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Abstract. The paper describes principles enabling us to express the
knowledge hidden in a multidimensional probability distribution – a dis-
tribution that is assumed to have generated the input data – into the
form legible by humans, into the form expressible in a plain language. The
generality of this approach arises from the fact that we do not assume
any type of probability distribution. The basic idea is that the analysis
of such a multidimensional distribution is, because of its computational
complexity, intractable, and therefore we construct its approximation in
a form of a decomposable model, which provides an easy interpretation.
The process should be controlled by an expert in the field of application,
and the presented principles give him instruction, how, using the tools
from probability and information theories, to get satisfactory results.
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1 Introduction

There is abundant literature on data mining and, quite naturally, a great number
of different definitions explaining what the authors understand by this notion.
All the authors agree that data mining is a process discovering interesting re-
lationships that are to be found in large databases, a process uncovering useful
information that can be expressed in the form of knowledge. And this is the point
in which the individual data mining processes differ from each other. Some of the
authors consider data mining to be a part of machine learning, as e.g., [5], and
therefore they represent the discovered knowledge in a form of specific models.
Some others look for relations representable in a form of IF-THEN rules (usually
loaded with some uncertainty). As we are now going to support with arguments,
in the described approach we look for a knowledge representable with the tools
of probability theory.

In the beginning, the artificial intelligence refused probability theory for
knowledge representation and inference because of several reasons. Among them,
1 This survey lecture is patterned on the manuscript of the book [6], and on preceding
papers of the authors.
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Table 1: An example of a direct proportion.

Age Proportion of patients with disease D

less than 40 2.1 %
40 – 49 7.3 %
50 – 59 14.6 %
60 – 69 31.1 %
70+ 44.9 %

the rigidity of statistical methodology and the complexity of the respective com-
putational procedures played important roles. It was in the middle of the eighties
of the last century when the probability theory started penetrating into the field
of artificial intelligence thanks to the papers like [2], and the tools based on
probabilistic graphical models [15, 16]. Naturally, we do not claim that the prob-
ability theory is an approach capable to represent all forms of knowledge, but it is
general enough that it can serve for the purpose of this paper. It can represent a
logical implication (IF-THEN rule) by a two-dimensional distribution (four-fold
table) with one zero value. If this rule is loaded with uncertainty, then it contains
instead of the zero a small probability. In probability logic, the validity of im-
plication is formalized as a conditional probability. Moreover, probability table
(distribution), like in Table 1, can represent a type of dependence we express in
words “the older, the greater the risk of suffering from disease D.” There are many
other types of dependence that can be read from a respective low-dimensional
probability table. If the reader cannot find a more general description of depen-
dence, it is always possible to express it as a series of conditional probabilities,
i.e., a series of IF-THEN rules, the validity of which corresponds to the value of
the corresponding conditional probability. But keep in mind that it is reasonable
to explain the type of dependence only when the respective probability table is
low-dimensional, as a rule, the dimension should usually be lower than 5.

Among all possible types of dependence, the most important is independence,
or more generally, conditional independence, about which we will speak later in
more details. Before proceeding to a more formal exposition let us admit that
the probability theory has also its limits: it cannot model ambiguity . It has been
known since the middle of the last century [4] that humans do not like ambi-
guity. They prefer situations when they know probabilities of the alternatives
influencing their decision, and hate situations when the probabilities are fully
unknown. This phenomenon is called an Ellsberg paradox, and it is known that
classical probability theory cannot treat such situations easily. The only way how
to overcome this problem is to employ some generalization designed for treating
uncertain probabilities, as, e.g., belief function theory.
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2 Basic Notions and Notation

Let us assume the records from the available data represent observations of
random variables, which are, in this paper, denoted by upper-case characters of
Latin alphabet (like X, Y, . . .). Finite sets of values of these variables are denoted
by XX , XY , . . .. Thus, for example, if variable Y denote a ’sex’ of a respondent
than XY contains just two values corresponding to ’female’ and ’male’. Most of
the time we will deal with sets of variables denoted by bold-face characters K,
L, M, N. Thus, K may be {X,Y,W}. By a state of variables K we understand
any combination of values of the respective variables, i.e., in the considered case
K = {X,Y,W}, a state is an element of a Cartesian product XX×XY ×XW . For
the sake of simplicity, this Cartesian product is denoted XK. For a state y ∈ XK

and L ⊂ K, by y↓L we denote a projection of y ∈ XK into XL, i.e., y↓L is the
state from XL that is got from y by dropping out all the values of variables from
K \ L.

