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Abstract

By a result of Ball (Proc R Soc Edinb Sect A Math 88:315–328, 1981. https://
doi.org/10.1017/S030821050002014X), a locally orientation preserving Sobolev
map is almost everywhere globally invertible whenever its boundary values admit
a homeomorphic extension. As shown here for any dimension, the conclusions of
Ball’s theorem and related results can be reached while completely avoiding the
problem of homeomorphic extension. For suitable domains, it is enough to know
that the trace is invertible on the boundary or can be uniformly approximated by
suchmaps. An application inNonlinear Elasticity is the existence of homeomorphic
minimizers with finite distortion whose boundary values are not fixed. As a tool
in the proofs, strictly orientation-preserving maps and their global invertibility
properties are studied from a purely topological point of view.
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1. Introduction

A classical problem in Nonlinear Elasticity is to determine whether a Sobolev
map y : Ω → R

d on a bounded domain Ω ⊂ R
d , is invertible in a suitable sense.

In this context, the map y describes the deformation of an elastic solid occupy-
ing Ω in its undeformed state. In this model, lack of invertibilty corresponds to
self-interpenetration, which is clearly undesirable. If we assume the existence of a
stored energy density (that is, elastic deformation does not dissipate energy) with
suitable properties, then a stable deformed state can be found via global minimiza-
tion [4]. The typical examples for such energies enforce y ∈ W 1,p(Ω;Rd), strictly
orientation-preserving in the sense that det∇ y > 0 almost everywhere in Ω .

However, even if y ∈ C1 and det∇ y is positive everywhere, this does not suffice
to guarantee global invertibility, because different ends of the body can still overlap.
The variational theory is compatible with imposing global invertibility (in a weak
almost everywhere sense) as a constraint, the Ciarlet–Nečas condition (CNc) [8]
(see Def. 2.14).

In case of a strictly orientation-preservingmap, if we also assume that its bound-
ary values match those of a homeomorphism, (CNc) always holds as a byproduct
of a result of Ball [3]. The result also provides further topological properties of the
deformation and its image. For similar purposes, this assumption also appears in
[38] and other works, in particular in context of maps of finite distortion [16] (for
example). The caveat here is that for d ≥ 3, a homeomorphic extension can fail to
exist. This issue is discussed in detail in “Appendix A”.

We will see that for the purpose of proving the result of [3], it suffices to know
that the deformation is continuous and invertible on the boundary, or, more gen-
erally, approximately invertible on the boundary (AIB) with respect to uniform
convergence (Theorem 6.1). The result requires an assumption on the topological
nature of the domain, namely, that Rd\∂Ω consists of exactly two connected com-
ponents. As illustrated by examples in “Appendix B”, this restriction is not just
a technical issue. The class AIB can also be used instead of (CNc) to implement
a global invertibility constraint in Nonlinear Elasticity, because it is stable under
weak convergence in suitable Sobolev spaces and therefore compatible with direct
methods in the Calculus of Variations (Sect. 2).

Afirst, crucial step to connect global invertibilitywith invertibility on the bound-
ary amounts to calculating the topological degree of y (Theorem 4.2 in Sect. 4). It
is of course not surprising that information on the boundary suffices for that, since
the degree only depends on boundary values. Actually, if we assume in addition
that y(Ω̄) = Ω̄ and y(∂Ω) = ∂Ω , then we are working in a class of maps with
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a semigroup structure, and it is well known that homeomorphisms in such a class
have a degree of ±1, due to a standard multiplicativity property of the degree. The
main global assumption of [3], the existence of a homeomorphic extension, would
allow us to reduce our more general situation to this scenario.

However, in general there is no natural group structure we could use directly.
Even if there exists a degree for endomorphisms of y(∂Ω) (neither ∂Ω nor y(∂Ω)

are always topological (d −1)-manifolds in our setting!), we still have the problem
of linking it with the definition of the degree for continuousmapsRd → R

d . This is
not trivial, as any comparison of the two and their necessary normalizing conditions
(like deg(id;Ω; ·) = 1 inΩ) already requires a continuousmap ∂Ω → y(∂Ω)with
a continuous extension such that both degrees are known, to act as reference map
which is meaningful in both worlds. Instead, the proof of Theorem 4.2 exclusively
works with the degree for continuous endomorphisms of Rd on domains. It relies
on a generalized version of the Jordan-Brouwer separation theorem and a general
formula for the degree of composite functions, themultiplication theorem (see [10],
for example).

As a second tool for the proof of Theorem 6.1 and further applications concern-
ing global invertibility in W 1,p for p ≥ d (Sect. 6), we develop a self-contained,
purely topological theory of strictly orientation preserving maps with the help of
Brouwer’s degree (Sect. 5). Their interplay with a global invertibility constraint
stated in terms of the degree is summarized in Theorem 5.10 and Corollary 5.12.
Besides the generalization of [3], this can be used to complement results of [42] and
[35,36] for maps of finite distortion to prove that suitable deformations are actu-
ally homeomorphisms (Theorem 6.8 and Theorem 6.10). As a direct application,
we show the existence of homeomorphic minimizers for nonlinear elastic energy
functionals controlling the inner or outer distortion (Sect. 6.3), without fixing the
boundary values of admissible deformations (in the spirit of [3], as in [16], for
example) or prescribing a given Lipschitz domain as their image (as in [30]).

Another application will be presented in the forthcoming paper [22], in the con-
text of the numerical approximation of global invertibility constraints via penalty
terms in the energy. One such approach is given in [23], where the penalty term acts
on the full domain. However, reflecting the nonlocal nature of global invertibility,
any suitable penalty term is necessarily nonlocal, and the associated computational
cost can be significantly reduced by using a variant acting only on the boundary
[22], thereby reducing the effective dimension of the problem. A priori, such a
boundary penalty term can only hope to ensure invertibility on the boundary, which
is why we need the results developed here to understand the link to full invertibility.

All results presented here apply in particular for d = 3.

1.1. Basic Notation and Terminology

Throughout the article, we use p ≥ d ≥ 2, where p ∈ R and d ∈ N, and the
following subsets of the Sobolev space W 1,p(Ω;Rd) of functions on an open set
Ω ⊂ R

d with values in Rd :

W 1,p
+ (Ω;Rd):=

{
y ∈ W 1,p(Ω;Rd) | det∇ y > 0 almost everywhere in Ω

}
,
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W 1,p
+,loc(Ω;Rd):=

{
y ∈ W 1,p

loc (Ω;Rd) | det∇ y > 0 almost everywhere in Ω
}

.

Here, Ω is called a domain if is open and connected, and “almost everywhere”
abbreviates almost everywhere, which is understood with respect to the Lebesgue
measure Ld in Rd unless specified otherwise. For any set A ⊂ R

d , Ā is its closure
and int A its interior, and for A1, A2 ⊂ R

d , A1 ⊂⊂ A2 means that Ā1 is compact
and Ā1 ⊂ A2.AnEuclidean norm is always denoted by |·|, in anyfinite-dimensional
real vector space that should be clear from the context, and for a point x and a set
S in such a space, dist (x; S) := inf { |x − s| | s ∈ S}.

Notation concerning the topological degree is introduced in Sect. 3.

2. Constraints Related to Global Invertibility

In this section, we collect various conditions related to global invertibility that
are viable as constraints for variational approaches in Nonlinear Elasticity. It is
interesting to note that even in the “simple” case of p > d on smooth domains, it
is not clear whether the notions based on approximate invertibility coincide with
or are stronger than the more classical constraints like the Ciarlet–Nečas condition,
cf. Remark 2.19.

2.1. Approximate Invertibility

Definition 2.1. (AI: approximately invertible on a compact set)
Let K ⊂ R

d be bounded. A continuous function y : K → R
d is called

approximately invertible on K if there exists a sequence of injective maps ϕk ∈
C(K ;Rd)with ϕk → y uniformly on K . The class of all such maps y in C(K ;Rd)

is denoted by AI(K ).

The most important examples are K = Ω̄ and K = ∂Ω on a domain Ω ⊂ R
d . As

a matter of fact, the class AI(K ) is linked to monotone mappings in the topological
sense. For these, in dimension d = 2 (but not for d ≥ 3), a quite comprehensive and
satisfactory theory is available [18,19]. In this article, we are especially interested
in d ≥ 3 and K = ∂Ω:

Definition 2.2. (AIB: approximately invertible on the boundary)
Let Ω ⊂ R

d be open and bounded, and y : Ω̄ → R
d with y ∈ C(∂Ω;Rd).

We say that y is approximately invertible on the boundary, if y ∈ AIB :=AI(∂Ω).

From the point of view of Nonlinear Elasticity, AIB describes the class of defor-
mations whose deformed boundaries can be moved out of self-contact.

It is easy to see that AI is sequentially closed under uniform convergence on
K . In suitable Sobolev spaces, this implies stability under weak convergence.

Lemma 2.3. Let y ∈ W 1,p(Ω;Rd) and let (yk) ⊂ W 1,p(Ω;Rd) be a sequence
with yk ⇀ y weakly in W 1,p. In addition, let K ⊂ Ω̄ be compact and assume that
(yk) ⊂ A∩AI(K ) for a set A ⊂ W 1,p(Ω;Rd) compactly embedded in C(K ;Rd).
Then y ∈ AI(K ).
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Proof. This follows from a straightforward diagonal subsequence argument in
C(K ;Rd). �	
Remark 2.4. The assumptions of Lemma 2.3 are satisfied in each of the following
cases:

(a) p > d, K ⊂ Ω and A = W 1,p;
(b) p > d, Ω is a Lipschitz domain, K ⊂ Ω̄ and A = W 1,p;
(c) p ≥ d, K ⊂ Ω and A = W 1,p

+ = W 1,p ∩ {det∇ y > 0 almost everywhere}.
(d) p > d −1,A = {y}∪ {yk | k ∈ N } and K ⊂ Ω s.t. A is embedded and closed

in C(K ;Rd).

Here, (a) and (b) are due to standard compact embeddings of W 1,p. For (c) see
Remark 6.4. In (d), one has to be careful to correctly interpret A as a subset of
C(K ;Rd) in a way independent of the choice of representatives. For instance, if
wefix x0 ∈ Ω , then Kr :=∂ Br (x0) is admissible in (d) forL1-almost everywhere r ∈
(0, dist (x0; ∂Ω)), essentially because we work with countably many functions and
for almost everywhere r , yk → y weakly in W 1,p(Kr ;Rd ;Hd−1) (the Sobolev
space with respect to the surface measureHd−1). For more details see, for example,
[32].

As a consequence, we can easily obtain the existence of minimizers in AI(K ), for
instance for the nonlinear elastic energies with polyconvex energy density studied
by Ball [4] and Müller [31].

Theorem 2.5. Let p ≥ d, let Ω ⊂ R
d be a Lipschitz domain, let E :

W 1,p(Ω;Rd) → R ∪ {+∞} such that E(y) = +∞ for all y /∈ W 1,p
+ , that is,

whenever det∇ y ≤ 0 on a set of positive measure. In addition, assume that E is
coercive and weakly sequentially lower semincontinuous in W 1,p. If E ≡ +∞ and
K ⊂ Ω is compact, then E attains its minimum on Y :=AI(K ) ∩ W 1,p

+ (Ω;Rd).
Moreover, if p > d, the above also holds for compact K ⊂ Ω̄ .

Proof. This follows by the direct method. �	
Remark 2.6. Here and in the rest of the article, it is implicitly understood that we
always use the continuous representative of y if available.

