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Abstract

The paper describes decision-making models based on a newly introduced notion of personal expected value. Such
models exhibit the ambiguity aversion, which is controlled by a subjective parameter with the semantics of “the
higher the aversion, the higher the coefficient”. For negative values of this parameter the models thus manifest a
positive attitude to ambiguity. If this parameter equals zero, then the respective model turns into the usual belief
function without the aversion to ambiguity. In this case, the personal expected value equals the recently introduced
Shenoy’s expectation. Finally, the behavior of these models is briefly compared with experimental data.

1. Introduction

It is well known and has also been confirmed by our experiments that most people prefer lotteries in which they
know the content of the drawing drum to situations when that content is unknown. In our experiments, the participants
were asked to choose one out of six predetermined colors, and they won a prize when the color of a randomly drawn
ball was that of their choice. It appeared that the participants were, on average, willing to pay by about 30% more to
take part in games when they knew that the urn contained the same number of balls of all six colors, in comparison
with the situation when they only knew that the urn contained balls of specified colors but their proportions were
unknown. This well-known, seemingly paradoxical phenomenon can hardly be explained by different subjective
utility functions. To explain this fact, we accepted the hypothesis of Savage [29] that humans are willing to pay no
more than what they expect to get back from the lottery, i.e., they are willing to pay at most their subjective expected
value. However, to (unconsciously) estimate this value they do not use their subjective probability measures but just
capacity functions that do not sum up to one [22]. Roughly speaking, the subjective probability of drawing a red ball
is 1

6 if they know that there is the same number of balls of each color in the drum. However, the respective “subjective
probability” in the case of insufficient knowledge is usually ε < 1

6 . The lack of knowledge psychologically decreases
the subjective chance of drawing the selected color – it decreases the subjective chance of success. This attitude
is subjective and differs from person to person, depending on the personal intensity of ambiguity aversion. This is
why we will distinguish between two notions in this paper. The expected value will be used for the value computed
when the uncertainty is formalized in a normative way, such as by a probability measure or a belief function. The
notion of personal expected value will be used when also the intensity of the personal subjective ambiguity aversion
is taken into consideration. The former notion is a part of the mathematical apparatus, the latter exceeds the border
of mathematics into psychology. Note that the concept of ambiguity aversion goes through all other theories used in
decision making, such as game theory [2] or quantum probability [1].

The paper is one of many related to the ambiguity aversion, due to which human behavior violates Savage’s
expected utility theory [29]. There are many different approaches to ambiguity aversion, like Maxmin-Expected
Utility, Choquet-Expected Utility with convex capacities, Smooth Ambiguity-Averse preferences, Variational and
Multiplier preferences – recently axiomatized by [5]. For a nice survey, see [14]. Lang considers models with first-
order and second-order ambiguity aversion [27], which differ by the inclination to risk-averse behavior.
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We present a new model manifesting the same ambiguity aversion as human decision-makers. For this, we con-
struct a reduced capacity function that can, similarly to probability function, be used to compute the personal ex-
pected value of a reward in the case that the description of the situation is ambiguous. It is clear from the literature
[12, 24, 13, 15] that it need not be a probability function. When considering all elementary events, this function
does not necessarily sum up to one because people usually expect smaller rewards under total ignorance than in the
case of knowing that all alternatives are of equal probabilities. As we will see later (when discussing the Ellsberg’s
experiments), this function is generally not additive. Thus, the considered function belongs to the class of functions
called capacities.

In this paper, we take advantage of the fact that situations with ambiguity are well described by tools of theory
of belief functions. This theory distinguishes between two types of uncertainty: the uncertainty connected with the
fact that we do not know the result of a random experiment (in our examples a result of a random lottery) and the
ignorance arising when we do not know the content of the drawing urn. Namely, we believe that the phenomenon
of ambiguity aversion is closely connected with the fact that probability theory has difficulties with representing
ignorance or vagueness [30]. We start with describing the situation by belief functions that can be interpreted as
generalized probability [16], i.e., each belief function corresponds to a set of probability functions [16]. We then adopt
the decision-theoretic framework, also used by other authors, based on the transformation of the belief function into a
probability function. Our model manifests the required properties for most of the known probability transforms [10].
From a range of transforms discussed in Section 3, we have given preference to the probability measure consistent
with the recently proposed Shenoy’s expectation [32] because it is the only one having certain theoretical support
directly within the theory of belief functions (see [32]), and simultaneously yielding an element from the respective
credal set. However, we do not use the achieved probabilistic measure to compute the expected reward (like, e.g.,
Smets [36]) and use it to support the required decision. In fact, we add one additional step. Before computing the
personal expected reward, we reduce the probabilities to account for ambiguity aversion. This is the only point in
which our approach differs from Smets’ decision-making framework [35], which is based on the Dempster-Shafer
theory of belief functions [11, 30].

Before describing the outlined process in more detail, let us stress that our aim is not as ambitious as developing
a mathematical theory to describe the ambiguity aversion within the theory of belief functions. It was already done
by Jaffray [19], who shows how to compute the generalized expected utility for a belief function. We do not even
consider all elements from a credal set with all the preference relations as, for example, in [8]. Our ambition is to
provide models simulating human decision-makers. The behavior of these models is dependent on a parameter called
a personal coefficient of ambiguity aversion. Such a coefficient of ambiguity aversion is also considered by Rajendra
Srivastava [38] and our suggested approach repeats some of his basic ideas. For example, we use an almost identical
idea to identify the amount of ambiguity connected with individual states of the considered state space.