Probability tables (distributions) are denoted by characters of Greek alpha-
bet (κ, λ, µ, ν, π). Recall that it means that κ(K) : XK −→ [0, 1], for which∑

x∈XK
κ(x) = 1.

Having a probability distribution κ(K), and a subset of variables L ⊂ K,
κ↓L denote a marginal distribution of κ defined for each x ∈ XL by the formula

κ↓L(x) =
∑

y∈XK:y↓L=x

κ(y).

For a probability distribution κ(K), we introduce a conditional distribution in
a standard way. For disjoint L,M ⊆ K, by a conditional distribution of variables
L given variables M we understand any function κL|M : XL∪M −→ [0, 1] meeting
the following two conditions:

• ∀x ∈ XL∪M κ↓L∪M(x) = κL|M(x) · κ↓M(x↓M),
• ∀ fixed x ∈ XM function κL|M as a function of variables L is a probability

distribution, i.e.,
∑

y∈XL∪M;y↓M=x κ
L|M(y) = 1.

Due to the latter condition, the argument y of the function κL|M is often
split into two complementary pieces y↓L and y↓M, and its value is depicted as
κL|M(y↓L|y↓M).

Consider two distributions κ(K) and λ(L). We say that κ and λ are consistent
if π↓K∩L = κ↓K∩L. For two probability distributions defined for the same group
of variables, say π(K), κ(K), we say that κ dominates π (in symbol π � κ) if

∀ x ∈ XK (κ(x) = 0 =⇒ π(x) = 0) .

Consider a probability distribution π(N), and three disjoint subsets of vari-
ables K,L,M (K∪L∪M ⊆ N). Let K and L be nonempty. We say that groups
of variables K and L are conditionally independent given M for distribution π
if

π↓K∪L∪M · π↓M = π↓K∪M · π↓L∪M.
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In symbol, this property is expressed by K⊥⊥L|M [π]. In case of M = ∅ we use
only K⊥⊥L [π] and speak about an unconditional independence.

We have already mentioned that the conditional independence is considered
in this paper as a property expressing knowledge about the reality described by
the considered probability distribution. Perhaps, it is not visible just from the
definition, but it is an easy exercise to show that if K⊥⊥L|M [π], then

π↓K|L∪M = π↓K|M.

In words: if we know a state from XM, then learning values of variables from L
does not bring us any new information about variables fromK. If we know a state
from XM, then groups of variables K and L become independent. For example,
the intensity of training and the placing of a sportsman in a race are dependent.
But conditionally, given the time in which he accomplished the race, these two
events become independent. Namely, when knowing the time he achieved in the
race, the probability that he wins the race does not change when learning how
much time he spent in training.

For a probability distribution π, by its independence structure we understand
the list of all conditional independence relations holding for π. It explains us,
which of the dependence relations are direct, and which are mediated through
other variables.

3 Decomposition of Probability Distributions

As said in the introduction, humans can read knowledge from low-dimensional
probability tables. It means that when considering a multidimensional distribu-
tion one has to decompose it into low-dimensional ones, and the decomposition
should be done in the way that it gives evidence about the data [8]. Moreover,
any decomposition is required to meet the following properties

• the result of the decomposition are two objects of the same type as the
decomposed object;
• both these sub-objects are simpler (smaller) than the original object;
• not all objects can be decomposed;
• there exists an inverse operation (we call it a composition) yielding the orig-

inal object from its decomposed parts.

These properties made us to accept the following definition.

Definition 1. We say that a probability distribution π(M) is decomposed into
its marginals π↓K and π↓L if

1. K ∪ L = M;
2. K 6= M, L 6= M;
3. π(M) · π↓K∩L = π↓K · π↓L.
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Notice that the third condition is nothing else than K \L⊥⊥L \K|K∩L [π],
and that the original distribution π(M) can be uniquely reconstructed from the
marginals π↓K and π↓L.