All functions which admit homeomorphic extensions from the boundary into
the domain are in AIB.

Proposition 2.7. Let Ω ⊂ R
d be a bounded Lipschitz domain. If y : Ω̄ → R

d is
continuous, and y|Ω : Ω → y(Ω) is invertible, then y ∈ AIB.

Proof. Since Ω is a Lipschitz domain, there exists a sequence of invertible maps
Ψk : Ω̄ → Ψk(Ω̄) ⊂ R

d of class C∞ such that Ψk(Ω) ⊂⊂ Ω (slightly smaller),
while Ψk → id in W 1,∞ as k → ∞. Locally, in each cube where the boundary is
represented as the graph of a Lipschitz function,Ψk can be defined as the affinemap
slightly shrinking the local piece of Ω “down” into itself, and since all these maps
are still close to the identity, they can be easily glued by a smooth decomposition
of unity. Thus, ϕk :=y ◦ Ψk |∂Ω is a sequence of continuous, injective maps with
ϕk → y|∂Ω in C(∂Ω;Rd). �	
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Remark 2.8. The converse of Proposition 2.7 includes the problem of homeomor-
phic extension as a special case, namely, if we only consider y ∈ AIB which is
already invertible on ∂Ω . In general, it is false for d ≥ 3 because not all such y
admit a homeomorphic extension into the domain, not even if y|∂Ω is bi-Lipschitz
(see Remark A.7).

We can also slightly modifiy the definition of AIB, allowing the approximants
to be defined on sets approaching ∂Ω from the inside. Monotone coverings of Ω

from the inside with a mild regularity property (to be used later) are helpful for that
purpose.

Definition 2.9. (Regular inner covering) Let Ω ⊂ R
d be open. We call a family

of sets (Ωm)m∈N a regular inner covering of Ω , if Ωm is open and bounded,
Ωm ⊂ Ωm+1 ⊂⊂ Ω ,

⋃
m∈N Ωm = Ω and Ld(∂Ωm) = 0 for every m ∈ N.

Remark 2.10. It is not difficult to see that a regular inner covering always exists; as
a matter of fact, we could even assume that ∂Ωm is of classC∞ instead of just being
a set of measure zero. Moreover, if we know that Rd\∂Ω has only two connected
components (which is important to apply Theorem 4.2 below), we can always find
a regular inner covering such that all Ωm inherit this property.

The following variants of AIB and AI are particularly useful when y is con-
tinuous in Ω but cannot be continuously extended to ∂Ω (like maps in W 1,p

+ with
p = d):

Definition 2.11. (AIBloc, AIloc(Ω)) Let Ω ⊂ R
d be open, let y:Ω → R

d be
continuous and let (Ωm)m∈N be regular inner covering ofΩ .We say that y ∈ AIBloc
with respect to (Ωm), if for each m ∈ N, y ∈ AIB on Ωm , that is, if there exists
continuous and injective maps ϕ

(m)
k : ∂Ωm → R

d such that

∥∥y − ϕ
(m)
k

∥∥
C(∂Ωm )

→ 0 as k → ∞.

Analogously, we say that y ∈ AIloc(Ω)with respect to (Ωm), if for eachm ∈ N,
y ∈ AI(Ωm).

Remark 2.12. It is easy to see that both Lemma 2.3 and Theorem 2.5 also hold
for AIBloc or AIloc(Ω) instead of AI(K ). In fact, we do not even use that (Ωm) is
a countable family, because there are no conditions linking ϕ

(m)
k for two different

values of m. This means that diagonal subsequences as in the proof of Lemma 2.3
can be chosen for each fixed m separately, by the axiom of choice if we have more
than countably many m.

Remark 2.13. AIBloc can potentially still be used in settings with low regularity
like W 1,p with d − 1 < p < d, cf. Remark 2.4. By contrast, this does not work for
AIloc(Ω) as defined here. However, approximate invertibility defined with respect
to weak convergence in the Sobolev space is a still meaningful concept [6].
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An explicit example for an existence results in the spirit of Theorem 2.5 using either
AIBloc or AIloc(Ω) as a constraint is given in Sect. 6.3.

Unlike all the other invertibility constraints presented in this section, AIB and
AIBloc only restrict the global behavior of y with information given on or near the
boundary, but not its local properties inside the domain. However, in W 1,p

+ with
p ≥ d, local restrictions still follow automatically (see Remark 2.19). Practically,
AIB can be easier to show for a given deformation, though.

2.2. The Ciarlet–Nečas Condition and Condition (INV)

For comparison, we briefly recall two invertibility constraints often used in the
literature.

The standard constraint for p > d was introduced in [8], and is as follows:

Definition 2.14. (Ciarlet–Neč as condition (CNc))
Let Ω ⊂ R

d be open and bounded. A map y ∈ W 1,p
+ (Ω;Rd), p ≥ d, satisfies

the Ciarlet–Nečas condition, or, shortly, y ∈ CNC, if
∫

Ω

det∇ y(x) dx ≤ Ld(y(Ω)). (CNc)

Using the area formula as in the proof of Lemma 2.15 below, it is not difficult
to see that (CNc) is equivalent to injectivity almost everywhere in the sense that the
set of all points in Ω where y fails to be injective is of measure zero.

If p > d and Ω is Lipschitz, (CNc) is stable under weak convergence in W 1,p

for p > d (proved as part of [8, Theorem 5]). If p = d, it can happen that the left
hand side of (CNc) jumps down in the limit along a weakly converging sequence,
due to concentration effects at the boundary (cf. [31], [20]). Nevertheless, the right
hand side actually produces a matching jump in such cases because (CNc) still
behaves stably as a whole along sequences in W 1,d

+ weakly converging in W 1,d , a
result obtained in [39] in broader context. Alternatively, one can use the even more
general results of [12], or Remark 2.19 (e) below.

The following lemma also used in [39] shows that there is no point in defining
a “loc” version of (CNc). In view of all the properties known for functions in W 1,d

+
in the interior of the domain (cf. Remark 6.4), and the local equi-integrability result
for the determinant of [31], it can also be the basis of yet another, more direct proof
of the result of [39] in the special case W 1,d

+ .

Lemma 2.15. Let Ω ⊂ R
d be open and bounded, let y ∈ W 1,d

+ (Ω;Rd) and
let (Ωm)m∈N ⊂ Ω be a sequence of open sets with Ωm ⊂ Ωm+1 ⊂⊂ Ω and⋃

m∈N Ωm = Ω . Then y satisfies (CNc) on Ω if and only if it satisfies (CNc) on
Ωm for all m.

Proof. By the area formula (see, for example, [10, Theorem 5.34]),
∫

Ω

|det∇ y| dx =
∫

y(Ω)

#y−1({z}) dz, (2.1)
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where #y−1({z}) denotes the number of elements of y−1({z}). In view of (2.1),
(CNc) can be expressed as #y−1({z}) = 1 for almost everywhere z, and it is clear
that (CNc) onΩ implies (CNc) on every smaller set likeΩm . The converse follows
by monotone convergence. �	

Another condition implying both local and global invertibility properties was
developed in [32], mainly intended for settings involving cavitation in W 1,p with
d − 1 < p < d. It uses the fact that the degree only depends on boundary values,
cf. Sect. 3, and the concept of the topological image imT based on the degree,
cf. Lemma 5.5.

Definition 2.16. (Müller-Spector condition (INV)) Let Ω ⊂ R
d be a bounded

domain and y : Ω → R
d . Themap y satisfies condition (INV), or, shortly, y ∈ INV,

if the following holds:

For every a ∈ Ω, there exists a set Na ⊂ RwithLd(Na) = 0 (INV)

such that y∈C(∂ Br (a);Rd) for all r ∈ (0, dist (a; ∂Ω))\Na,

(i) y(x) ∈ imT (y; Br (a)) ∪ y(∂ Br (a)) for almost everywhere x ∈ B̄r (a), and

(ii) y(x) ∈ R
d\ imT (y; Br (a)) for almost everywhere x∈Ω\Br (a).

Condition (INV) is stable under weak convergence in W 1,p for p > d − 1 [32,
Lemma 3.3].

2.3. Maps of Topological Degree at Most One

Another property that prevents global self-interpenetration in suitable settings
can be expressed with the help of the topological degree (cf. Sect. 3). This turns out
to be a natural common denominator of all the other global invertibility conditions,
at least within W 1,p

+ for p ≥ d.

Definition 2.17. (Maps of degree at most one)
Let Ω ⊂ R

d be open and bounded and y : Ω̄ → R
d . If y ∈ C(∂Ω;Rd), we

say that y is of degree (at most) one, or, shortly, y ∈ DEG1, if

deg(y;Ω; z) ≤ 1 for all z ∈ R
d\y(∂Ω) (2.2)

If (Ωk)k∈N is a regular inner covering of Ω (see Definition 2.9), we say that y is of
degree (at most) one locally near the boundary, or, shortly, y ∈ DEG1loc, if

deg(y;Ωk; z) ≤ 1 for each k ∈ N and all z ∈ R
d\y(∂Ωk) (2.3)

Remark 2.18. As the degree is continuous with respect to uniform convergence
on the boundary (stability), Lemma 2.3 and Theorem 2.5 also hold if we replace
AI(K ) by

(a) DEG1, if p > d and Ω is Lipschitz, or
(b) DEG1loc, if p ≥ d.

In other words, DEG1 and DEG1loc, too, are stable under weak convergence and
viable as variational constraints.
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Remark 2.19. Let Ω ⊂ R
d be a bounded domain. Whenever AIB or AIBloc are

involved, we also assume that Rd\∂Ω has only two connected components, to be
able to apply Theorem 4.2. Consider the following two classes of strictly orientation
preserving Sobolev maps:

Y p
+(Ω):=W 1,p

+ (Ω;Rd) ∩ C(Ω;Rd) and

Y p
+(Ω̄):=W 1,p

+ (Ω;Rd) ∩ C(Ω̄;Rd) ∩
{

y
∣∣∣Ld(y(∂Ω)) = 0

}

(If p > d and Ω is a Lipschitz domain, Y p
+(Ω) = Y p

+(Ω̄) = W 1,p
+ (Ω;Rd).)

Within Y p
+(Ω) or Y p

+(Ω̄), respectively, the invertibility conditions are related as
follows for p ≥ d:

(a) Y p
+(Ω̄) ∩ AIB ⊂ Y p

+(Ω̄) ∩ DEG1;
(b) Y p

+(Ω̄) ∩ CNC = Y p
+(Ω̄) ∩ DEG1;

(c) Y p
+(Ω̄) ∩ DEG1loc = Y p

+(Ω̄) ∩ DEG1;
(d) Y p

+(Ω) ∩ AIBloc ⊂ Y p
+(Ω) ∩ DEG1loc;

(e) Y p
+(Ω) ∩ AIloc(Ω) ⊂ Y p

+(Ω) ∩ DEG1loc;
(f) Y p

+(Ω) ∩ CNC = Y p
+(Ω) ∩ DEG1loc;

(g) Y p
+(Ω) ∩ INV = Y p

+(Ω) ∩ DEG1loc .

For a proof of some of these connections, we occasionally need properties of the
degree (Sect. 3) and other results presented later. Throughout, Lemma 6.7 ensures
that any y ∈ W 1,p

+ is strictly orientation preserving in the topological sense of
Sect. 5; in particular, its degree can never be negative.

