model generating sequence.
Every general compositional model is converted into an equivalent decomposable
model before performing any computations with it. This is one of the reasons
why we have decided to restrict the current research on structure learning algo-
rithms on the class of decomposable models only.

Assume a compositional model (K1 · . . . · Kn)κ. We recognize the so-called
trivial sets of the structure. We say that set Ki, (i ∈ {1, . . . , n}) is trivial in the
structure if Ki ⊆

⋃
j<iKj . Note that probability distribution corresponding to

Ki has no impact on the compositional model. Indeed, considering the definition
of the operator of composition (denote

⋃
j<iKj as Kj<i to simplify the formula)

then, following (1),

((κ1 . . . . . κi−1)) . κi)(x) =
(κ1 . . . . . κi−1))(x↓Kj<i)κi(x

↓Ki)

κ
↓Kj<i∩Ki

i (x↓Kj<i∩Ki)

=
(κ1 . . . . . κi−1))(x↓Kj<i)κi(x

↓Ki)

κ↓Ki

i (x↓Ki)

= (κ1 . . . . . κi−1))(x)

(3)

Nevertheless, following Definition 3 of RIP, by adding a trivial set into the
structure of a decomposable model, its decomposability can be violated. Never-
theless, we can add a trivial set that is a subset of another set preceding it in
the sequence. See the following auxiliary property:

Lemma 1 (Redundant marginal). Having a set K ⊆ L` the model (L1 ·L2 ·
· · · ·Ln)κ is decomposable if and only if (L1 · · · · ·L` · · · · ·Lm ·K ·Lm+1 · · · · ·Ln)κ
is decomposable.

Proof.
Following the same reasoning as in (3), we can end up with the simplified model
where the redundant marginal κ(xK) was removed. Let us emphasize that none
of the compositions on the right of the considered marginal is affected by its
removal since the union of variables appearing in the model before remains the
same.

Using the following theorem, one can create a decomposable model from
a given decomposable model by introducing a new conditional independence
relation into its structure. The proof is constructive. Note that the theorem has
been already published in a slightly different form in [3].
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Theorem 1. Assume a decomposable compositional model κ̂ = (K1 · K2 · · · · ·
Kn)κ where ∃k ∈ {1, . . . , n} such that |Kk| > 1. Then there exist a pair of
variables `,m ∈ Kk such we can introduce another decomposable model κ̂′ with
one additional conditional independence relation {k}⊥⊥{`}|(Kk \ {`,m})[κ̂′]. We
say that κ̂ and κ̂′ are in a neighborhood relation.

Proof.
Without the loss of generality, we can assume that k = n. Indeed, because if
it is not the case then we can take just the first k elements of the generating
sequence and take it as the model of our interest. Such a generating sub-sequence
represents always a marginal of the original model [2] and what holds for the
marginal, it holds for the original model as well.

In case of a decomposable model, its structure K1, . . . ,Kn must fulfil RIP
property. I.e. it holds

∃i < k Kk ∩

⋃
j<k

Kj

 ⊆ Ki. (4)

Without loss of generality let us make two assumptions:

1. Let us assume that Kk 6⊆ Ki. (If the opposite was true then Kk would be a
trivial column and as such it could be omitted because it does not change
the model. For more detail see Lemma 1). I.e. ∃` ∈ Kk such that ` 6∈ Ki.

2. Further, assume that |Kk| ≥ 2 because if it is not the case then it has only
one element ` 6∈

⋃
j<kKj (with no intersection with any other set of indices)

we can move Kk to any other place without affecting the model [4].

Under these assumptions (or rearrangements of the model) we can choose
another element m ∈ Kk,m 6= ` and change the structure of the model by
introducing new conditional independence relation

{`}⊥⊥{m} |Kk \ {`,m}

by replacing Kk with sets Kk \ {`} and Kk \ {m}. How to read conditional
independence relations from a model structure can be found in [4]. Thus, we
obtain a new compositional model where the only change is the replacement of
the last distribution in its generating sequence by a pair of its marginals

κ̂′ = (K1 ·K2 · · · · ·Kk−1 ·Kk \ {`} ·Kk \ {m})κ.

The new structure fulfills RIP property as well, which makes κ̂′ decompos-
able. Indeed, because the first part of the structure K1,K2, . . . ,Kk−1 remains
unchanged, it is enough to check the newly added sets. Note that the intersect
of Kk \ {`} with the union of all preceding index sets is in Ki by (4). In case of
the last set Kk \ {m} the intersection with all prior sets lies in the set Kk \ {`}
and namely it is equal to Kk \ {`,m}.