It is important that probability distributions can be hierarchically decom-
posed into a system of low-dimensional distributions that cannot be further
decomposed. An example of such a hierarchical process represented by a corre-
sponding tree structure can be seen in Figure 1, where distribution π(X,Y, Z, V,W )

π(X, Y, Z, V,W )

π(X, Y ) π(Y, Z, V,W )

π(X) π(Y ) π(Y, Z, V ) π(Z, V,W )

π(Z, V ) π(V,W )
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Fig. 1: Hierarchical decomposition of π(X,Y, Z, V,W ).

is decomposed into a system of its marginal distributions: π↓X , π↓Y , π↓{Y,Z,V },
π↓{Z,V }, π↓{V,W}. Each decomposition was made possible by the fact that the
respective conditional independence relation holds for distribution π. It means
that the decomposition process from Figure 1 was made possible by the assump-
tion that the following system of conditional independence relations holds for
distribution π:

• X⊥⊥{Z, V,W}|Y [π];
• X⊥⊥Y [π];
• Y⊥⊥W |{Z, V } [π];
• Z⊥⊥W |V [π].

Therefore, having a multidimensional probability distribution (a generator of
the considered data) decomposed into its “primes” (low-dimensional distributions
that cannot be further decomposed), we are able to express all the knowledge
contained in the distribution by

• the list of conditional independence relations enabling the decomposition of
the considered multidimensional distribution;

• all the knowledge that can be read from the low-dimensional “prime” distri-
butions.
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The only problem is that the process of decomposition of a multidimensional dis-
tribution (represented by the considered data file) is, as a rule, computationally
intractable. Therefore we have to find an indirect process that yields a decom-
position of such a multidimensional distribution, or, which is more realistic, to
find an approximation of such a hierarchical decomposition process. And the
description of such a process forms content of the rest of the paper.

4 Compositional models

The basic idea is as follows: If we cannot decompose a multidimensional distri-
bution because of the great computational complexity of the respective process,
we find the approximation of the considered distribution, which is in a form
of a compositional model. It means that its decomposition is “visible” from the
structure of the model. Compositional models are multidimensional distribu-
tions composed from a system of low-dimensional distributions by an operator
of a composition realizing an inverse process to the decomposition defined in
section.

Recall that π(N) can be decomposed into its marginals π(K) and π(L) if
K∪L = N and π(N) ·π↓K∩L = π↓K ·π↓L. From this, one immediately gets that
an inverse operation, the operation of composition is

π(N) =
π↓K · π↓L
π↓K∩L

.

This is trivial in case that we compose distributions π(K) and π(L) that are
consistent. The question is whether one can compose also inconsistent distribu-
tions, i.e., distributions κ(K) and λ(L), for which κ↓K∩L 6= λ↓K∩L. We need it
because the estimates got from a data file with missing values are rarely consis-
tent. Therefore, we advocate the following definition that was first introduced
in [7].

Definition 2. For arbitrary two distributions κ(K) and λ(L), for which λ↓K∩L
dominates κ↓K∩L, their composition is for each x ∈ XK∪L given by the following
formula2

(κ . λ)(x) =
κ(x↓K)λ(x↓L)

λ↓K∩L(x↓K∩L)
.

In case that κ↓K∩L 6� λ↓K∩L the composition remains undefined.

By a multidimensional compositional model we understand a multidimen-
sional probability distribution assembled from a sequences of low-dimensional
distributions with the help of the introduced operator of composition, i.e.,

κ1 . κ2 . . . . . κn.

2 Define 0·0
0

= 0.
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Unfortunately, the operator of composition is not associative, and therefore the
above expression is ambiguous. Therefore, let us make a convention that we will
omit the parentheses if the operators are to be performed from left to right:

κ1 . κ2 . . . . . κn = (. . . ((κ1 . κ2) . κ3) . . . . . κn−1) . κn.

On the other side, it is important that for these models, similarly to Bayesian
networks, efficient computational algorithms were designed that make the appli-
cation of these models for the inference possible. There are algorithms for the
marginalization of compositional models and for computation of conditional dis-
tributions. In this paper, we are not interested in this type of applications, and
therefore we do not need to present all the properties of the operator of com-
position, which make the theoretical basis for the design of these computational
procedures. At this place, let us highlight just that this operator is generally
neither commutative nor associative. Nevertheless, the associativity of the op-
erator of composition would be desirable not only to meet the requirements of
mathematical beauty, and to make the design of computational algorithms eas-
ier, but also to support some steps of the data-based model construction. Its lack
is, in a way, compensated by the existence of a generalized operator of compo-
sition, which is called an anticipating operator. It is introduced in the following
definition.

Definition 3. Consider an arbitrary set of variables M and two distributions
κ(K), λ(L). Their anticipating composition is given by the formula

κ ©.Mλ = (λ↓(M\K)∩L · κ) . λ.

Notice, it is a generalization of the operator introduced in Definition 2 in the
sense that

κ ©.∅λ = κ . λ.