This paper is an extended and completely rearranged version of the paper presented at ECSQARU 2019. The
next Section is devoted to a very brief introduction to belief function theory (in fact, the main purpose is to intro-
duce the notation) and a recently introduced Shenoy’s expected value. Newly inserted Section 3 explains the role
of this expected value in our models and presents a range of probability transforms that may be used to compute
approximations of Shenoy’s expected value. Among them, we introduce two transforms that have not appeared in the
belief function literature before (Perez’s barycenter, and a convex combination of belief and plausibility functions).
Section 4 explains the precise meaning of the personal expected value, which depends on the personal coefficient of
ambiguity aversion α . A possibility of how to find the value of this coefficient for experiment participants is discussed
in Section 5. Finally, Section 6 presents an example showing why we should consider non-additive capacity functions.
A summary of results achieved in our experimental session, which were realized after the ECSQARU conference, is
presented in Section 7.

2. Belief Functions

The basic concepts and notations are taken over from [22], where the first ideas of this approach were introduced.
We consider only a finite state space Ω. In the examples described below, Ω is a set of six considered colors:
Ω = {red,black,white, yellow,green,azure} (Ω = {r,b,w,y,g,a} for short). Similar to probability theory, where a
probability measure is a set function defined on an algebra of the considered events, belief functions are represented
by functions defined on the set of all subsets of Ω (denoted 2Ω) [11, 30].
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The fundamental notion is that of a basic probability assignment (or, basic assignment), which describes all the
information we have about the considered situation. It is a function m : 2Ω → [0,1], such that ∑a∈2Ω m(a) = 1 and
m( /0) = 0.

For basic probability assignment m, a ∈ 2Ω is said to be a focal element of m if m(a) > 0. This enables us to
distinguish between the following special classes of basic assignments representing the extreme situations:

• m is said to be vacuous if m(Ω) = 1, i.e., it has only one focal element, Ω. A vacuous basic assignment is
denoted by mι . It corresponds to total ignorance. In our examples, mι represents situations when we do not
have any information regarding the proportions of colors in the drawing drum.

• m is said to be Bayesian, if all its focal elements are singletons, i.e., for Bayesian basic assignment m, m(a)> 0
implies |a| = 1. Bayesian basic assignments represent exactly the same knowledge as probability functions.
Since all focal elements of a Bayesian basic assignment m are singletons, we can define probability measure Pm
for Ω such that

Pm(x) = m({x}) (1)

for all x ∈ Ω. In our examples, Bayesian basic assignments thus represent situations when the proportions of
colors in the drawing drum are known. We use a uniform Bayesian basic probability assignment mu, for which
mu({r}) = mu({b}) = . . .= mu({a}) = 1

6 .

• m is said to be quasi-Bayesian if each of its focal elements is either a singleton or the whole Ω. That is, for
quasi-Bayesian basic assignment m, m(a) > 0 implies |a| equals either 1 or |Ω|. As an example of a quasi-
Bayesian basic probability assignment, consider the situation when we know that the drawing urn contains n
balls and at least one of them is red. In this case, m({r}) = 1

n and m(Ω) = n−1
n .

The same knowledge that is expressed by a basic probability assignment m can also be expressed by a belief
function, or by a plausibility function, or by a commonality function.

Belm(a) = ∑
b∈2Ω:b⊆a

m(b), (2)

Plm(a) = ∑
b∈2Ω:b∩a, /0

m(b), (3)

Qm(a) = ∑
b∈2Ω:b⊇a

m(b). (4)

Let us point out that, whenever one of these functions is given, it is always possible to reconstruct the corresponding
basic probability assignment m. For example,

m(a) = ∑
b∈2Ω:b⊇a

(−1)|b\a|Qm(b). (5)

Recalling the basic situations mentioned above, we can see that the vacuous basic assignment mι describes the
case when the composition of the content of the drawing drum is completely unknown. Then, Belmι

(a) = 0 for all
a ( Ω, and Belmι

(Ω) = 1, Plmι
(a) = 1 for all a , /0, and Qmι

(a) = 1 for all a ∈ 2Ω. When the drawing drum contains
the same number of balls of each color, the situation is described by the uniform Bayesian basic assignment mu. For
this basic probability assignment, Qmu(a) = mu(a) for all a , /0, and Belmu(a) = Plmu(a) =

|a|
6 for all a ∈ 2Ω. For the

quasi-Bayesian basic assignment, m({r}) = 1
n , m(Ω) = n−1

n , one gets Belm(Ω) = 1, Belm(a) = 1
n whenever r ∈ a ,Ω,

and Belm(a) = 0 for all the remaining subsets of Ω. For this basic assignment, Plm(a) = 1 if r ∈ a, Plm(a) = n−1
n if

r < a , /0, and Qm({r}) = 1, Qm(a) = n−1
n for all the remaining non-empty subsets of Ω.

The interpretation of the belief function theory as a generalization of the probability theory is based on the fact
that each basic probability assignment determines a convex set of probability measures P on Ω, the so-called credal
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set, which is defined as follows (P denotes the set of all probability measures on Ω):

P(m) =

{
P ∈P : ∑

x∈a
P(x)≥ Belm(a) for ∀a ∈ 2Ω

}
.