Note that if a trivial set appears, it can be dropped without affecting decom-
posability of the model.

For a more detailed view of decomposable models space see [3].
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5 Mutual Information and Decomposibility

As it has been mentioned in the introduction, decomposable models are essential
for efficient use of compositional models due to the possibility of local computa-
tions. As an example, we can take the following computations of likelihood-ratio
test statistics.

Most of the machine learning methods for probabilistic models construction
are, in a way, supported by notions and theoretical results from information
theory. E.g. the value of mutual information helps to find pairs of variables that
are tightly connected. The value of a multi-information may be used to select
the best model from a considered group of models. Note that the basic notion is
the famous Shannon entropy from which all the remaining ones are derived.

To help the reader to understand the notion of mutual information, it could
be beneficial to highlight that it is the measure of similarity of two distributions.
In probability theory, several measures of similarity for distributions have been
introduced. One of them, having its origin in information theory, is a Kullback-
Leibler divergence defined for κ(K) and λ(K) by the formula

Div(κ ‖ λ) =

{∑
x∈XK

κ(x) log κ(x)
λ(x) , if κ� λ

+∞, otherwise.
(5)

It is a known fact that Kullback-Leibler divergence is always non-negative
and equals 0 if and only if κ = λ (see [5, 6]). Its only disadvantage is that it is
not symmetric, i.e., generally Div(κ ‖ λ) 6= Div(λ ‖ κ)

Therefore, for testing whether the compositional model κ̂ approximates faith-
fully original data distribution κ (both with variables from XK) one can use
Kullback-Leibler divergence.

In our case, we take the full model for κ and we compare it with various
decomposable models. Usually, the choice of the optimal model is accomplished
either by the process of hypothesis testing or by using some information criterion.

In the following, we illustrate how to take the advantage of decomposability
in case of compositional models to calculate Kullback-Leibler divergence using
local computations while following the notion of a neighborhood of decomposable
models introduced in Theorem 1.

Assume a decomposable compositional model κ̂ = (K1 ·K2 · · · · ·Kn)κ such
that ∃i ∈ {1, . . . , n} : |Ki| ≥ 2. Following Theorem 1 one can introduce into this
model one new conditional independence relation and get a new model κ̂′ where
the original set Ki was replaced by a pair of sets Ki\` and Ki\m. Note that some
of these sets may be trivial in the structure of the new model and appropriate
probability distributions may be removed from the model generating sequence
by Lemma 1 without affection the decomposability.

Following Theorem 1, the new model κ̂′ can be obtained by multiplication of
the formula for model κ̂ by a simple factor:

κ̂′ = κ̂ ·
κ(xKi\{`})κ(xKi\{m})

κ(xKi\{`,m})κ(xKi
)
. (6)
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The Kullback-Leibler divergence for full model κ and the new model κ̂′ is

Div(κ ‖ κ̂′) =
∑
x∈XK

κ(x) log
κ(x)

κ̂′(x)
. (7)

Note that the divergence is always defined because we work with marginals of
κ. (7) can be rewritten using (6) into

Div(κ ‖ κ̂′) =
∑
x∈XK

(
κ(x) · log

κ(x)κ(xKi\{`,m})κ(xKi
)

κ̂(x)κ(xKi\{`})κ(xKi\{m})

)

which can be further split into the sum of two logarithms

Div(κ ‖ κ̂′) =
∑
x∈XK

κ(x) log
κ(x)

κ̂(x)
+
∑
x∈XK

κ(x) log
κ(xKi\{`,m})κ(xKi)

κ(xKi\{`})κ(xKi\{m})
.

Notice that the left part is a Kullback-Leibler divergence of κ and the original
model κ̂. The right-hand sum can be further rewritten as

Div(κ ‖ κ̂′) = Div(κ ‖ κ̂)+
∑

x∈XKi

(( ∑
x∈XK\Ki

κ(x)

)
·log

κ(xKi\{`,m})κ(xKi
)

κ(xKi\{`})κ(xKi\{m})

)

and the inner sum is equal to a marginal κ(xKi
). I.e.

Div(κ ‖ κ̂′) = Div(κ ‖ κ̂) +
∑

x∈XKi

κ(xKi
) log

κ(xKi\{`,m})κ(xKi
)

κ(xKi\{`})κ(xKi\{m})
.

Following the last formula, we can easily and efficiently compute the divergence
of the new model using the already computed divergence of κ̂ and local compu-
tations concerning the replaced low–dimensional marginal defined by indices Ki

only.