Therefore, it is clear that it may happen that the result of composition remains
undefined. However, it follows immediately from the respective definitions that
if κ . λ is defined than also κ ©.Mλ is defined. Both κ . λ and κ ©.Mλ are
distributions defined for the same set of variables.

The main significance of the operator . is in the following: If κ(K), λ(L) and
µ(M) are such that µ . (κ ©.Mλ) is defined, then

(µ . κ) . λ = µ . (κ ©.Mλ).

The reader interested in other theoretical issues concerning the operator of
composition is referred to [11] and the papers cited there.

5 Heuristics for Model Construction

As said at the beginning of Section 4, having data, we want to construct a
compositional model approximating the distribution that generated the data.
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Fig. 2: Process of model construction

This model is a bearer of the knowledge from the data. Recall the two types
of knowledge mentioned at the beginning of Section 3 that can be directly read
from a compositional model: First, it is the list of conditional independence
relations holding for the distribution represented by the model3, second, each
of the low-dimensional distributions, from which the model is composed, can be
interpreted in the way mentioned in the introductory section.

Similarly to, for example, Bayesian network construction, there is no gener-
ally accepted “best” approach to data-based compositional model construction.
For the purpose of data mining, one possibility is to use a heuristic procedure4
schematically depicted in Figure 2. Notice that the described process is fully con-
trolled by an expert, who has a possibility to influence the constructed model,
and thus consequently also the type of the received knowledge.

As can be seen from the diagram in Figure 2, the process is initiated with the
definition of a system of low-dimensional distributions. Regarding the fact that
the process cyclically employs steps of verification and refinement , during which
this initial system is gradually changed, the result is fairly independent of the ini-
tial selection. For example, starting with all two-dimensional distributions may
be quite reasonable (for application to small data files with a limited number of
variables one can consider a possibility to start with three-dimensional marginal
distributions). In other situations, an expert can select the initial marginal dis-

3 Instructions for reading all the conditional independence relation from the structure
of the model can be found in [12].

4 For a more detailed description of this process, as well as for the survey of the
necessary theoretical background, the reader is referred to [10].
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tributions from which the model should be constructed. Generally, we propose
to select distributions carrying a greater amount of information. This idea is
supported by the assertion, proved in [9] (Corollary 1.). It claims that the higher
information content of a compositional model, the better approximation of the
unknown distribution. This means that it is necessary to compute the informa-
tion content (a generalization of the famous Shannon mutual information) of a
multidimensional distribution, which is for a distribution π(K) defined5

IC(π) = Div(π‖
∏
X∈K

π↓{X}) =
∑
x∈XK

π(x) log
π(x)∏

X∈K
π↓{X}(x↓{X})

.

It is important to highlight here, that computation of this value is computation-
ally cheap for, so called, perfect models. Therefore, the process of “perfectization”
of the model is included into the process of model construction. For perfect mod-
els, the information content of the whole multidimensional distribution can be
computed from the information content of the individual low-dimensional distri-
butions. This is why the computation of this value for the model is cheap, and
also why we want to get low-dimensional distributions with high information
content.

Realization of the box “Computation of Kullback Leibler divergence” in Fig-
ure 2 means computing the divergence between the distribution given by data
and the distribution represented by a model. It can easily be done for perfect
models. It helps the user to decide whether the model reasonably approximates
the data distribution. Naturally, one cannot expect that the first choice of the
low-dimensional distributions would yield a satisfactory model. This is true even
more in situations when starting just with two-dimensional distributions. Com-
paring the data distribution and the model locally (i.e., computing the Kullback
Leibler divergence for marginals corresponding to the low-dimensional distribu-
tions, from which the model is set up), the user can see, which parts of the model
do not reflect the data properly. It usually means that it is necessary to increase
the dimension of some low-dimensional distributions. It can be done, as one can
see in Figure 2, in two ways. Having enough data, one can get just new estimates
from the data. However, quite often it may be better to get a maximum entropy
estimate from several low-dimensional distributions of the original model by the
Iterative Proportional Fitting Procedure [3].

Let us stress once more that the process in Figure 2 is fully controlled by the
expert. The more cycles of the process are performed, the higher dimensions of
the input distributions are considered. If the expert had continued ad absurdum,
the process would have, in fact, finished with an application of IPFP to all of
the initial low-dimensional distributions (which is, as a rule, computationally

5 Div(π‖µ) denotes the famous Kullback-Leibler divergence defined (for π(K) and
µ(K))

Div(π‖µ) =
∑

x∈XK

π(x) log
π(x)

µ(x)
.
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intractable in practical situations). Therefore, it is obvious that one has to avoid
the overfitting of the model.