Notice that Pm defined by Equation (1) for a Bayesian basic assignment m is such that P(m) = {Pm}. Therefore
P(mu) = {Pu}, where Pu is the uniform probability measure on Ω = {r,b,w,y,g,a}, i.e., Pu = ( 1

6 ,
1
6 , . . . ,

1
6 ). For the

vacuous mι , P(mι) = P . For each basic assignment m, it is easy to show that, for all P ∈P(m),

Belm(a)≤ P(a)≤ Plm(a),

for all a∈ 2Ω. Thus, if Belm(a) = Plm(a) then we are sure that the probability of a equals Bel(a). Otherwise, the larger
the difference Plm(a)−Belm(a), the more uncertain we are about the value of the probability of a. This is also why
Srivastava, when the knowledge is encoded by basic probability assignment m, takes the difference Plm(a)−Belm(a)
as a measure of ambiguity connected with an event a [38]. Other ways to measure ambiguity appearing in the literature
are based on the total aggregated uncertainty connected with the respective belief function. For example, the authors of
[23] suggest to measure the total ambiguity as the entropy value of the pignistic probability transform – this approach
was later modified in [31] to avoid drawbacks identified in [25]. For an overview of various measures of uncertainty
for belief functions see, e.g., [3].

In this paper, the apparatus of belief functions is used to describe the uncertain information about the situation
under which the decision is to be made. As said in the Introduction, our model is based on the idea that a certain
probability distribution is reduced as per the ambiguity aversion of the decision-maker. It can easily be done when the
recently introduced notion of Shenoy is incorporated into the model instead of the usually employed Choquet integral.

For a real valued function ĝ : 2Ω −→ R, Shenoy [32] suggests to compute its expected value under uncertainty
expressed by basic probability assignment m according to the following formula:

Em(ĝ) = ∑
a∈2Ω

(−1)|a|+1ĝ(a)Qm(a). (6)

In the cited paper, he shows that this value meets a long list of required properties. Principally, there are two ways
of applying this definition to compute the expected value of the function g : Ω→ R. The first possibility is to extend
the function g to a function ĝ defined on 2Ω. To preserve the validity of properties of the expected values proven by
Shenoy, we have to follow his philosophy and define, for all a ∈ 2Ω,

ĝ(a) =
∑

x∈a
g(x)Qm({x})

∑
x∈a

Qm({x})
(7)

(in the case that ∑x∈a Qm({x}) = 0, the value ĝ(a) does not influence the resulting expected value of g, and we can
therefore choose any reasonable value; for example, ĝ(a) = (minx∈a{g(x)}+maxx∈a{g(x)})/2). Now it holds:

Em(g) = ∑
a∈2Ω

(−1)|a|+1ĝ(a)Qm(a),

which, after the elimination of the extension function ĝ, equals

Em(g) = ∑
a∈2Ω

(−1)|a|+1
∑

x∈a
g(x)Qm({x})

∑
x∈a

Qm({x})
Qm(a). (8)

Alternatively, as shown in [21], for each basic probability assignment m, there exists a probability measure Sh Pm
on Ω such that

Em(g) = ∑
x∈Ω

g(x)Sh Pm(x). (9)

And this is why we base our approach on the application of Shenoy’s expected value. It offers a possibility to compute
a “subjective probability” by applying the reduction principle mentioned in the Introduction.
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3. Probability Transforms

The computation of the probability measure Sh Pm for given m is not a computationally easy task. For this, one
has to consider |Ω| simple real functions wx : Ω→ R defined for each x ∈Ω

wx(y) =

{
1, if y = x,
0, otherwise.

(10)

Then, for all x ∈ Ω, Sh Pm(x) = Em(wx). However, one has to realize that computing Em(wx) requires extending
each function wx to ŵx : 2Ω → R according to Formula (7). When considering the situation with six colors in the
drawing drum, it means that |Ω| = 64, and that the function ŵx is defined on the set 2Ω of cardinality 264. Because
of these computational problems, in [21] we studied a possibility to approximate probability measure Sh Pm(x) by
other probability measures, which are sometimes considered as representatives of basic belief assignment m, and the
computation of which is much simpler.

In literature (for a survey paper see [10]) several approaches were designed for representing a basic probability
assignment m by a probability measure . In [21], we studied three of them (pignistic, plausibility and maximum
entropy transforms), as well as two newly introduced ones. Let us briefly recall all of these five transforms. For this,
consider a basic probability assignment m on Ω.

The most famous is a pignistic transform (introduced in [33], for a survey see [37]), defined for all x ∈ Ω by the
formula

Bet Pm(x) = ∑
a∈2Ω:x∈a

m(a)
|a|

. (11)

This transform distributes the mass m(a) uniformly to all elements of a. For decision-making, it was strongly advo-
cated by Philippe Smets [34, 36].

Another transform, which is, as shown in [7] by Cobb and Shenoy, the only transform compatible with Dempster’s
rule of combination, is the so-called plausibility transform. It is a normalized plausibility function on singletons. It is
formally defined, for all x ∈Ω, by

Pl Pm(x) =
Plm({x})

∑
y∈Ω

Plm({y})
.

Notice also that it is the only one from among the studied transforms for which the resulting probability measure need
not be an element of the corresponding credal set.