6 Model Complexity

By decomposing the original probability distribution into its marginals we re-
duce the number of its parameters. That is, by the way, the main reason to do
the decomposition at all. The lower number of parameters, the faster the com-
putations are, the easier one can store the model in computer memory. Realize
that current models work with dozens or hundreds of variables.

In the case of our elementary approach, we will simply use the number of
parameters needed to represent the compositional model in computer memory.
Because every compositional model is represented using its generating sequence
– a sequence of probability distributions – we will sum the size of respective
probability distributions. In this paper, we restricted ourselves to discrete finitely
valued random variables. Therefore, respective probability distributions can be



10 Kratochv́ıl, B́ına et al.

represented using contingency tables, where the size of each table is connected
with the number of distinct values of involved random variables.

Let rk be the number of categories for variable k (∀k ∈ K : rk = |Xk|).
Then, in case of the full model κ(xK), we need a probability table with

∏
k∈K rk

cells. Note that this number can be decreased by one – probabilities must sum
up to one. The number of parameters needed to represent the full model is then
given by formula

CF =
∏
k∈K

rk − 1.

Assume a general compositional model

κ̂ = (K1 ·K2 · · · · ·Kn)κ .

Despite the fact that a compositional model can be expressed in the form of
product of conditional distributions where the ith conditional distribution is a
distribution of variables with indices from Ki not present in previous index sets
and is conditioned by variables of Ki which already appeared in the previous
parts of model, we use a standard representation using unconditional proba-
bility distributions. One of the reasons is that this representation makes local
computations easier.

In this case, the number of parameters needed to represent compositional
model κ̂ is

df =
∑

i∈{1..n}

(
∏
j∈Ki

rj − 1)

7 Information Criteria

The goal of decomposition is to get a compositional model as simple as possible
which is, of course, in direct contradiction to the faithfulness of the model. To
get an optimal balance between these two measures one can become inspired by
various approaches used in other probabilistic learning methods.

Another approach to estimating the optimal size of the compositional model
can be found in [7]. In this paper, the authors suggest to use the famous Huffman
code [8] to find in a way optimum code to encode the original data set. The
procedure is rather simple and it belongs to the fundamental parts of information
theory. The idea is rather simple. First, find the Huffman encoding of the data or
full model. Nevertheless, we do not need the encoding, we just need the number
of bits necessary to encode the data or the model. Note that in the case of
Huffman code one has to keep also the coding table to reconstruct the original
object. The total size of both objects gives us a hint about the space needed to
encode the data and we can use it to restrict the size of the compositional model
as well.

On the other hand, information criteria that began to appear in the ’70s of
the 20th century remind a famous Occam’s razor. Based on this principle the
simplest model is chosen from a class of models describing the data in the same
quality.
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Let us recall the famous Bayesian information criterion (BIC), Schwarz cri-
terion [9], or Akaike (AIC) criterion [10]. The criteria are generally a difference
between the distance of the model from data and the size of the space needed
to store it. One variant of BIC in the notation of this paper can be

BICκ̂ = 2 ·Div(κ⊥⊥κ̂)− log(n) · df

where n is the number of observations in data.
Let us highlight, that we do not have any useful information criterion so far.

We hope that we will receive one based on experiments performed in the next
section.

8 Algorithms

Theorem 1 suggests to perform the breadth-first search through a tree of de-
composable models where the root of the tree is the full model. Neighbors in
the tree (also in the meaning of Theorem 1) differs from each other by addi-
tional conditional independence relation introduced to the structure. Using the
theorem-proof, we can immediately construct the tree. The decomposability of
all models is guaranteed. Moreover, we can use the advantage of local computa-
tions of test statistics needed for information criteria - df and Kullback-Leibler
divergence.

The following questions arise: Does the tree contain all possible decomposable
models? Or in other words, can we find a path from any decomposable model to
a full model in such a tree? The answer is positive. Let us note that an inverse
assertion to Theorem 1 can be proven (see Theorem 12 in [11]). Both together
they guarantee the existence of a path of neighbor models from a full model to
an arbitrary decomposable model by repeated application of Theorem 1.

The exhaustive search among all decomposable models is computationally
intractable. Indeed, the number of decomposable models is enormous – numerical
results for the case of mathematically equivalent chordal graphs (the structure
of an arbitrary decomposable model can be represented using a chordal graph
and vice-versa) can be seen in [12] or [13]. Nevertheless, we expect that the tree
traversal could be significantly speedup using various techniques like gradient
descent method.