The inclusions (a) and (d) are consequences of Theorem 4.2 applied onΩm (see
also Remark 2.10), and (e) analogously follows from Theorem 4.8. In case of (c),
"⊂" is a consequence of the continuity of the degree (stability) while "⊃" follows
from Corollary 5.12 (i). Since we also have Lusin’s property (N) (cf. Remark 6.4),
y(∂Ωm) has empty interior for all the sets of the regular inner covering of Ω

associated toDEG1loc. For (f), one can useLemma2.15 and the change-of-variables
formula involving the degree (6.3) with f = 1. To see (b), we combine (c) and (f)
with Lemma 2.15. Finally, (g) is the content of Lemma 2.20 below.

In (a), (d) and (e), I do not know if the reverse inclusions hold (for d ≥ 3).
Similarly, while we trivially have that AI(Ω̄) ⊂ AIB and AIloc(Ω) ⊂ AIBloc
(with the covering (Ωm) fixed), it is not clear if equality holds (given that Rd\∂Ω

has only two connected components). This is related to a weaker variant of the
problem of homeomorphic extension for which the counterexamples mentioned in
“Appendix A” do not apply.

Lemma 2.20. Let Ω ⊂ R
d be a bounded domain and p ≥ d. Then

W 1,p
+ (Ω;Rd) ∩ C(Ω;Rd) ∩ INV = W 1,p

+ (Ω;Rd) ∩ C(Ω;Rd) ∩ DEG1loc.
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Proof. Let y ∈ W 1,p
+ (Ω;Rd)∩C(Ω;Rd). By Lemma 6.7, y is strictly orientation

preserving in the topological sense, and by Remark 6.4, it satisfies Lusin’s property
(N). In particular, y(∂Ωm) has measure zero and thus empty interior.
“⊂”: Suppose that y also satisfies (INV). By [32, Lemma 3.4], y is invertible
almost everywhere, which implies y ∈ CNC by the area formula (as in the proof
of Lemma 2.15). By Remark 2.19 (f), we conclude that y ∈ DEG1loc.
“⊃”: Given y ∈ DEG1loc, Part (i) of (INV) follows from Lemma 5.5 (iii). Part (ii)
follows from the fact that by Theorem 5.10 (ii) and (iii) (applied with U = Ωm ,
for all m), y−1({z}) can only have more than one connected component if all of
its components touch ∂Ω (see also the Remarks 5.7 and 5.8 ). Here, z ∈ R

d is
arbitrary. �	

3. The Degree: Basic Notation and Properties

In the next two sections, we will heavily use the topological degree (Brouwer’s
degree). We therefore briefly recall its main features. For a definition and its prop-
erties see for instance [10,21], or [34].

The degree for functions in R
d is a number

deg(y; A; z) ∈ Z if z /∈ y(∂ A), (3.1)

defined for any continuous map y : Ā → R
d on an open and bounded set A ⊂ R

d ,
with respect to a value z ∈ R

d . By the Tietze extension theorem, we can always
assume that y : Rd → R

d is continuous. The restriction on the admissible points
z in (3.1) is necessary for its definition. Throughout, it is always assumed to be
present, even if not stated explicitly in shorthand notations like deg(y; A; ·).

Besides being integer-valued, the key properties of the degree are the following:

(normalization) deg(id; A; z) = 1 for all z ∈ A.

(additivity)
deg(y; A1 ∪ A2; z) = deg(y; A1; z) + deg(y; A2; z)

if A1 ∩ A2 = ∅ and z /∈ ∂ A1 ∪ ∂ A2.

(solvability)
If deg(y; A; z) = 0 for a z /∈ y(∂ A)

then there exists x ∈ A with y(x) = z.

(homotopy

invariance)

deg(yt ; At ; zt ) = deg(y0; A0; z0) for all t ∈ [0, 1],
if zt /∈ yt (∂ At ) for all t ∈ [0, 1] and (3.2) holds.

Here, yt and zt are assumed to be homotopies along At in the sense that

V := {(x, t) | t ∈ [0, 1] and x ∈ At }
is bounded and open relative to Rd × [0, 1],
(t, x) �→ yt (x), V̄ → R

d , is continuous and

t �→ zt , [0, 1] → R
d , is continuous.

(3.2)
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In many cases, homotopy invariance is only stated and applied with cylinders V =
[0, 1] × A, which also suffices for us here. For the general version see [21] (for
example).

Besides solvability and additivity, we here mainly use a few other properties of
the degree which can be derived from homotopy invariance:

(continuity) z �→ deg(y; A; z) is continuous on R
d\y(∂ A).

(stability)
deg(y1; A; z) = deg(y2; A; z)

if ‖y1 − y2‖C(∂ A;Rd ) < dist (z; y1(∂ A)) .

(bnd. controlled) deg(y1; A; ·) = deg(y1; A; ·) if y1 = y2 on ∂ A.

Since the degree is integer-valued, continuity means it is locally constant. Stability
is also a continuity property, now in y instead of z. “Boundary controlled” means
that as far as y is concerned, the degree is fully determined by the values of y on
∂ A. As we can always extend continuous functions from a compact set like ∂ A to
the whole space, the degree is well-defined also for functions that are only given
and continuous on ∂ A.

To explicitly compute the degree in some examples, the following partial rep-
resentation is helpful: If y ∈ C1( Ā;Rd) and z is a regular value of y, that is,
det∇ y(x) = 0 for each x ∈ y−1({z}), then

deg(y; A; z) =
∑

x∈y−1({z})
sgn(det∇ y(x)) if z /∈ y(∂ A).

Here, sgn denotes the sign (sgn(t) = t/ |t | if t = 0, and sgn(0) = 0). This formula
can also be used as the basis of a definition of the degree. In addition, it determines
the behavior of the degree with respect to reflections, a property which generalizes
to all continuous y:

deg(Ry; A; Rz) = − deg(y; A; z) if z /∈ y(∂ A) and R is a reflection;
that is, if R ∈ O(d) with det R = −1.

4. The Degree and Approximate Invertibility

Below, we repeatedly split sets in R
d into their bounded and unbounded con-

nected components. For this purpose, we introduce the following shorthand nota-
tion:

Definition 4.1. (B and U : bounded and unbounded components)
Given a compact set K ⊂ R

d , we decompose

R
d\K = B(Rd\K ) ∪ U(Rd\K ),

where U(Rd\K ) denotes the unbounded connected component of R
d\K , and

B(Rd\K ) denotes the union of all bounded connected components of Rd\K . If
the choice of the set K is obvious from the context, we simply write B and U .
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A core ingredient of this article is the following statement about the degree of
maps that are approximately invertible on the boundary:

Theorem 4.2. Let Ω ⊂ R
d be a bounded domain such that Rd\∂Ω has exactly

two connected components, let y ∈ C(Ω̄;Rd) ∩ AIB and let

imT (y;Ω):=
{

z ∈ R
d\y(∂Ω) | deg(y;Ω; z) = 0

}
.

Then there exists a fixed σ ∈ {±1} such that

deg(y;Ω; z) = σ for every z ∈ imT (y;Ω)

Moreover, imT (y;Ω) is an open subset of B(Rd\y(∂Ω)), and any connected
component of B(Rd\y(∂Ω)) is either fully contained in imT (y;Ω) or does not
intersect imT (y;Ω) at all.

Remark 4.3. Even if y ∈ AI(Ω̄) ⊂ AIB, it can happen that imT (y;Ω) is not
connected, for instance when y contracts a surface bisecting Ω to a point.

Remark 4.4. If y|∂Ω is already injective, it suffices to use ϕk :=y|∂Ω to show that
y ∈ AIB. In this special case, Theorem 4.2 reduces to [33, Proposition 2.2], which
follows from the proof of a generalization of the Jordan Separation Theorem (see,
for example, [10, Theorem 3.29 and its proof]). However, assuming invertibility
on the boundary rules out deformations with self-contact, while Theorem 4.2 still
applies with a suitable sequence ϕk .

Remark 4.5. The assumption that Rd\∂Ω has only two connected components
cannot be dropped, not even for orientation preserving maps. Counterexamples are
given in “Appendix B”. Topologically speaking, this assumption expresses that ∂Ω

is oriented in a degenerate sense inherited from Ω and the ambient space.

Remark 4.6. Theorem4.2 in particular applies for every boundedLipschitz domain
Ω with connected boundary. Here and throughout the article, Lipschitz domain
is understood in the strong sense, that is, the boundary can be locally (in R

d )
represented as the graph of a Lipschitz function. In this case, Rd\∂Ω has exactly
two connected components, Ω being the bounded one, because a neighborhood of
∂Ω in Ω is connected.

Remark 4.7. (A degree on y(∂Ω)) If imT (y;Ω) = ∅, Theorem 4.2 allows us
to define a degree for continuous maps f : y(∂Ω) → y(∂Ω). For that purpose,
choose a point z0 ∈ imT (y;Ω) (that is, so that deg(y;Ω; z0) = σ ∈ {±1}) and a
constant σ0 ∈ {±1} and define

degy(∂Ω)( f ):=σ0 deg( f̂ ◦ y;Ω; z0),

where f̂ : Rd → R
d is an arbitrary continuous extension of f . This is well defined,

since the right hand side only depends on the values of f̂ ◦ y|∂Ω = f ◦ y|∂Ω .
The definition depends both on y and on z0. However, the dependence on y (as a
parametrization of y(∂Ω)) only enters through the orientation encoded in σ , and if
we fix a connected component B̂ of imT (y;Ω), the definition the definition does
not depend to the choice of z0 within B̂. In fact, we thus naturally obtain a whole
family of degrees, one for each such connected component B̂.
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Proof. Let

Û :=
{

z ∈ R
d\y(∂Ω) | deg(y;Ω; z) = 0

}
= R

d\[y(∂Ω) ∪ imT (y;Ω)]

(i) First observe that by the solvability property, deg(y;Ω; z) = 0 for some
z ∈ U :=U(Rd\y(∂(Ω)), since there clearly exist values z ∈ U which are not
in the bounded set y(Ω). As deg(y;Ω; ·) is constant on connected components of
R

d\y(∂Ω) (continuity), we infer that U ⊂ Û . In addition, connected components
of U are either fully contained in Û or do not intersect Û at all.

It remains to show that deg(y;Ω; z) = σ ∈ {±1} for z ∈ imT (y;Ω). By the
Tietze extension theorem, both ϕk and ϕ−1

k have continuous (but not necessarily
invertible) extensions to Rd , say, Yk and Zk . Clearly,

(Zk ◦ Yk)(x) = x for every x ∈ ∂Ω,

and since the degree only depends on the values on the boundary, this implies that

deg(Zk ◦ Yk;Ω; x) = deg(id;Ω; x) =
{
1 for every x ∈ Ω,

0 for every x ∈ R
d\Ω̄.

(4.1)

Due to our topological assumption on Ω and the Jordan Separation Theorem (see,
for example, [10, Theorem3.29 ]),Rd\ϕk(∂Ω) also has exactly two connected com-
ponents, Bk :=B(Rd\ϕk(∂Ω)) and Uk :=U(Rd\ϕk(∂Ω)). Moreover, Bk ⊂ Yk(Ω)

and deg(Yk;Ω; z) = 0 for z ∈ Uk . As a consequence of the multiplication formula
for the degree [10, Theorem 2.10], we get that

deg(Zk ◦ Yk;Ω; x) = deg(Zk;Bk; x) deg(Yk;Ω; z) for z ∈ Bk . (4.2)

Here, notice that deg(Yk;Ω; ·) is constant on Bk . In view of (4.1) and the fact that
the degree is integer-valued, (4.2) entails that for each k, there exists a σk ∈ {±1}
such that

σk = deg(Zk;Bk; x) = deg(Yk;Ω; z) for x ∈ Ω and z ∈ Bk . (4.3)

In addition, by the stability of the degree,

deg(Yk;Ω; z) = deg(y;Ω; z)

for every z ∈ R
d with dist (z; y(∂Ω)) > ‖Yk − y‖C(∂Ω) .