The third probability transform selects the maximum entropy element from the credal set P(m), i.e.,

Me Pm(x) = arg max
P∈P(m)

H(P),

where H(P) is the Shannon entropy of probability measure P

H(P) =− ∑
x∈Ω:P(x)>0

P(x) log2 P(x).

The fourth transform is the Perez’ barycenter [28], which has undeservedly fallen into oblivion:

Bac Pm(x) = arg min
P∈P(m)

max
Q∈P(m)

Div(Q;P),

where Div(Q;P) denote the well-known Kullback-Leibler divergence [26]

Div(Q;P) =


+∞, if ∃ x ∈Ω : P(x)> 0 = Q(x);

∑
x∈Ω:P(x)>0

P(x) log
(

P(x)
Q(x)

)
, otherwise.
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As the last transform, we propose to consider the element of the credal set that can be expressed as a convex
combination of belief and plausibility functions:

Cs Pm(x) = δBelm({x})+(1−δ )Plm({x}),

where

δ =
(∑x∈Ω Plm({x}))−1

(∑x∈Ω Plm({x}))− (∑x∈Ω Belm({x}))
.

It is not difficult to show that, for quasi-Bayesian basic belief assignment’s m, this last transform coincides with the
pignistic transform: Cs Pm(x) = Bet Pm(x).

All of the above-introduced probability transforms are probabilistic representatives of belief functions (basic prob-
ability assignments). As mentioned at the end of the previous section, the expected value of real function g : Ω→ R
computed using the probability measure Sh Pm equals Shenoy’s expected value under the knowledge represented by
the basic assignment m. Since, in practical problems, it is usually impossible to compute probability measure Sh Pm,
a natural question arises: do some of the remaining transforms yield similar results? This question was studied in [21]
using randomly generated basic probability assignments on a five-element set Ω (reflecting the fact that, in practical
applications, basic assignments usually have limited numbers of focal elements - for details see [21]), and the results
can briefly be summarised in the following observations.

• For simple (in a way symmetric) basic assignments, like those described in the following Sections, all five
probabilistic transforms usually yield the same probability measure as Sh Pm.

• Even for asymmetric situations, when all five probabilistic transforms yield different probability measures, the
resulting measures are close to each other (measured by Kullback-Leibler divergence, and/or total variance).
Therefore, the expected values computed concerning the different probability transforms do not substantially
differ from each other.

• In general, none of the transforms is dominant in approximating the Shenoy’s transform, each of them yields
the best approximations of the Shenoy’s transform for some basic assignments.

• An exception from the preceding observation occurs for quasi-Bayesian basic assignments. For this class of
basic assignments, the best approximations of the Shenoy’s transform are usually yielded by Perez’ barycenter.

4. Personal Expected Value

In this Section, we assume that the considered situation is well described by a belief function with a basic prob-
ability assignment m on Ω. Considering a function g : Ω→ R, one can compute its Shenoy’s expected value using
Formula (8), An alternative way, as explained in Section 3, is to find the probability measure given by the Shenoy’s
transform Sh Pm and compute the respective expected value using Formula (9). If it is computationally unfeasible,
one can obtain a reasonable approximation of the considered expected value replacing the Shenoy’s transform Sh Pm
with any of the transforms described in Section 3.

As showed by Ellsberg [12] and his followers, human decision-makers do not merely go along with the expected
gain. To model their decision making, we introduce a personal expected value of the considered gain function g.
To compute the latter, we propose to apply the reduction principle mentioned in the Introduction. For each event
a⊆Ω, the considered probability distribution Sh Pm is reduced proportionally to the personal coefficient of ambiguity
aversion α . The personal expected value of the gain function is then computed using the resulting capacity function.
Let us again point out that we construct a capacity function, which is generally not a probability measure because it
neither is additive nor sums up to one on the elements of Ω. Now, we describe this process of model construction in
more detail.

Consider basic probability assignment m, the corresponding probability measure obtained by the Shenoy’s trans-
form Sh Pm, and the respective belief and plausibility functions Belm and Plm. Let us recall that the higher Plm(a)−
Belm(a), the higher is the ambiguity about the probability of event a⊆Ω. Our intuition says the higher the ambiguity
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about the probability of an event, the greater reduction of the respective probability should be done in our model. We
therefore define a reduced capacity function rm,α for all a⊆Ω as follows:

rm,α(a) = (1−α)Sh Pm(a)+αBelm(a), (12)

where α denotes a personal coefficient of ambiguity aversion. Its introduction is inspired by the Hurwicz’s optimism-
pessimism coefficient [17]. Similarly to Hurwicz’s coefficient, we first assumed α ∈ [0,1]. Contrary to Hurwicz, who
suggests that everybody can choose a personal coefficient expressing her optimism, we assume that each person has
a personal coefficient of ambiguity aversion. The higher the aversion, the higher the coefficient’s value. Therefore
we propose ways of detecting the value of this coefficient for experiment participants (see the next Section). How-
ever, based on our experiments (and in agreement with observations of other authors [18]), it has appeared that an
experiment participant may, even if exceptionally, exhibit a positive attitude to ambiguity (for a review of the relevant
literature see [39]). For such a participant, α may be negative.