A model overfitting is a well known phenomenon both in statistics [17] and
machine learning (artificial intelligence) [1]. It is used to describe a situation
when a constructed model reflects the noninformative properties of the source
data file (like noise and other misleading properties that each randomly gen-
erated data file possesses). Let us illustrate it on two stochastically dependent
variables, the dependence of which is known to be linear. Because the dependence
is stochastic, if randomly generated data are plotted in a graph, the respective
dots are concentrated along a straight line describing the dependence. Natu-
rally, only a part of dots lies directly on the line. If one tries to find a curve
that connects all the dots in the plot (see Fig. 3), the model becomes for knowl-
edge discovery useless. Realize that such a complex curve is described (defined)
by a much larger number of parameters than the straight line, which can be
determined just by two points.

x0
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5

0 1 2 3 4 5 6 7 8 9 10 11

•
• • •

• • •

•
•

•

Fig. 3: Overfitted linear dependence

In agreement with other parts of this section, we propose a solution to this
problem from the perspective of information theory. Namely, the process of
model construction can be viewed as a transformation process; a process trans-
forming the information contained in data into the information represented by
a model. Thus, using one of the basic laws of information theory saying that
any transformation cannot increase the amount of information, we get the basic
restriction laid on models constructed from data: A model is acceptable if it does
not contain more information than the input data file.

However, the application of this idea hits the problem, how to measure in-
formation in a data file, and how to measure information contained in a model.
For this, we go back more than a half a century to seminal papers by von Mises
[19] and Kolmogorov [14], who explored relations interconnecting randomness,
complexity and information. They came with the idea that the amount of in-
formation in a sequence of 0’s and 1’s is increasing with the complexity of the
sequence, and that the complexity of such a sequence can be measured by the
length of the shortest program6 generating the sequence. We accept here this

6 An abstract program for a universal Turing machine.
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idea but instead of the length of an (abstract) program we consider the length
of a lossless encoding (one can always generate the sequence from its lossless
encoding).

Therefore, in agreement with results of Kolmogorov and von Mises, before
accepting a final compositional model, we look for the shortest possible encoding
of both, data file and the resulting model. In case we get a model, the encoding
of which requires more bits than the encoding of data, we are sure, that some
undesirable information has been added into the model. In addition to this, we
know that regardless of the way the data were collected, they always contain some
specific part of the information, employment of which results in the overfitting
of the model. It should not be included in the model. Thus we enforce a principle
under which we accept only models, the encoding of which is substantially shorter
than the encoding of the data file. The meaning of the word substantially is
usually left to the user’s discretion.

6 Conclusions

In this paper we have described main ideas on which probabilistic data-mining
methods are based. The term “general” in the title refers to the fact that the
approach can be applied to any data that may be assumed to be generated
by a random generator – multidimensional probability distribution. This is also
why the paper is focused on knowledge describing behavior of such generators.
This knowledge may be either qualitative or quantitative. The former can be
characterized by the independence structure of a multidimensional probability
distribution, by a list of the conditional independence relations holding for the
probability distribution. It can express which of the linkages between (among)
the considered variables (features, characteristics) are direct, and which are me-
diated by other variables.

In this contribution, we have presented principles that can be employed in
the process of knowledge discovery from data. Naturally, there are many other
approaches for this purpose. Our approach is based on the assumption, that
we are looking for the knowledge that can be read from a multidimensional
probability distribution (data generator) by decomposing the distribution into
its “prime” marginals. It takes advantage of the fact that the notion of conditional
independence (sometimes also called conditional irrelevance) is a notion used
when explaining a knowledge in plain language. Similarly, the knowledge encoded
in low-dimensional probability tables can always be expressed with the help of
conditional probabilities, i.e., probabilistic (indeterministic) implications.

For this, we had to introduce the concept of compositional models. Naturally,
in many places and in particular, in connection with the process of data based
model construction, we could only present the main ideas. The interested reader
is referred either to original journal papers or to the book [6], which is to be
published in 2019 as the first summarizing text on probabilistic compositional
models. Let us mention at this place that a number of papers were written also
on the compositional models in other uncertainty theories, like possibility theory,



12 R. Jiroušek, V. Kratochvíl

belief function theory, and even on compositional models in Shenoy’s valuation
based systems [18, 13].
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