(4.4)

Since deg(y;Ω; z) = 0 for all z ∈ Û , (4.3) and (4.4) imply that

Bk ⊃ Vk := imT (y;Ω) ∩
{

z

∣∣∣∣
z ∈ B(Rd\y(∂Ω)) and
dist (z; y(∂Ω)) > ‖Yk − y‖C(∂Ω)

}
(4.5)

and

σk = deg(y;Ω; ·) is constant on Vk for each k. (4.6)
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Since ‖Yk − y‖C(∂Ω) → 0 as k → ∞, the limit of the increasing sequence of open
sets Vk is given by

imT (y;Ω) =
⋃

k

Vk =
{

z ∈ R
d

∣∣∣∣
z is in a bounded connected
component of Rd\(y(∂Ω) ∪ U)

}

⊂
{

z ∈ R
d\y(∂Ω) | z ∈ Bk for almost all k

}
.

By (4.3) and (4.4), we also get that σk → σ , whence

deg(y;Ω; z) = σ for all z ∈ imT (y;Ω), with fixed σ ∈ {±1}. (4.7)

The remaining assertions are a straightforward consequence of the fact that
deg(y;Ω; ·) is constant on each connected component of Rd\y(∂Ω). �	

The equivalent of Theorem 4.2 for AI(Ω̄) is a similar but easier because the
degree of full homeomorphisms is known. This works for all domains.

Theorem 4.8. Let Ω ⊂ R
d be a bounded domain and let y ∈ C(Ω̄;Rd) ∩AI(Ω̄).

Then all the assertions of Theorem 4.2 hold.

Proof. For the approximating homeomorphisms ϕk : Ω̄ → ϕk(Ω̄), it is well
known that deg(ϕk;Ω; z) = σk ∈ {−1, 1} for every z /∈ ϕk(∂Ω) (this is a simpler
application of the multiplication theorem for the degree), and that the bounded
connected component ofRd\ϕk(∂Ω) is given by Bk :=ϕk(Ω). The rest of the proof
is analogous to the proof of Theorem 4.2. �	

5. The Degree and Orientation Preserving Maps

In this section, we study the consequences of Theorem 4.2 for the case of
strictly orientation preserving maps. Some of the results in this section are essen-
tially known (cf. [38], in particular) and the technique is classical, but there is no
comprehensive collection suitable for our purposes. For this reason, full proofs are
given throughout. To the best of my knowledge, the global results summarized The-
orem 5.10 are new in this generality, in particular the description of sets mapped to
a point stated in terms that work well in DEG1loc as illustrated by Corollary 5.12.
Already in [3], essentially the same properties were obtained, but only for deforma-
tions whose boundary values are continuous and admit a homeomorphic extension,
which among other things provides a much more straightforward way to control
y(Ω̄), whereas we cannot even assume that y(∂Ω) is defined.

Proofs of partially related results in Nonlinear Elasticity, notably [3,32,38]
and [33], the degree-theoretic parts of [16] and, more recently, [5], mix topological
argumentswith fine properties of Sobolev functions.Here, the presentation is purely
topological, including a notion of strictly orientation preserving maps based on the
degree. It expands and complements some results of [40], and it also reveals that
some of the auxiliary results of [38] and related papers can in fact be derived using
only information about the degree.
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We start with general properties of orientation preserving maps, defined topo-
logically in terms of the degree. As illustrated by [5], this is also useful in settings
with low Sobolev regularity, suitable subsets of W 1,p

+ with d − 1 < p < d. Such
settings as treated in [15,32,38] and [5] still allow degree theory, but only for selec-
tive “good” open subsets of Ω . In our notation below, O could actually play that
role. However, the more difficult issue in this scenario is that y than can only be
assumed to be continuous on boundaries of good sets, not everywhere. For global
theory, using only balls as good sets (like in [38] or [32]) does not suffice, because
they in general cannot separate connected components. In any case, in this article,
we will not pursue this topic further.

5.1. Strictly Orientation Preserving Maps

Definition 5.1. (non-degenerate, (strictly) orientation preserving)
Let Ω ⊂ R

d be open, let y : Ω → R
d be continuous and let

O:={A ⊂ Ω | A is open and A ⊂⊂ Ω}.

We say that y is non-degenerate if for each non-empty U ∈ O, there exist A ∈ O
with A ⊂ U and z ∈ R

d\y(∂ A)with deg(y; A; z) = 0.We say that y is orientation
preserving if deg(y; ·; ·) ≥ 0, that is, deg(y; A; z) ≥ 0 for all A ∈ O and all
z ∈ R

d\y(∂ A). If y is non-degenerate and orientation preserving then y is called
strictly orientation preserving.

For instance, any homeomorphism y is non-degenerate and has constant degree
in {±1} on its image. Up to a reflection to achieve degree +1 if necessary, it is also
strictly orientation preserving.

Remark 5.2. The same topological notion of orientation preserving maps is used
in [5]. By itself, it is often too weak to be useful because it allows examples where
the degree is simply not defined on the image of y on all of Ω or large subsets. The
attributes “non-degenerate” and “strictly orientation preserving” as defined here are
not standard. The latter is similar but not equivalent to “locally sense-preserving”
in the sense of, for example, [40] (cf. Remark 5.9). “Non-degenerate” essentially
expresses that y is not allowed to compress open sets to sets with empty interior.

Remark 5.3. As we will see later, for p ≥ d, deformations y ∈ W 1,p
+ are always

strictly orientation preserving in the sense of Definition 5.1. The case p = d is the
main reason we want O to be the family of open sets compactly contained in Ω

instead of all open A ⊂ Ω . As a consequence, it is not needed to have y continuous
up to the boundary.

For strictly orientation preserving maps in the sense of Definition 5.1, both the
local and the global degree are actually positive for any admissible value in the
image of y.
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Lemma 5.4. Let Ω ⊂ R
d be open, let O = {A ⊂⊂ Ω | Ais open }, let y ∈

C(Ω;Rd) be strictly orientation preserving in the sense of Definition 5.1, and
let z ∈ y(Ω). Then for all connected components Cz of y−1({z}) with Cz ⊂⊂ Ω ,
there exists a sequence of sets An ∈ O such that for every n ∈ N, An+1 ⊂ An,

Cz ⊂ An, Dist (Cz, ∂ An) ≤ 1
n ,

z /∈ y(∂ An) and deg(y; An; z) ≥ 1.
(5.1)

If we also have that Ω is bounded and y ∈ C(Ω̄;Rd), then

deg(y;Ω; z) ≥ 1 for all z ∈ y(Ω)\y(∂Ω).

Proof. Since Cz is a compact subset of Ω , it has a positive distance to ∂Ω . Choose
a sequence of open sets Un ∈ O with

Cz ⊂ Un ⊂⊂ Ω and Dist (Cz, ∂Un) ≤ 1
n . (5.2)

The set

Sn := Ūn ∩ y−1({z})
is compact. If Sn = Cz then y−1({z})∩ ∂Un = ∅ and we take An :=Un . Otherwise,
Sn is not connected and can be separated into two disjoint compact subsets Tn and
Rn = Sn\Tn such that

Cz ⊂ Tn and Sn ∩ ∂Un ⊂ Rn (5.3)

(Whyburn Lemma, see [45, (9.3) in Chap. I, p. 12]). Since Tn and Rn have
positive distance, there exists An ∈ O, An ⊂ Un with Cz ⊂ Tn ⊂ An and
Rn ∩ ∂ An = ∅. In all cases, we conclude that

Cz ⊂ An, Dist (Cz, ∂ An) ≤ 1

n
and z /∈ y(∂ An). (5.4)

W.l.o.g., wemay also assume that An+1 ⊂ An for all n. Since y is strictly orientation
preserving, there exists

xn ∈ An with y(xn) /∈ ∂ An and deg(y; An; y(xn)) ≥ 1, (5.5)

the latter because deg(y; An; y(xn)) > 0 and the degree is integer-valued. Due to
(5.4), we also have that dist (xn; Cz) → 0, and thus y(xn) → z by the (locally
uniform) continuity of y. Using the additivity and continuity of the degree together
with deg(y; ·; ·) ≥ 0 (y is orientation preserving), (5.5) implies that for all n and
every k ≥ n large enough so that y(xk) /∈ ∂ An (which is possible since y(xk) → z
and z has a positive distance to the compact set ∂ An for fixed n),

1 ≤ deg(y; Ak; y(xk)) ≤ deg(y; An\ Āk; y(xk)) + deg(y; Ak; y(xk))

= deg(y; An; y(xk)) −→
k→∞ deg(y; An; z).

We conclude that deg(y; An; z) ≥ 1 for all n. Combined with (5.4), this concludes
the proof of (5.1).

Finally, if y is continuous up to the boundary and z ∈ y(Ω)\y(∂Ω), then
y−1({z})∩Ω = ∅ and any of its connected components Cz is compactly contained
in Ω . Thus, deg(y;Ω; z) ≥ deg(y; An; z) ≥ 1 by additivity of the degree. �	
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Lemma 5.5. (On topological image and reduced domain)
Let Ω ⊂ R

d be open, let O = {A ⊂⊂ Ω | A is open }, let y ∈ C(Ω;Rd), let
A, A1, A2 ∈ O and let U ⊂ Ω be open. We define the open sets

imT (y; A):=
{

z ∈ R
d\y(∂ A) | deg(y; A; z) = 0

}
,

imloc(y; U ):=⋃
A∈O,A⊂U imT (y; A)

and the associated (topologically) reduced domain

Ry(U ):={
x ∈ U

∣∣ ∃A ∈ O : x ∈ A ⊂ U and y(x) /∈ y(∂ A)
}
.

Then we have the following:

(i) imT (y; A) ⊂ int y(A), the interior of y(A).
(ii) If y is orientation preserving then

A1 ⊂ A2 �⇒ imT (y; A1) ⊂ imT (y; A2) ∪ y(∂ A2).

(iii) If y is strictly orientation preserving, then

imT (y; A) = y(A)\y(∂ A),

imloc(y; U ) ⊂ y(U ) ⊂ imloc(y; U ),

U\Ry(U ) has empty interior,

y(Ry(U )) = imloc(y; U ), and

y(Ū\Ry(U )) ⊂ y(∂U ).

If we have in addition that Ω is bounded and y ∈ C(Ω̄;Rd), then all of the
above also holds for A = A2 = U = Ω .

Remark 5.6. In context of Nonlinear Elasticity, the concept of the topological
image imT (without the name) was introduced in [38]. We use it here without
artificially adding the image of the boundary, which makes it an open set (due to
continuity of the degree). This has the disadvantage that in general, full mono-
tonicity with respect to the domain cannot be expected even in case of strictly
orientation preserving maps, only what follows from Lemma 5.5 (ii) and (iii). The
“localized” topological image imloc(y; U ) fixes this issue by collecting all points
in local topological images. A variant of it was also used in [39].

As shown in Theorem 5.10 below, for strictly orientation preserving maps with
global degree ≤ 1, imloc(y; U ) coincides with imT (y; U ) as long as y(∂U ) has
empty interior. In addition, imloc(y; U ) is a natural substitute of y(U )\y(∂U ).
Unlike the latter, it remains meaningful with U = Ω even if y cannot be contin-
uously extended to ∂Ω , and it possibly contains more information in cases where
y|∂U exhibits wild behavior like Peano curves.