Notice that the amount of modification of Sh Pm realized in Formula (12) depends on the ambiguity aversion
coefficient α , and the amount of ignorance associated with the event a. If we are certain about the probability of an
event a, it means that Sh Pm(a) = Belm(a), and the corresponding probability is not changed: rm,α(a) = Sh Pm(a).
On the other hand, the maximum reduction is achieved for the states connected with maximal ambiguity, i.e., for the
events for which Belm(a) = 0.

Some trivial properties of the function rm,α are as follows:

1. Subnormality. For α ∈ [0,1], ∑x∈Ω rm,α(x)≤ 1.
2. Bayesian assignment. m is Bayesian if and only if m({x}) = Sh Pm(x) = rm,α(x) for all x ∈Ω.
3. Monotonocity. For a⊆ b, rm,α(a)≤ rm,α(b).
4. Superadditivity For α ∈ [0,1], and a∩b = /0, rm,α(a∪b)≥ rm,α(a)+ rm,α(b).

As can be expected, the reduced capacity function is used to compute the personal expected value of functions
g : Ω→ R. For this purpose, denote Γ = {g(x) : x ∈Ω}\{0}, and g−1(γ) = {x ∈Ω : g(x) = γ}. Then the value

Rm,α(g) = ∑
γ∈Γ

γ rm,α(g−1(γ)) (13)

is called a personal expected value of function g. Notice that most authors use the Choquet integral [6, 8] in this
context – which is, in our opinion, not as intuitive as the proposed formula, and its value is always smaller than or
equal to the introduced Rm,α for α ∈ [0,1]. Let us note that, for α > 0, betting the amount Rm,α guarantees a sure gain
[4, 24].

5. Measuring Personal Coefficient of Ambiguity Aversion

As we show in this and the following Sections, the decision based on the personal expected value computed using
Formula (13) manifests the same ambiguity aversion as most of the human decision-makers. In this context, one can
ask to what extent this approach can be used to predict human behavior. Assume that human decision-makers manifest
the same strength of ambiguity aversion in different situations, i.e., they have their personal coefficients of ambiguity
aversion. Under this assumption, there should be an experimental way of estimating it. For this, the arrangement of
our experiments (described in Section 7 in more detail) provides two ways of achieving this goal. The first possibility
of assessing the personal coefficient of ambiguity aversion is based on comparing the bets of a person when facing the
following two decision problems.

F1 The drawing urn contains 30 balls, five of each of the following colors: red, black, yellow,
white, green, and azure. How much is the maximum bet you are willing to pay to take part in
the lottery in which you choose a color and get 100 CZK if the randomly drawn ball has the
color of your choice?
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Ambiguity aversion α

Figure 1: Maximum bets in dependence on the coefficient of ambiguity aversion. a - the bet in situation F1, b - the bet in situation F2.

F2 The drawing urn contains an unknown number of balls (but at least one); they may be
any or all of the following six colors: red, black, yellow, white, green, and azure. You know
nothing more, you even do not know how many colors there are in the urn. How much is the
maximum bet you are willing to pay to take part in the lottery in which you choose a color and
get 100 CZK if the randomly drawn ball is of the color of your choice?

Let us explain how to deduce the coefficient of ambiguity aversion α from the amounts of money the person is
willing to pay in these two situations. For either lottery, consider Ω = {r, b, y, w, g, a}. Naturally, the knowledge
about the content of the drawing urn differs. In the case of lottery F1, the content of the drawing drum is described by
the uniform Bayesian basic probability assignment defined

mu(a) =


1
6 , if |a|= 1,

0, otherwise.
(14)

In the case of lottery F2, the situation is described by the vacuous bpa mι .
It may not be surprising that the Shenoy’s probability transforms (as well as all other probabilistic transforms

introduced in Section 3) coincide for both lotteries: Sh Pmu(x) = Sh Pmι
(x) = 1

6 for all colors x ∈ Ω. However, the
respective reduced capacity functions differ from each other because the respective belief functions do: Belmu({x}) =
1
6 for all x ∈Ω, whilst Belmι

({x}) = 0 for all x ∈Ω. Therefore, using Formula (12), rmu,α({x}) = 1
6 , and rmι ,α({x}) =

1−α

6 for all x ∈Ω.
Consider that a player chose, let us say, the red color. Let g(x) denote the gain received in a case when color x is

drawn, i.e., g(r) = 100, and for x , r, g(x) = 0. The personal expected rewards are as follows (see Formula (13)):

Rmu,α(g) = 100 · rmu,α(g
−1(100)) = 100 · rmu,α({r}) =

100
6

,

Rmι ,α(g) = 100 · rmι ,α(g
−1(100)) = 100 · rmι ,α({r}) =

100 · (1−α)

6
,

for F1 and F2, respectively. This can be interpreted as follows. In the case of lottery F1, the fact that the person is
willing to pay at most a , 100

6 CZK is explained by her risk attitude and her current need for 100 CZK. Nevertheless,
the difference between the amounts the person is willing to pay for F1 and F2 can be explained only by her ambiguity
aversion expressed (in our model) by the coefficient α . In Formula (12), we introduced a linear dependence of the
expected value on the coefficient α , which now gives us a possibility to estimate the value of α . If a person is willing to
pay a CZK for taking part at lotteries F1 and b CZK for taking part at F2, one can assume that her personal coefficient
of ambiguity aversion is about (see Figure 1)

α =
a−b

a
. (15)

The other possibility of estimating the personal coefficient of ambiguity aversion is based on the observation of
experiment participants’ behavior when they face a range of the following decision problems.
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Rn The drawing urn contains n balls, each of which may be red, black, yellow, white, green,
or azure. You know that one and only one of them is red, nothing more. You even do not know
how many colors there are in the urn. How much is the maximum bet you are willing to pay
to take part in the lottery in which you choose a color and get 100 CZK if the randomly drawn
ball has the color of your choice?