Because the optimal method does not exist, we hope that a sub-optimal
method can be found. The algorithm would not go through all nodes of the
tree, but it will go through a restricted sub-tree with e.g. the best values of test
statistics (see [14]).

Let us start with the simplest possible algorithm - a greedy search algorithm.
It is based on the idea to take the best optimal choice in each step to eventually
reach the global optimum. The algorithm picks the best solution in each step
regardless of the consequences. Using Theorem 1 we can design it as follows:

Algorithm 1 (Greedy search) Start with the full model.
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1. Generate all decomposable models in its neighborhood by adding a
conditional independence relation.

2. Choose the best model according to an information criterion (the
difference between df and Kullback-Leibler divergence from the full
model.

3. Repeat steps 1 and 2 until the information criterion starts to in-
crease.

The other idea is to use a slightly modified greedy search enhanced with a
history of previous search.

Algorithm 2 (Greedy search – k best) Start with the full model.

1. Generate all neighboring decomposable models with an additional
CI relation between a pair of variables.

2. Choose k best models according to a given information criterion.
3. Repeat steps 1 and 2 until the information criterion starts to in-

crease.

9 Experiments

We have performed several experiments to explore the possibility of usage of
greedy search approach for structure learning of compositional models. We have
used two data sets. The famous ASIA data set from [15] - an artificial data set
generated from a probabilistic model based on a hypothetical medical situation.
The data set has 8 variables (A,B,D,E,L,S,T,X) and 5.000 records. Then, be-
cause of the computational complexity of an exhaustive search in the space of
decomposable models over 8 variables, we have used also 6 variables data set
REINIS from [14] with 1200 records. Using a frequency analysis, we created
full models. Then, the models were iteratively decomposed using Theorem 1,
likelihood-test statistics, and the greedy search algorithm. In the case of REI-
NIS data set, we have also performed the exhaustive scan through the whole
space of decomposable models over 6 variables.

To generate all decomposable models, we have used the known fact that a
sequence of sets satisfying RIP property corresponds to cliques in a chordal graph
(ordered using maximum cardinality search algorithm). We used a catalog of all
chordal graphs over six variables from [16]. Note that in case of six variables there
are 18.395 decomposable models (without those with more than 4 singletons),
based on 75 chordal graphs.

The run of the greedy search algorithm in case of REINIS data set is illus-
trated in Table 1. The first column corresponds to a structure of respective com-
positional model - respective probability distributions are marginals of the full
model. The second column contains KL-divergence (also called relative entropy)
– a measure of how one probability distribution (represented by a compositional
model with a given structure) is different from a second, reference probability
distribution corresponding to the full model. df is the above-defined number of
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structure KL-diverg. df suggest. ind. i

(A,B,C,D,E,F) 0.00000 63 B⊥⊥D|Ki 1
(A,B,C,E,F)(A,C,D,E,F) 0.00479 62 C⊥⊥D|Ki 2
(A,B,C,E,F)(A,D,E,F) 0.00759 46 A⊥⊥F |Ki 2
(A,B,C,E,F)(A,D,E) 0.01009 38 E⊥⊥F |Ki 1
(A,B,C,E)(A,B,C,F)(A,D,E) 0.01368 37 A⊥⊥B|Ki 1
(A,C,E)(B,C,E)(A,B,C,F)(A,D,E) 0.01616 36 C⊥⊥E|Ki 2
(A,C,E)(B,C)(A,B,C,F)(A,D,E) 0.01868 32 C⊥⊥F |Ki 3
(A,C,E)(B,C)(A,B,F)(A,D,E) 0.02143 24 A⊥⊥F |Ki 3
(A,C,E)(B,C)(B,F)(A,D,E) 0.02247 20 B⊥⊥F |Ki 3
(A,C,E)(B,C)(F)(A,D,E) 0.02432 18 A⊥⊥D|Ki 4
(A,C,E)(B,C)(F)(D,E) 0.03081 14 D⊥⊥E|Ki 4
(A,C,E)(B,C)(F)(D) 0.03582 12 C⊥⊥E|Ki 1
(A,C)(A,E)(B,C)(F)(D) 0.04432 11 A⊥⊥E|Ki 2
(A,C)(E)(B,C)(F)(D) 0.05113 9 A⊥⊥C|Ki 1
(A)(B,C)(E)(F)(D) 0.06190 7 B⊥⊥C|Ki 2

Table 1. Greedy search over the set of all decomposable models of REINIS data set

parameters needed to represent the model. The last but one column contains
the newly introduced independence relation to the structure of the model using
Theorem 1 by splitting set Ki. The index i can be found in the last column.
Note that the run was not stopped by any criterion and it was performed until
the structure was split into a sequence of singletons.