Remark 5.7. As Lemma 5.5 and Theorem 5.10 show, the topologically reduced
domain Ry introduced in the lemma is always naturally associated to imloc(y; ·).
By its definition and the continuity of y, Ry(U ) is open. Moreover, since we
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can always isolate connected components with an arbitrarily close surrounding
neighborhood unless they touch the boundary (cf. Lemma 5.4),

Ry(U ) = Λ:=
⋃

z∈Rd , Cz∈ICC(z,U )

Cz, (5.6)

where ICC(z, U ) denotes the family of all “inner” connected components of
y−1({z}) ∩ U , that is,

ICC(z, U ):=
{

Cz

∣∣∣∣
Cz is a connected component of y−1({z}) ∩ U
with Cz ⊂⊂ U

}

This also entails that for every z ∈ y(∂U ) and every component Cz of y−1({z})∩U
with Cz ⊂ Ry(U ), we have that Cz ∩Ry(U ) = ∅ and C̄z ∩ ∂U = ∅. Interestingly,
it is not obvious that Λ is open as defined.

Remark 5.8. Another basic property of Ry to keep in mind when working in
DEG1loc is that for every covering (Ωm)m∈N ofΩ with open setsΩm ⊂ Ωm+1 ⊂⊂
Ω ,

Ry(Ωm) ⊂ Ry(Ωm+1) and Ry(Ω) = ⋃
m∈NRy(Ωm), (5.7)

a straightforward consequence of the definition of Ry . Similarly,

imloc(y;Ωm) ⊂ imloc(y;Ωm+1) and imloc(y;Ω) = ⋃
m∈N imloc(y;Ωm).

(5.8)

Remark 5.9. (Connections to the results of Titus and Young [40]) The setRy(Ω)

is related to concepts appearing in [40]. If we knew that

y(Ω\Ry(Ω)) is closed with empty interior (5.9)

for a strictly orientation preserving y, then y would belong to the class of functions
called Ω in [40] with the corresponding set C f :=Ω\Ry(Ω) for f = y (and our
domain Ω). However, unless Ry(Ω) = Ω , (5.9) is extremely unnatural even if
y is continuous up to the boundary and y(∂Ω) has empty interior; as a matter
of fact, it even implies that Ry(Ω) = Ω in our setting. In essence, the issue
reflects that [40] was written for manifolds without boundary. Nevertheless, the
results of [40] do apply to y|Ry(Ω) (with f = y, N = Ry(Ω), M = R

d and
C f = ∅). As is, [40] effectively cannot provide any information on Ω\Ry(Ω)

without additional assumptions. One such assumption is that y is light, i.e, y−1({z})
is totally disconnected for all z, but this again implies that Ω = Ry(Ω).

By contrast, Theorem 5.10 and Corollary 5.12 discuss y on Ω\Ry(Ω), and
we already know that Ω\Ry(Ω) has empty interior by Lemma 5.5 (iii) (and
Remark 5.8), essentially a consequence of our stronger notion of strictly orientation
preserving maps. Unlike the latter, the notion of sense preserving used in [40] never
holds at points x ∈ Ω\Ry(Ω) because it requires the connected component Cx

of x in y−1({y(x)}) to be compact in Ω (in other words, Cx must not touch ∂Ω).
On Ry(Ω), it is weaker than “strictly orientation preserving”, a consequence of
Lemma 5.4.
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Proof of Lemma 5.5. Notice that imT (y; A) is open by the continuity of the degree.
Consequently, imloc(y; U ) is open as the union of open sets.

(i) This is clear since imT (y; A) is open and imT (y; A) ⊂ y(A) by the solv-
ability property of the degree.

(ii)Let z ∈ imT (y; A1).Wemayassume that z /∈ y(∂ A2), because otherwise the
assertion is obvious. By definition of imT (y; A1), z /∈ y(∂ A1) and deg(y; A1; z) =
0. Since y is orientation preserving, we even have that deg(y; A1; z) > 0, an we
also know that deg(y; A2\ Ā1; z) ≥ 0. By additivity of the degree, this implies that

deg(y; A2; z) = deg(y; A2\ Ā1; z0) + deg(y; A1; z) > 0.

Consequently, z ∈ imT (y; A2).
(iii) “imT ( y; A) = y(A)\ y(∂A)”: “⊂” is clear by definition, and “⊃” is a

consequence of Lemma 5.4.
“imloc( y;U) ⊂ y(U)”: This follows from (i).
“ y(U) ⊂ imloc( y;U)”: Let z ∈ y(U ), and choose a point x ∈ U with y(x) = z.

Since U is open, there exists positive radii r(k) → 0 such that Br(k)(x) ⊂⊂ U for
each k. As y is strictly orientation preserving, there exist open Ak ⊂ Br(k)(x) and
xk ∈ Ak with y(xk) /∈ y(∂ Ak) and deg(z; Ak; y(xk)) = 0. By construction of the
sets Ak , we have that xk → x as k → ∞. Consequently, z = y(x) = limk y(xk) ∈
imloc(y; U ).

“U\Ry(U)has empty interior”: Let V ⊂ U\Ry(U ) be open. By definition of
Ry(U ), we infer that y(x) ∈ y(∂ A) for all x ∈ V and all A ∈ O with x ∈ A ⊂ U .
However, since y is strictly orientation preserving, only empty V can satisfy this.

“ y(R y(U)) = imloc( y;U)”: For every x ∈ R(y; U ) choose an admissible
associated A ∈ O from its definition, and let Cx denote the connected component
of y−1(y(x)) containing x . Since y(x) /∈ y(∂ A), Cx is a compact subset of A.
By Lemma 5.4, there exists A1 ∈ O with Cx ⊂ A1 ⊂ A, y(x) /∈ y(∂ A1) and
deg(y; A1; y(x)) ≥ 1. Hence, y(x) ∈ imT (y; A1) ⊂ imloc(y; U ). Conversely, if
z ∈ imloc(y; U ), then z ∈ imT (y; A) for an A ∈ O, A ⊂ U with z /∈ y(∂ A). In
addition, deg(y; A; z) = 0, and consequently, there exists x ∈ A with y(x) = z.
We infer that x ∈ R(y; U ) and therefore z = y(x) ∈ y(R(y; U )).

“ y(Ū\Ry(U)) ⊂ y(∂U)”: It suffices to show that Ū\y−1(y(∂U )) ⊂ Ū\Ry(U ).
Consider an arbitrary x ∈ Ū with y(x) /∈ y(∂U ). Then the connected component
Cx of x in Ū ∩ y−1(y(x)) has positive distance to ∂U . By Lemma 5.4, there exists
A ∈ O with Cx ⊂ A ⊂ U and y(x) /∈ y(∂ A). Hence, x ∈ Ry(U ), and since
Ry(U ) is open, we even get that x /∈ Ū\Ry(U ).

The case y ∈ C(Ω̄;Rd): In this case, the proofs of (i) and (iii) still work
for A = U = Ω . The same is true concerning (ii), as long as we can still show
that deg(y;Ω\ Ā1; z) ≥ 0 for z /∈ y(∂Ω). Here, notice that A:=Ω\ Ā1 /∈ O is
not admissible in our definition of orientation preserving maps. Instead, choose a
sequence Ωm ∈ O such that Ω̄m ⊂ Ω and Dist (Ωm, ∂Ω) → 0 as m → ∞.
Since y is uniformly continuous, z /∈ y(Ω̄\Ωm) for m large enough. By additivity
of the degree, this implies that deg(y;Ω\ Ā1; z) = deg(y;Ωm\ Ā1; z) ≥ 0. The
inequality holds because y is orientation preserving and Ωm\ Ā1 ∈ O. �	
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5.2. Strictly Orientation Preserving Maps of Degree One

The next theorem is of particular interest from the point of view of Nonlinear
Elasticity, because it provides amajor step towards the invertibility of deformations.
It summarizes the topological properties of strictly orientation preservingmapswith
degree ≤ 1. Among other things, it asserts that they are essentially monotone in
the topological sense (see (ii) below). The only possible case where the preimage
of a value can have several connected components occurs when all of these are
contracted by the deformation to boundary pointswhere the deformed configuration
is in self-contact (cf. (iii)). These are exactly the piecesmissing in the (topologically)
reduced domain Ry defined and studied in Lemma 5.5, cf. Remark 5.7.

Theorem 5.10. Let Ω ⊂ R
d be open, let O = {A ⊂⊂ Ω | A is open }, let y ∈

C(Ω;Rd) be strictly orientation preserving in the sense of Definition 5.1, let U ∈ O
and let imT , imloc and Ry be defined as in Lemma 5.5. In addition, assume that
deg(y; U ; ·) ≤ 1. Then we have the following:

(i) Let A ∈ O with A ⊂ U. Then deg(y; A; ·) ≥ 1 on y(A)\y(∂ A), and
deg(y; A; ·) ≤ 1 on y(A)\[y(∂ A) ∪ y(∂U )]. If y(∂U ) has empty interior,
then deg(y; A; ·) = 1 on y(A)\y(∂ A).

(ii) For all z ∈ imloc(y; U )\y(∂U ),

Ry(U ) ∩ y−1({z}) is connected.

(iii) If y(∂U ) has empty interior, then

imloc(y; U ) ∩ y(∂U ) = ∅.

The latter implies that

Ry(U ) = U\y−1(y(∂U )),

imloc(y; U ) = y(U )\y(∂U ) = imT (y; U ) and

y(∂U ) = ∂(imloc(y; U )).

If we have in addition that Ω is bounded and y ∈ C(Ω̄;Rd), then we may also use
U = Ω .

If we can find one U such that y(∂U ) has empty interior, then smaller sets with
a reasonable boundary inherit this property—a topological analogue of Lusin’s
property (N):

Corollary 5.11. Under the assumptions of Theorem 5.10, suppose in addition that
int y(∂U ) = ∅. Then

int K = ∅ �⇒ int y(K ) = ∅, for all compact K ⊂ Ū . (5.10)

In particular, for any open and bounded Ũ ⊂ U with int ∂Ũ = ∅, all assertions in
Theorem 5.10 (i) and (iii) hold for Ũ instead of U.

If Ω is bounded and y ∈ C(Ω̄;Rd), then U = Ω is also admissible.
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The next corollary summarizes our results for the case y ∈ DEG1loc. We now also
assume that Ω is bounded to avoid complications that would appear otherwise.

Corollary 5.12. Let Ω ⊂ R
d be open and bounded, let y ∈ C(Ω;Rd)

be strictly orientation preserving in the sense of Definition 5.1, let O =
{A ⊂⊂ Ω | A is open } and let imT , imloc and Ry be defined as in Lemma 5.5.
In addition, assume that y ∈ DEG1loc with respect to a regular inner covering
(Ωm)m∈N of Ω , and that y(∂Ωm) has empty interior for all m. Then the following
holds:

(i) For all A ∈ O, deg(y; A; ·) = 1 on y(A)\y(∂ A).
(ii) For all z ∈ y(Ry(Ω)), Ry(Ω) ∩ y−1({z}) is connected and compactly con-

tained in Ry(Ω).
(iii) For all z ∈ y(Ω)\y(Ry(Ω)) and every connected component Cz of y−1({z}),

C̄z ∩ ∂Ω = ∅.
(iv) imloc(y;Ω) = y(Ry(Ω)) and Ω\Ry(Ω) has empty interior.