This series of lotteries is designed to test the decrease of a person’s “subjective probability” in comparison with
the combinatorial probability. For this, in our experiments, the participants describe their behavior when facing eight
such situations, which differ from each other just in the total number of balls in the drawing drum – the number n. We
included lotteries with n = 5,6,7,8,9,10,11,12.

To describe these situations, consider again Ω = {r, b, y, w, g, a}, and the uncertainty is described by the basic
probability assignment mρ

mρ(a) =


1
n , if a = {r};
n−1

n , if a = {b, g, o, y, w};

0, otherwise,

with belief function

Belmρ
(a) =



0, for r < a , {b, g, o, y, w};
1
n , for r ∈ a ,Ω;

n−1
n , for a = {b, g, o, y, w};

1, for a = Ω.

Applying to this basic assignment all the probability transforms described in Section 3 , we get the same probability
measure:

Sh Pmρ
(x) =

{ 1
n , if x = r ;

n−1
5n , for x ∈ {b, g, o, y, w}.

When computing the personal expected gain, we only need the values of the respective reduced capacity function
rmρ ,α for singletons:

rmρ ,α({x}) =

{ 1
n , if x = r ;

(1−α) · n−1
5n , for x ∈ {b, g, o, y, w}.

Considering (for the sake of simplicity just two) gain functions gr(x), and gw(x) corresponding to the instances in
which the participant bets on red and white color, respectively, i.e., gr(r) = 100, gr(x) = 0 for x , r, gw(w) = 100, and
gw(x) = 0 for x , w, the personal expected rewards are as follows. When betting on red it equals

Rmρ ,α(g
r) = 100 · rmρ ,α((g

r)−1(100)) = 100 · rmρ ,α({r}) =
100

n
,

and analogously, for betting on white

Rmρ ,α(g
w) = 100 · rmρ ,α((g

w)−1(100)) = 100 · rmρ ,α({w}) =
100(1−α)(n−1)

5n
.

Let us explain how we use the results of the corresponding experiments to estimate a personal ambiguity aversion
coefficient α . The reasoning is based on the hypothesis that humans are willing to pay no more than the amount close
to their personal expected reward. If a person chooses red color and the drawing drum contains n balls then, as a rule,
her personal expected rewards are such that Rmρ ,α(g

r) = 100
n ≥ Rmρ ,α(g

w) = 100(1−α)(n−1)
5n , i.e., α ≥ 5

n−1 . In other
words, if a person bets on red color for n = 5,6,7, and on other colors for n≥ 8, it is justifiable to assume that it holds
α ∈ [0.167,0.286] for the value of her personal coefficient of ambiguity aversion.
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Table 1: Lottery Rn: Personal expected reward as a function of personal α , and the number of balls n.

Rmρ ,α(g
r)

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
20.00 16.67 14.29 12.50 11.11 10.00 9.09 8.33

Rmρ ,α(g
w)

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
α =−0.250 20.00 20.83 21.43 21.86 22.22 22.50 22.28 22.92
α = 0.000 16.00 16.67 17.14 17.50 17.78 18.00 18.18 18.33
α = 0.167 13.33 13.89 14.29 14.58 14.82 15.00 15.15 15.28
α = 0.286 11.43 11.91 12.25 12.50 12.70 12.86 12.99 13.10
α = 0.375 10.00 10.42 10.71 10.94 11.11 11.25 11.34 11.46
α = 0.444 8.89 9.26 9.52 9.72 9.88 10.00 10.10 10.18
α = 0.500 8.00 8.33 8.57 8.75 8.89 9.00 9.09 9.17
α = 0.545 7.27 7.58 7.79 7.95 8.08 8.18 8.26 8.33

Some of the values of functions Rmρ ,α(g
r) and Rmρ ,α(g

w) are tabulated in Table 1. From this Table we see that,
for example, a person with α = 0.3 should bet on red color for n≤ 8, because for these Rmρ ,α(g

r)> Rmρ ,α(g
x) (x , r),

and bet on any other color for n≥ 9, because for these n, Rmρ ,α(g
r)≤ Rmρ ,α(g

x) (x , r).
Before closing this Section, let us repeat that also in our experiments we found participants “seeking for ambigu-

ity”, which is in agreement with observations of other authors [9]. For these respondents, the coefficient of ambiguity
aversion is negative, and therefore we included in Table 1 a row for α =−0.25.

6. Ellsberg Example

In this Section, we want to show that the described model corresponds to what is observed by other authors. The
following situations, which are modifications of the original Ellsberg’s experiments ([12], pp. 653–654), are included
among our experiments.

E1 The drawing urn contains 15 red, black, and yellow balls. You know that exactly 5 of them
are red, you do not know the proportion of the remaining black and yellow balls. How much is
the maximum bet you are willing to pay to take part in the lottery in which you choose a color
and get 100 CZK if the randomly drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black, and yellow balls. You know that exactly 5 of them
are red, you do not know the proportion of the remaining black and yellow balls. How much is
the maximum bet you are willing to pay to take part in the lottery in which you choose a color
and get 100 CZK if the randomly drawn ball is either yellow or has the color of your choice?