To see the quality of greedy search approach, compare the results from Table 1
with Table 2 which contains the results of the exhaustive search in the class of
all decomposable models of REINIS data set. More precisely, Table 2 contains
a set of best models based on Kullback-Leibler divergence from a full model for
each possible structure complexity df . On can see, that it is not true that for a
smaller df the corresponding KL divergence has to be higher. Similarly, it seems
to be difficult to decide which ratio of KL divergence and df is reasonable. There
is no significant change in KL divergence considering decreasing df .

Table 3 illustrates the greedy search algorithm in the case of ASIA data set.
Because the size of the set of all decomposable models fro eight variables was for
us computationally intractable, we have added two additional lines not corre-
sponding to the greedy search algorithm. The last but one algorithm represents
the original model used for data generation. Note that the model is not decom-
posable. Its decomposable version [4] is in the last row of the table. You can see
that with this setting, the greedy algorithm is far from finding it. The biggest
problem is located in a huge KL-divergence jump in the 9th step of the algo-
rithm. This will require further investigation of the problem. Nevertheless, even
if we compute the KL-divergence globally (not employing local computations)
we end up with the same numbers.
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structure KL-diverg. df
(A,B,C,E,F)(A,C,D,E,F) 0.00479 62
(A,B,C,E,F)(A,D,E,F) 0.00759 46
(A,B,C,F)(A,C,E,F)(A,D,E,F) 0.01204 45
(A,B,C,E,F)(A,D,E) 0.01009 38
(A,B,C,F)(A,B,C,E)(A,D,E) 0.01368 37
(A,B,C,D,E)(B,F) 0.01457 34
(A,B,C,E)(A,B,D,E)(B,F) 0.01649 33
(A,B,C,D,E)(F) 0.01643 32
(A,B,C,E)(A,B,D,E)(F) 0.01834 31
(A,D,E,F)(A,B,C,E) 0.01495 30
(A,B,C,F)(A,C,E)(A,D,E) 0.01633 29
(A,C,E)(B,C,E)(A,D,E)(D,E,F) 0.01901 28
(A,B,C,E)(A,D,E)(B,F) 0.01747 25
(A,C,E)(A,D,E)(B,C,E)(B,F) 0.01995 24
(A,B,C,E)(A,D,E)(F) 0.01932 23
(A,C,D,E)(B,C,F) 0.02070 22

structure KL-diverg. df
(A,D,E)(A,C,E)(B,C,E)(F) 0.02180 22
(A,D,E)(A,C,E)(B,C,F) 0.02157 21
(A,C,D,E)(B,C)(B,F) 0.02160 21
(A,D,E)(A,C,E)(B,C)(B,F) 0.02247 20
(A,C,D,E)(B,C)(F) 0.02346 19
(A,D,E)(A,C,E)(B,C)(F) 0.02432 18
(D,E,F)(A,C,E)(B,C) 0.02801 17
(A,B,C,E)(F)(D) 0.03083 17
(B,F)(B,C)(A,C,E)(D,E) 0.02895 16
(A,C,E)(B,C,E)(F)(D) 0.03330 16
(A,C)(B,C)(B,E)(D,E)(B,F) 0.03724 15
(A,D,E)(A,B,C)(F) 0.03047 15
(A,C,E)(B,C)(D,E)(F) 0.03081 14
(A,C)(B,C)(B,E)(D,E)(F) 0.03909 13
(A,C,E)(B,C)(D)(F) 0.03582 12
(A,C)(B,C)(B,E)(F)(D) 0.04411 11

Table 2. Exhaustive search over the space of all decomposable models

10 Conclusion

This paper introduces a theoretic background for iterative compositional model
learning. Although the introduced test statistics is feasible to efficiently compute
using local computations, it seems that a simple greedy approach is not good
enough. There are still several problems to be solved:

– to find a suitable criterion to stop the decomposition process,
– to check whether k > 1 will lead to better results and if not, to come with

another algorithm, and
– to check the circumstances under which the greedy approach can provide

solutions sufficiently close to the optimal solution.

To solve the problem we have to find a way how to efficiently generate the
complete class of decomposable models for eight variables - probably using the
catalog of chordal graphs by employing the fact that a chordal graph is just
another mathematical representation of a decomposable structure. The problem
is the number of permutations of eight variables, nevertheless, using [4], we
should be able to determine structures from the same equivalence class and keep
only one representant of each class.
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