If we have in addition that y ∈ C(Ω̄;Rd), then imloc(y;Ω) = y(Ω)\y(∂Ω) and
deg(y;Ω; ·) = 1 on imloc(y;Ω).

Remark 5.13. (Interface to the analytical setting) Corollary 5.12 is meant to be
applied to functions y ∈ Y in the effective admissible set Y ⊂ {E < ∞} of
a variational minimization problem for a functional E , for instance a nonlinear
elastic energy set up in a Sobolev space (for example, Y ⊂ W 1,p

+ for p ≥ d). The
following ingredients are needed to make this work:

(a) An embedding of Y into C(Ω;Rd) (cf. Remark 6.4);
(b) a global invertibility constraint or a boundary condition which implies Y ⊂

DEG1loc (cf. Remark 2.19);
(c) y is strictly orientation preserving for y ∈ Y (cf. Lemma 6.7);
(d) a way to prove that y(∂Ωm) has empty interior for each m. SinceLd(∂Ωm) = 0

by our definition of a regular inner covering, Lusin’s condition (N) is sufficient
(cf. Remark 6.4).

If y ∈ C(Ω̄;Rd), then for (d), by Corollary 5.11, it also suffices to have that y(∂Ω)

has empty interior.

Remark 5.14. Without the global invertibility constraint deg(y; U ; ·) ≤ 1, the
assertions of Theorem 5.10 can fail to hold even locally. One example (from [3])
is the strongly orientation preserving “angle-doubling” map y0 : Ω:=B1(0) →
B1(0) for d = 2, defined in complex polar coordinates by y0(reiϕ) = re2iϕ . It
satisfies deg(y0; A; z) = 2 for all z close to 0 = y0(0) and all open A ⊂ Ω with
0 ∈ A. Therefore, (i) does not hold. Moreover, for each z ∈ B1(0)\{0}, y−1

0 ({z}) =
{x1, x2} ⊂ Ω contains exactly two (antipodal) points, and thus is not connected as
asserted in (ii). In addition, we can always choose U ∈ O with smooth boundary
such that x1 ∈ U and x2 ∈ ∂U . This violates (iii), as y(x1) ∈ imloc(y0; U ),
y(x2) ∈ y0(∂U ) and y(x1) = y(x2) = z.
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Proof of Theorem 5.10. (i) Let z ∈ y(A)\y(∂ A). By Lemma 5.4, deg(y; Ã; z) ≥ 1
for a suitable Ã ∈ O with Ã ⊂ A and z /∈ y(∂ Ã). Since deg(y; ·; ·) ≥ 0, we infer
that

1 ≤ deg(y; Ã; z) ≤ deg(y; A; z), (5.11)

by the additivity of the degree. If, in addition, z /∈ y(∂U ), we analogously get that

deg(y; A; z) ≤ deg(y; U ; z) ≤ 1. (5.12)

Now suppose that y(∂U ) has empty interior, and let S be an arbitrary connected
component of y(A)\y(∂ A). In view of (5.11), it suffices to show that deg(y; A; ·) ≤
1 on S. As deg(y; A; ·) ≥ 1 on y(A)\y(∂ A) by (5.11) and deg(y; A; ·) = 0 on
R

d\y( Ā), y(A)\y(∂ A) is open by continuity of the degree. Hence, S is open, too,
and S\y(∂U ) = ∅. Consequently, (5.12) implies that deg(y; A; z0) ≤ 1 for a
z0 ∈ S. Since deg(y; A; ·) is constant on S, again by continuity of the degree, we
conclude that deg(y; A; z) ≤ 1 for all z ∈ S.

(ii) The proof is indirect. Let z ∈ imloc(y; U )\y(∂U ) and suppose that
Ry(U )∩ y−1({z}) is not connected. We therefore have at least two connected com-
ponents, say, C1

z and C2
z , both of which are compact subsets of U . By Lemma 5.4,

there exist disjoint sets A1, A2 ∈ O with A1 ∪ A2 ⊂ U , C j
z ⊂ A j , z /∈ ∂ A j

and deg(y; A j ; z) ≥ 1. Since z /∈ y(∂U ∪ ∂ A1 ∪ ∂ A2), by additivity of the
degree and the fact that deg(y; ·; ·) ≥ 0 (y is orientation preserving), we obtain
that deg(y;Ry(U ); z) ≥ deg(y; A1; z) + deg(y; A2; z) ≥ 2. This contradicts our
assumption on the degree.

(iii) “imloc( y;U) ∩ y(∂U) = ∅”: The proof is indirect. Let x0 ∈ ∂U and
suppose that z0:=y(x0) ∈ imloc(y; U ). By definition of imloc(y; U ), there exists
A ∈ O, A ⊂ U with z0 /∈ y(∂ A) and deg(y; A; z0) = 0. In particular, y(x) = z0
for an x ∈ A and x ∈ Ry(U ). Let C denote the connected component of y−1(z0)
containing x . SinceC is compact andC ⊂ A,C ⊂ Ry(U ) by definition of the latter
set. In particular, C has positive distance to Rd\Ry(U ) ⊃ ∂U . By Lemma 5.4, we
can find A0 ∈ O with A0 ⊂ A such that

Ā0 ⊂ Ry(U ), z0 /∈ y(∂ A0) and deg(y; A0; z0) ≥ 1. (5.13)

Now choose a sequence (x̃k) ⊂ U with x̃k → x0 ∈ ∂U as k → ∞. Let

r(k):= 1
2 dist (x̃k; ∂U ) ≤ 1

2 |x̃k − x0| → 0.

Since y is strictly orientation preserving, there exist sets Ak ∈ O such that for a
z̃k ∈ R

d ,

Ak ⊂ Br(k)(x̃k), z̃k /∈ y(∂ Ak) and deg(y; Ak; z̃k) ≥ 1. (5.14)

By continuity of the degree and the fact that y(∂ Ak) is compact, (5.14) even holds
for all zk ∈ Vk in place of z̃k , in an open neighborhood Vk of z̃k . Shrinking Vk if
necessary, we can also make sure that Vk ∩ y(∂ Ak) = ∅. Since, by assumption,
y(∂U ) has empty interior while Vk is open, there exists zk ∈ Vk with zk /∈ y(∂U ).
In addition, as deg(y; Ak; zk) = 0, Ak ∩ y−1(zk) = ∅. Consequently, there exists at
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least one connected component Ck of y−1(zk) in Ak , and by definition of Ry(U ),
we also have that Ck ⊂ Ry(U ).

On the other hand, supx∈Ak
|x − x0| ≤ 3

2 |x0 − x̃k | → 0 by construction. Since
Ā0 ⊂ U while x0 ∈ ∂U , this implies that Ak ∩ A0 = ∅ for all k large enough,
and we also infer that zk = y(xk) → y(x0) = z0 by continuity of y, for arbitrary
xk ∈ Ck ⊂ Ak ∩ y−1({zk}. Arguing as before, we obtain that (5.13) also holds
for zk instead of z0, for all sufficiently large k. As a consequence, besides Ck ⊂
Ak ∩ Ry(U ), y−1({zk}) has a second connected component Ĉk , now contained in
A0 ∩ Ry(U ). Since we made sure that zk /∈ y(∂U ), this contradicts (ii). For an
illustration, see Fig. 1.

“Ry(U) ⊃ U\y−1( y(∂U))”: Let z ∈ y(U )\y(∂U ), and let Cz denote an arbi-
trary connected component of y−1({z}). Since z /∈ y(∂U ), Cz is compact and has
a positive distance to ∂U . As a consequence of Lemma 5.4, Cz ⊂ R(y; U ).

“R( y;U) ⊂ U\y−1( y(∂U))”: By definition, R(y; U ) ⊂ U , and we already
know that imloc(y; U ) ∩ y(∂U ) = ∅ and y(R(y; U )) = imloc(y; U ), the latter by
Lemma 5.5 (iii). Hence,

R(y; U ) ⊂ y−1(imloc(y; U )) ⊂ y−1(y(U )\y(∂U )) = U\y−1(y(∂U )).

“imloc( y;U) = y(U)\ y(∂U)”: Recall that imloc(y; U ) = y(Ry(U )) by
Lemma 5.5 (iii). Hence, imloc(y; U ) ⊂ y(U ), and we have just proved that
imloc(y; U )∩ y(∂U ) = ∅. We also already know that U\y−1(y(∂U )) ⊂ R(y; U ),
which implies that y(U )\y(∂U ) ⊂ y(Ry(U )) = imloc(y; U ).

“imloc( y;U) = imT ( y;U)”: By the definition of imT , imT (y; U ) ⊂ y(U )\y
(∂U ). We also have that imloc(y; U ) ⊂ imT (y; U ) ∪ y(∂U ), by the definition of
imloc(y; U ) and Lemma 5.5 (ii) with A2 = U . As y(U )\y(∂U ) = imloc(y; U ) due
to the previous step, we infer both “⊃” and “⊂”.

“ y(∂U) = ∂(imloc( y;U))”: Since y(U )\y(∂U ) = imloc(y; U ) is open and
y(Ū ) is closed, it suffices to show that y(∂U ) ⊂ imloc(y; U ). By continuity of y,
this follows from Lemma 5.5 (iii).

The case U = Ω for y ∈ C(Ω̄;Rd): For such a y, all notions used above
are also defined for U = Ω , and the proof works without changes. In particular,
Lemma 5.5 can be applied with A2 = U = Ω . �	

Proof of Corollary 5.11. The proof is indirect. Let K ⊂ Ū be compact with
int K = ∅ and suppose there exists a non-empty open set V ⊂ y(K ). In particular,
V \y(∂U ) = ∅.

Since y is continuous, there exists x0 ∈ K ∩ U and an open neighborhood
A0 ⊂ U of x0 such that y(A0) ⊂ V .Moreover, int y(A0) = ∅ by the solvability and
stability properties of the degree, exploiting that y is strictly orientation preserving.
Choose a non-empty open set

A ⊂ Ã0:=U ∩ y−1(int y(A0)) = ∅ such that A ∩ K = ∅.

This is possible because Ã0 is open and K is closed with empty interior. Now let
x ∈ A and z:=y(x). Since y(A0) ⊂ V ⊂ y(K ), y−1({z}) ∩ A0 also contains a
point x2 ∈ K . Let C1 and C2 be the connected components of y−1({z}) ∩ U with
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x0, x ∈ y−1({z})
Ck, Ĉk ⊂ y−1({zk})

U

x0

x̃k

Ak

x

A0

Ĉk

Ck

Fig. 1. Proof of Theorem 5.10 (iii): The continua Ck and Ĉk

(a)C1 = C2 (b) C1 �= C2

x2

U

x2

U

K K

A A

x x

C1 = C2

C1

C2

Fig. 2. The cases (a) and (b) in the proof of Corollary 5.11

x ∈ C1 and x2 ∈ C2, respectively. By Theorem 5.10 (ii) and (iii), we have one of
the following two possibilities:

(a) C̄1 ⊂ U and C1 = C2, or
(b) C̄1 ∩ ∂U = ∅ and C̄2 ∩ ∂U = ∅.