The reader familiar with the cited Ellsberg’s paper can see the difference between his experiments and those
described here as E1 and E2. The primary goal of our experiments is focused on the question of measuring the
strength of the ambiguity aversion. Ellsberg proved just its existence. He asked the respondents which of the two
lotteries they prefer. We believe that our respondents will express their preference by paying more to participate in
preferable lotteries.

For situations E1 and E2 consider Ω = {r,b,y}, and the basic probability assignment

mε(a) =


1
3 , if a = {r};
2
3 , if a = {b,y};

0, otherwise.
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The Shenoy’s transform (as well as all other probability transforms from Section 3) yields a uniform probability
measure Sh Pmε

(x) = 1
3 for all x ∈ Ω. The corresponding belief function is Belmε

({r}) = 1
3 , and Belmε

({b}) =
Belmε

({y}) = 0, Belmε
({r,b}) = Belmε

({r,y}) = 1
3 , Belmε

({b,y}) = 2
3 , and Belmε

(Ω) = 1. Therefore,

rmε ,α(a) =



1
3 , if a = {r};
(1−α)

3 , for a = {b},{y};
(2−α)

3 , for a = {r,b},{r,y};
2
3 , if a = {b,y}.

For E1, we consider two gain functions: gr(x) and gb(x) for betting on red and black balls, respectively. These
functions are as follows:

gr(r) = 100, gr(b) = gr(y) = 0,
gb(b) = 100, gb(r) = gb(y) = 0.

Using Formula (13), the personal expected reward for betting on a red ball is

Rmε ,α(g
r) = 100 rmε ,α((g

r)−1(100)) = 100 rmε ,α({r}) =
100

3
,

and analogously, for betting on a black ball the personal expected reward is

Rmε ,α(g
b) = 100 rmε ,α((g

b)−1(100)) = 100 rmε ,α({b}) =
100(1−α)

3
.

For positive α (i.e., for a person with ambiguity aversion), we thus get Rmε ,α(r)> Rmε ,α(b), which is consistent with
Ellsberg’s observation that “very frequent pattern of response is that betting on red is preferred to betting on black”
[13].

Let us consider lottery E2, which involves betting on a couple of colors. In comparison with the first experiment,
the situation changes only in the respective gain functions. Denote them by gry(x) and gby(x) for betting on red and
yellow, and for betting on black and yellow balls, respectively:

gry(r) = gry(y) = 100, gry(b) = 0,
gby(b) = gby(y) = 100, gby(r) = 0.

The expected subjective rewards are then as follows:

Rmε ,α(g
ry) = 100 rmε ,α((g

ry)−1(100)) = 100 rmε ,α({r,y}) = 100
(2−α)

3
,

Rmε ,α(g
by) = 100 rmε ,α((g

by)−1(100)) = 100 rmε ,α({b,y}) = 100
2
3
.

In this setup, we observe that, for positive α , Rmε ,α(g
by) > Rmε ,α(g

ry) holds, which is consistent with Ellsberg’s
observations that “betting on black and yellow is preferred to betting on red and yellow balls” [13].

7. Experimental Results

In the preceding Sections, we have described a mathematical model showing the same characteristics as those
observed by other authors performing experiments with human decision-makers. Naturally, it does not mean that
the behavior of an individual decision-maker corresponds to this model. To support or refute such hypothesis, we
organized experimental sessions where the participants (usually faculty staff and students) were asked to answer the
above-presented questions F1, F2, R5, R6, R7, R8, R9, R10, R11, R12, E1, E2, and the following two questions G1,
G2 (similar to F1, F2, respectively).
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G1 The drawing urn contains 30 balls, five of each of the following colors: red, black, yellow,
white, green, and azure. How much is the maximum bet you are willing to pay to take part in
the lottery in which you get 100 CZK if the randomly drawn ball is red?

G2 The drawing urn contains an unknown number (but at least one) of balls. They may be of
the following six colors: red, black, yellow, white, green, and azure. You know nothing more,
you do not even know how many colors are in the urn. How much is the maximum bet you are
willing to pay to take part in the lottery in which you get 100 CZK if the randomly drawn ball
is red?

The participants first answered the questions, and all the lotteries were realized only afterwards. At the very
beginning of each session, the participants received a 50 CZK show-up payment, and were informed about the goal
of the research, and that not all of them would be allowed to take part in all the lotteries. Before each draw, the
computer selects participants admitted to taking part in the respective draw; one person at random and several others
(about 20 % of the number of participants in the session) who had bet the highest amounts. This rule should make the
participants really offer what they were asked for: “the maximum amount they are willing to pay to take part in the
lottery”. If they offered a deliberately small amount, they would willfully decrease their chances to take part in the
game, and consequently they would decrease their chances to win money.

In eleven sessions, we obtained data from 192 participants. We have to admit that not all the participants provided
a serious reflection of their behavior. For example, there was a person who bet 0 CZK on red in all 14 situations. In
total, 8 persons always bet on red. When doing a detailed analysis, one can also reveal other “strange” patterns of
behavior. To avoid the temptation to delete those participants who contradict our model, in what follows we describe
the observations based on analyzing all the obtained 192 data records (and deleting only those whose behavior did not
allow the respective computations).
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Figure 2: Comparison of αF and αG.

There are two reasons why we included both the pairs of questions F1, F2 and G1, G2. First, we wanted to find
out whether, under the ambiguity, the respondents are willing to bet more in the case that they may determine the
winning color themselves than in the case when the winning color is predetermined. It appears that the average bet
in situation F2 is 7.66 CZK, while in situation G2, it is 6.87 CZK. The difference is small and thus we consider it
negligible. Second, we got two pairs of bets, based on which we can determine the personal coefficient of ambiguity
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Figure 3: Comparison of nα and np

aversion α . Thus, the coefficients computed from bets in situations F1 and F2 are denoted by αF , and analogously
those computed from bets corresponding to G1 and G2 are denoted by αG. Let us realize that 13 respondents bet
0 CZK on either F1 or G1, so at least one of the coefficients (either αF or αG, or both) could not be computed for
these respondents. In Figure 2 there are 179 points, each with the coordinates corresponding to αF and αG of one
experimental subject. At first sight, one can see that we cannot claim that the behavior of our subject evinces the
stability of the intensity of ambiguity aversion. At this point, let us also remark that the fact that the coefficient α is
negative for some of the participants corresponds to the observations of other authors, too. Namely, it is known that
there are people seeking ambiguity [18] (see [39] for a nice survey). Some authors also observed that the intensity of
ambiguity aversion depends on the type of the underlying problem, and the amount of a possible gain. For example,
Crockett et al. [9] found that “typically individuals exhibit an aversion to ambiguity when facing likely events, and
a love for ambiguity when facing unlikely events”. These observations, in connection with the fact that the amount
of 50 CZK is not high enough to make the experiment participants more careful, well explain the instability of the
coefficient of ambiguity aversion.

Recall now that in Section 5, two possibilities of measuring the personal coefficient alpha were proposed. To com-
pare their results we proceeded as follows. First, for each experimental person, we considered the average coefficient
α = αF+αG

2 according to which we estimated (using Table 1) the smallest n for which the person should start betting
on other colors than red in situations R5, R6, R7, R8, R9, R10, R11, R12. This value is denoted by nα . Thus, for
subjects with negative α values, nα = 5, and for subjects with α ≥ 0.545, nα = 13. It means that we expect a person
with a negative α value to bet on other colors than red in all situations R5 – R13, contrary to a person with α ≥ 0.545,
who is expected to bet only on red color in all these situations. Naturally, a person with α = 0 is expected to bet on
red in situation R5, and on other colors in situations R7 – R13. For n = 6, we cannot predict her behavior because her
personal expected gain is the same for all the colors. Nevertheless, we define nα = 6 for α = 0.

Based on the instability of the ambiguity aversion intensity observed from Figure 2, it would be a great surprise if
all the participants in our experiments behaved “rationally” in the sense that, for each of them, one could find np such
that she would bet on red for all R5, ... , Rnp, and bet on other colors in the remaining situations. Nevertheless, 128
(out of those 179 subjects for whom we could compute α = αF+αG

2 ) behaved in this “rational” way in our experiments.
In Figure 3 we depict the comparison of the following two parameters: nα is computed in the above-described way,
and np is observed from the data. To compare them, we again represent each of the 128 participants as a point in
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Figure 3. Let us say that only 34 points are directly on the diagonal (i.e., nα = np), and for 20 more subjects these two
parameters differ just by one, which is considered the full correspondence, because for α close to the breaking points
(as e.g., α close to zero) the model does not determine the subject’s behavior (the subject can choose an arbitrary
color) because of the same values of the personal expected gain. With a small indulgence, we consider the behavior
of a subject fitting the model even if |nα −np| ≤ 2, which holds for 71 out of the above-mentioned 128 subjects.

Let us briefly summarize our observations based on the data. We cannot say that we could estimate a personal
coefficient of ambiguity aversion just from one experimental session and that the knowledge of the personal ambiguity
aversion coefficient would enable predicting the behavior in decision problems under ambiguity. Nevertheless, the
model well describes the collective (general) behavior of human decision-makers. In our experiments, the average
coefficient of ambiguity aversion ᾱ = 0.2133, which means that one can expect the subjects to bet on red color in
situations R5, R6, R7, and on non-red colors in the remaining situations. This well corresponds with nα = 7.969.

8. Conclusions

In this paper, we have introduced a belief function model manifesting an ambiguity aversion similar to human
decision-makers. The intensity of this aversion is expressed by the personal coefficient ambiguity α with the following
semantics: the higher the aversion, the higher the coefficient. As one can see from Figure 2, it may be negative for
decision-makers seeking ambiguity. This attitude is observed also by other authors [9, 18, 39]. Surprisingly, the
participants in our experiments did not follow the behavior described by Ellsberg in [12]. Namely, almost two-thirds
of respondents bet on the red ball even in lottery E2 in our experiments.

We can hardly make any definite conclusions from the analysis of the data gained in our experiments. It may have
been influenced by the fact that the reward of 50 CZK is smaller than the rewards paid by other authors. This also
explains the fact that uncommonly many respondents exhibited a positive attitude to ambiguity and, perhaps, also the
observed instability of this attitude visible from Figure 2.
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