As illustrated in Fig. 2, in both cases, ∂ A ∩ C1 = ∅, because C1 is connected,
contains x ∈ A and has to reach another point outside of A.With the same argument,
we even get that ∂ Ã ∩ C1 = ∅ for all open Ã ⊂ A with x ∈ Ã. In other words,
y(x) ∈ y(∂ Ã) for all x ∈ Ã ⊂ A. But for strictly orientation preserving and
therefore non-degenerate y, this is impossible. �	
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Proof of Corollary 5.12. Recall that by Remark 5.8,

Ry(Ω) = ⋃
m Ry(Ωm) and imloc(y;Ω) = ⋃

m
imloc(y;Ωm). (5.15)

The assertions (i)–(iii) now follow from Theorem 5.10 and Corollary 5.11. As to
(ii) and (iii) also see Remark 5.7. For (iv), we use (5.15) and Lemma 5.5 (iii) with
U = Ωm for each m. �	

We conclude the section with a result that will be useful to exploit extra regularity
of deformations with finite distortion while avoiding additional assumptions near
the boundary.

Lemma 5.15. Let Ω ⊂ R
d be open, and assume that y ∈ C(Ω;Rd) is strictly

orientation preserving. If U ⊂ Ω is open, the restriction

ŷ:=y|Λ : Λ → R
d , with Λ:=Ry(U ),

is strictly orientation preserving on Λ. If, in addition, y is continuous on Ū , then

deg(y; U ; z) = deg(ŷ;Λ; z) for all z /∈ y(∂U ) ⊃ y(∂Λ).

Proof. The way we defined strictly orientation preserving maps, any restriction
like ŷ just means fewer sets A to test with and thus trivially inherits this property.
Now suppose that y is continuous on Ū . If z /∈ y(∂U ),

deg(y; U ; z) = deg(y; ∅; z) + deg(y;Λ; z) = deg(y;Λ; z)

by additivity of the degree. Here, notice that y(∂Λ) ⊂ y(Ū\Λ) ⊂ y(∂U ), the latter
by Lemma 5.5 (iii). �	

6. Global Invertibility in W1, p

Throughout this section, we will impose the global invertibility constraint y ∈
DEG1loc, or y ∈ DEG1 if y is continuous up to the boundary, for all admissible
deformations y ∈ W 1,p

+ . Recall that by Remark 2.19, this assumption can always
be replaced by any of the other invertibility constraints of Sect. 2, including the
Ciarlet–Nečas condition y ∈ CNC and approximate invertibility on the boundary
y ∈ AIB or y ∈ AIBloc. In the latter two cases, we have to assume in addition that
R

d\∂Ω has only two connected components to be able to apply Theorem 4.2.
For numerical purposes, AIB and AI(Ω̄) are more accessible than the other

constraints (cf. [23]).
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6.1. Ball’s Global Invertibility Revisited

The invertibility results obtained in [3] all rely on the assumption that on ∂Ω ,
the deformation y (denoted u in [3]) coincides with a continuous u0 : Ω̄ → y(Ω̄)

which is injective on Ω . By the results of Sect. 5, it actually suffices to assume that
y ∈ DEG1 instead. This leads to the following generalization of [3, Theorem 1]:

Theorem 6.1. Let Ω ⊂ R
d be a bounded Lipschitz domain. Moreover, let p > d,

let y ∈ C(Ω̄;Rd) ∩ W 1,p
+ (Ω;Rd) ∩ DEG1. Then we have the following:

(i) y(Ω̄) = y(Ω)\y(∂Ω) and y(∂Ω) = ∂(y(Ω)\y(∂Ω)).
(ii) For every measurable A ⊂ Ω and every measurable function f ,

∫

A
f (y(x)) det∇ y(x) dx =

∫

y(A)

f (z) dz,

as long as at least one of the two integrals exists.
(iii) For almost every z ∈ y(Ω̄), y−1({z}) consists of a single point.
(iv) If z ∈ y(Ω)\y(∂Ω), then y−1({z}) ⊂ Ω̄ is a connected set contained in Ω .
(v) y−1(y(∂Ω)) ∩ Ω has empty interior, and if z ∈ y(∂Ω), then each of the

connected components of y−1({z}) ∩ Ω touches ∂Ω .

A proof is given at the end of the subsection.

Remark 6.2. Since Ω is a Lipschitz domain, y ∈ W 1,p(Ω;Rd) always has a con-
tinuous representative in C(Ω̄;Rd) by embedding, and y can always be extended
to a function in W 1,p on a bigger domain. Since this extension, as a function in
W1, p with p > d, also has Lusin’s property (N) [25], y(∂Ω) is a set of measure
zero. In particular, y(∂Ω) has empty interior.

Remark 6.3. With f ≡ 1 and A = Ω , Theorem 6.1 (ii) implies the Ciarlet–Nečas
condition, cf. Definition 2.14.

Remark 6.4. (The case p = d) Theorem 6.1 can be extended to the case p = d
with minor modifications, see Theorem 6.6. In this case, continuity of y up to the
boundary would be an unnatural extra assumption even for smooth domains. How-
ever, even if we only have that y ∈ W 1,d

+ (Ω;Rd), we can still follow the proof of
Theorem 6.1 in subdomains compactly contained in Ω , exploiting Remark 5.8 and
the following facts: Inside Ω , deformations y ∈ W 1,d

+ automatically have a contin-
uous representative [43] (cf. [10, Theorem 5.14], [38]) and satisfy Lusin’s condition
(N) [26, Corollary 3.13] (cf. [10, Theorem 5.32], or [16, Theorem 4.5]). Even an
explicit modulus of continuity can be obtained at any given positive distance from
the boundary [37] (cf. [10, Corollary 5.19]). In particular, any such y can still be
approximated by smooth functions, simultaneously in W 1,d and locally uniformly.
(The approximants do not necessarily have positive determinant, though.) For suit-
able extensions of the change of variables formulas (6.3) and (6.4) used below, see
[10, Theorem 5.35 and Theorem 5.34] (for example).
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By Theorem 4.2 (which can be applied to functions in W 1,p
+ due to Lemma 6.7

below), Theorem 6.1 immediately implies the following variant in the class of
approximately invertible maps on the boundary in the sense of Definition 2.2:

Corollary 6.5. Let Ω ⊂ R
d be a bounded Lipschitz domain such that Rd\∂Ω has

exactly two connected components. If p > d and y ∈ W 1,p
+ (Ω;Rd) ∩ AIB, then

the assertions (i)–(v) of Theorem 6.1 hold.

In viewofRemark 6.4,we can also easily obtain an extension of Theorem6.1 for
the case p = d and without requiring Ω to be Lipschitz, with an analogous proof.
The only difference is a weaker description of y(Ω), taking into account that we
can no longer apply Theorem 5.10 or Lemma 5.5 withU = Ω , only Corollary 5.12
which is obtained by approximating Ω from inside (see also Remark 5.8 and
Remark 5.13). In (v), the set y(Ω)\ imloc(y;Ω) nowplays the role of y(Ω)∩y(∂Ω)

which is no longer defined.

Theorem 6.6. Let Ω ⊂ R
d be open, let p ≥ d and suppose that y ∈

W 1,p
+ (Ω;Rd) ∩ DEG1loc, the latter with respect to a regular inner covering

(Ωm)m∈N of Ω (see Definition 2.9). With imT and imloc defined as in Lemma 5.5,
we then have the following:

(i)
⋃

m∈N imT (y;Ωm) = imloc(y;Ω) ⊂ y(Ω) ⊂ imloc(y;Ω).
(ii) For every measurable A ⊂ Ω and every measurable function f ,

∫

A
f (y(x)) det∇ y(x) dx =

∫

y(A)

f (z) dz,

as long as at least one of the two integrals exists.
(iii) For almost every z ∈ y(Ω), y−1({z}) consists of a single point.
(iv) If z ∈ imloc(y;Ω), then y−1({z}) is a compact connected set contained in Ω .
(v) Ω∩y−1(y(Ω)\ imloc(y;Ω)) has empty interior, and if z ∈ y(Ω)\ imloc(y;Ω),

then each of the connected components of y−1({z}) ∩ Ω touches ∂Ω .

The following lemma links the analytical and topological notions of strictly
orientation preserving maps.

Lemma 6.7. Let Ω ⊂ R
d be open and bounded, let p ≥ d and let y ∈

W 1,p
+,loc(Ω;Rd). Then y is strictly orientation preserving in the sense of Defini-

tion 5.1.

Proof. Let A ⊂⊂ Ω be open. As remarked in [3], if z /∈ y(∂ A) and V0 denotes the
connected component ofRd\y(∂ A) containing z, then the degree can be represented
as

deg(y; A; z) =
∫

A
h(y(x)) det∇ y(x) dx, (6.1)

for any continuous h : R
d → [0,∞) compactly supported in V0 and with∫

V0
h(z) dz = 1. Notice that (6.1) is actually a special case of (6.3) below which
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uses that the degree is locally constant. It thus also extends to the case p = d,
cf. Remark 6.4. As an immediate consequence of (6.1),

deg(y; A; z) ≥ 0 for every z ∈ R
d\y(∂ A).

Hence, y is orientation preserving in the sense of of Definition 5.1. To prove that
it is so strictly, first notice that we may assume w.l.o.g. that LN (∂ A) = 0, moving
to a slightly smaller but more regular set if necessary. For z ∈ y(A)\y(∂ A), we can
always choose a function h such that h(z) > 0. By continuity of y, h ◦ y > 0 on
a neigborhood of A ∩ y−1({z}) which automatically has positive measure. Using
(6.1) once more, we infer that

deg(y; A; z) > 0 for every z ∈ y(A)\y(∂ A).

In addition, Ld(A) > 0 implies that Ld(y(A)) > 0 by the area formula (6.4) (see
also Remark 6.4 for p = d), while Lusin’s property (N) and LN (∂ A) = 0 imply
that Ld(y(∂ A)) = 0. As long as A = ∅, we know that Ld(A) > 0 since A is open,
and consequently, y(A)\y(∂ A) = ∅. We conclude that y is also strictly orientation
preserving in the sense of of Definition 5.1. �	
Proof of Theorem 6.1. The proof of the topological assertions (i), (iv) and (v)
is based on Corollary 5.12. Its assumptions hold as described in Remark 5.13:
y ∈ DEG1loc by Remark 2.19 (c), and by Lemma 6.7, y is strictly orientation pre-
serving in the sense of Definition 5.1. As already mentioned in Remark 6.2, Lusin’s
condition (N) and the fact that Ld(∂Ω) = 0 yield that y(∂Ω) has empty interior.

The assertions (iv) and (v) are actually just paraphrasing (ii) and (iii) in Corol-
lary 5.12. Here, notice that by Corollary 5.12 (iii) and the continuity of y on Ω̄ ,
y(Ry(Ω)\Ω) ⊂ y(∂Ω). The latter also implies that

y(Ω̄) = y(∂Ω) ∪̇ imloc(y;Ω) (disjoint union), (6.2)

by the final part of Corollary 5.12 for the casewhere y is continuous up to the bound-
ary. To complete the proof of (i), we draw the following additional conclusions from
Corollary 5.12:

y(Ω̄) = y(Ω)\ y(∂Ω) : As y(Ω̄) = y(Ω), it suffices to show that y(Ω) ⊂
y(Ω)\y(∂Ω). Take z ∈ y(Ω) and choose x ∈ Ω with y(x) = z. Since Ω is
open and Ω\Ry(Ω) has empty interior, there exists a sequence xk ∈ Ry(Ω) with
xk → x and, consequently, y(xk) → z = y(x). Moreover, y(xk) ∈ y(Ry(Ω)) =
imloc(y;Ω) = y(Ω)\y(∂Ω). We conclude that z = limk y(xk) ∈ y(Ω)\y(∂Ω).

y(∂Ω) = ∂( y(Ω)\ y(∂Ω)) : Since imloc(y;Ω) = y(Ω)\y(∂Ω) is open and
y(Ω̄) is closed, (6.2) implies “⊃”. Moreover, by the first part of (i) shown above,
y(∂Ω) ⊂ imloc(y;Ω) = (∂ imloc(y;Ω)) ∪ imloc(y;Ω). Together with (6.2), this
implies “⊂”.

Finally, to show (ii) and (iii), we proceed as in [3] and exploit some change-of-
variables formulas involving the degree. Assertion (ii) is a consequence of a more
general change-of-variables formula valid for y ∈ W 1,p(Ω;Rd), p > d, A ⊂⊂ Ω

open with Ld(∂ A) = 0 and f ∈ L∞(Rd),
∫

A
f (y(x)) det∇ y(x) dx =

∫

y(A)

f (z) deg(y; A; z) dz; (6.3)



Global Invertibility via Invertibility on the Boundary

see [10, Theorem 5.31] (for example). In our case, for every z ∈ y(Ω) and every
open A ⊂⊂ Ω , deg(y; A; ·) = 1 on y(A)\y(∂ A) by Theorem 5.10 (i), and y(∂ A)

is always a set of measure zero. Hence, (6.3) implies assertion (ii) for every open
A ⊂⊂ Ω with Ld(∂ A) = 0 and f ∈ L∞(Rd). The general case follows with an
approximation argument. With the help of the area formula [25],

∫

A
|det∇ y(x)| dx =

∫

y(A)

#y−1({z}) dz, (6.4)

where # denotes the counting measure, (ii) with f ≡ 1 implies (iii). �	

6.2. Improved Invertibility Exploiting Finite Distortion

Any map y in W 1,p
+ (Ω;Rd), or, more generally, in W 1,p

+,loc(Ω;Rd) is automat-
ically a map of (almost everywhere) finite distortion, with outer distortion

K O
y (x):= |∇ y(x)|d (det∇ y(x))−1.

The inner distortion of y is defined as

K I
y (x):=

∣∣∣(∇ y(x))−1
∣∣∣
d
det∇ y(x) = |cof ∇ y(x)|d (det∇ y(x))1−d .

Here, cof ∇ y denotes the cofactor matrix of ∇ y, cf. Remark 6.18. We always have
that (K O

y )d−1 ≥ cK I
y with a constant c = c(d) > 0, because |F |d−1 ≥ c |cof F |

for all F ∈ R
d×d .

The investigation of maps with finite inner or outer distortion was initiated
by [3, Theorem 2] (for p > d) and strongly influenced by [38] (in particular for
p = d). Their theory is now well developed [16].

If y ∈ W 1,d
+ (Ω;Rd), K O

y ∈ Lq(d−1)
loc with q > 1 and y is not constant, then

it is open and discrete [42], that is, y maps open sets to open sets in R
d and for

any z ∈ R
d , y−1({z}) does not have accumulation points in Ω . A slightly stronger

version of the same result was obtained in [36], for K O
y ∈ Ld−1

loc and K I
y ∈ Lq

loc
with q > 1.

This can be combined with Theorem 5.10 to generalize [16, Theorem 3.27] and
the result sketched in [16, Remark 7.6]:

Theorem 6.8. Let Ω ⊂ R
d be open, let p ≥ d and let y ∈ W 1,p

+,loc(Ω;Rd) ∩
C(Ω;Rd) ∩ DEG1loc such that for a q > 1, either K O

y ∈ Lq(d−1)
loc (Ω), or K O

y ∈
Ld−1

loc (Ω) and K I
y ∈ Lq

loc(Ω). Then

y : Ω → y(Ω) is a homeomorhpism

with inverse y−1 ∈ W 1,d
loc (y(Ω);Rd). If K O

y ∈ Ld−1(Ω), we also have that ∇ y−1 ∈
Ld(y(Ω);Rd×d).

If, in addition, Ω is bounded, y ∈ C(Ω̄;Rd) and y(∂Ω) has empty interior,
for example if y ∈ W 1,p

+ (Ω;Rd) with p > d and Ω is a Lipschitz domain, then
DEG1loc can be replaced by DEG1 above.
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Remark 6.9. As pointed out in [14, Section 3] for d = 3 (and easily extended to
any d), openness combined with invertibility almost everywhere implies invertibil-
ity everywhere. This is essentially equivalent to Theorem 6.8, although its proof is
completely different. For comparison, recall that for y in W 1,p

+ with p ≥ d, injec-
tivity almost everywhere is equivalent to the Ciarlet–Nečas condition y ∈ CNC.
We know that CNC = DEG1loc by Remark 2.19.

Proof of Theorem 6.8. Let (Ωm)m∈N be the regular inner covering of Ω from the
definition of DEG1loc. Recall that y always has a continuous representative in Ω

and satisfies Lusin’s condition (N) ([25]; see also Remark 6.4 if p = d). As a first
consequence, y(∂Ωm) has measure zero and thus empty interior for each m. By
Lemma 6.7, y is strictly orientation preserving in the sense of Definition 5.1. In
particular, y is not constant. Now let z ∈ y(Ω), whence z ∈ y(Ωm) for big enough
m. Since y is discrete by either [42, Theorem 1] or [36, Theorem 1], all connected
components of y−1({z}) consist of a single point. By Remark 5.7, this entails that
Ry(Ω) = Ω , and by Theorem 5.10 (ii) (applied with U = Ωm for arbitrary m;
see also Remark 5.8), we infer that y−1({z}) is a singleton. Hence, y : Ω →
y(Ω) ⊂ R

d is bijective, and since it is also continuous, it is a homeomorphism by
Theorem A.2. The Sobolev regularity of y−1 was shown in [16, Theorem 5.9]. �	

If we only control the inner distortion of y ∈ W 1,d
+ (Ω;Rd), similar results

can be obtained given that y is quasi-light, that is, y−1({z}) is a compact subset
of Ω for all z ∈ y(Ω). Then, K I

y ∈ L1 implies that y is either constant or open
and discrete [35]. Notice that since y is continuous, quasi-light just means that for
z ∈ y(Ω), there are no connected components of y−1({z}) touching ∂Ω . In other
words, no continuumconnected to the boundary is compressed to a point. This holds
by construction if we replace Ω by the reduced domainRy(Ω) of Lemma 5.5 (see
also Remark 5.7). As a result, we can generalize [16, Theorem 7.5] as follows:

Theorem 6.10. Let Ω ⊂ R
d be open, let p ≥ d, let y ∈ W 1,p

+,loc(Ω;Rd) ∩
C(Ω;Rd) ∩ DEG1loc with K I

y ∈ L1
loc(Ω). Then

y : Ry(Ω) → imloc(y;Ω) = y(Ry(Ω)) is a homeomorhpism

with y−1 ∈ W 1,d
loc (imloc(y;Ω);Rd). If K I

y ∈ L1(Ω), we also get that ∇ y−1 ∈
Ld(imloc(y;Ω);Rd×d).

If, in addition, Ω is bounded, y ∈ C(Ω̄;Rd) and y(∂Ω) has empty interior,
for example if y ∈ W 1,p

+ (Ω;Rd) with p > d and Ω is a Lipschitz domain, then
DEG1loc can be replaced by DEG1 above and we also know that imloc(y;Ω) =
y(Ω)\y(∂Ω) = imT (y;Ω) and Ry(Ω) = Ω\y−1(y(∂Ω)).

Remark 6.11. It is indeed possible that Ω\Ry(Ω) = ∅ [17].

Proof of Theorem 6.10. Recall that Ry(Ω) ⊂ Ω is open and y|Ry(Ω) is quasi-
light by definition of Ry(Ω) (cf. Remark 5.7), that y|Ry(Ω) is also strictly
orientation preserving in the topological sense like y (Lemma 5.15) and that
imloc(y;Ω) = y(Ry(Ω)) by Theorem 5.10 (ii) and Remark 5.8. In view of these
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facts, using [36, Theorem 1] on Ω̃:=Ry(Ω) instead of [42] on Ω , we argue anal-
ogously to the proof of Theorem 6.8 and infer that y : Ry(Ω) → imloc(y;Ω) is a
homeomorphism. For the Sobolev regularity of its inverse, first notice that formally,

K I
y (x) = ∣∣(∇ y−1)(y(x))

∣∣d
det∇ y(x). By [16, Theorem 5.2], we rigorously obtain

that y−1 ∈ W 1,d
loc (imloc(y;Ω);Rd), and ‖K I

y ‖L1(Ω) = ∥∥∇ y−1
∥∥

Ld (imloc(y;Ω);Rd×d )

by change of variables.
If p > d, y ∈ W 1,p

+ (Ω;Rd) andΩ is Lipschitz, then y satisfiesLusin’s property
(N) andLd(y(∂Ω)) = 0. Lemma 5.5 (iii) and Theorem 5.10 (iii) with A = U = Ω

provide the asserted properties of imloc(y;Ω) and Ry(Ω). �	
Remark 6.12. (Connection to light maps) Unlike the argument of [14], the proofs
of Theorem 6.8 and Theorem 6.10 do not really use that y is open (or discrete),
they use that

y−1({z}) is totally disconnected for each z ∈ R
d . (6.5)

This is obviously weaker than discreteness. In our setting for strictly orientation
preserving maps in DEG1 or DEG1loc, it also implies openness: (6.5) implies
that y is a homeomorphism by the argument in the proof of Theorem 6.8. Maps
satisfying (6.5) are called light. By the Titus-Young theorem [40, Theorem A],
strictly orientation preserving, light maps are always local (but not necessarily
global) homeomorphisms on a dense open subset of the domain. Connections to
our topological results are explained in Remark 5.9.

Remark 6.13. For maps that are local homeomorphisms everywhere, also in a
suitable neighborhood of each boundary point, invertibility on the boundary is
known to imply global invertibility [44]. This is still true if there are at most finitely
many exceptional points inside the domain (and none on the boundary) around
which local injectivity does not hold [28, Theorem 2]. The result of [44] does not
require any topological restriction on the domain like we do in Theorem 4.2.

6.3. Existence of Homeomorphic Minimizers

In this section, we present an existence result to demonstrate a typical applica-
tion of our results. No attempt is made to achieve maximally general assumptions,
and many other variants would be possible, too. In particular, there are natural
generalizations for d = 2 and d ≥ 4 instead of d = 3. The special case of con-
trolled outer distortion with deformations subject to the Ciarlet–Nečas condition,
(ii) below with G = CNC, is essentially already covered by the results of [14,
Section 3]. Combined with Remark 2.19, their approach can also be used for other
global invertibility constraints.

The model in the next theorem describes a nonlinearly elastic solid with ref-
erence configuration Ω , enclosed in a rigid box whose interior is given by Λ.
Interpenetration of matter is prevented both locally and globally, and depending on
the shapes of Ω and Λ—possibly very rough sets—this can lead to quite interest-
ing, strongly deformed optimal configurations including self-contact of the elastic
material. All contact is friction-less, but on a large scale, effectively friction-like
forces can still be caused if Ω and Λ are rough on comparatively small scales.
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Theorem 6.14. Let p ≥ d = 3, let Ω,Λ ⊂ R
d be open and bounded and suppose

we have a functional (the sum of elastic and potential energy)

E(y):=
∫

Ω

(
W (∇ y) + g · y

)
dx, E : Y → (−∞,+∞],

where the class of admissible deformations y is given by

Y :=W 1,p
+ (Ω;R3) ∩ G ∩ {

y
∣∣ y(Ω) ⊂ Λ̄

}
.

Here, G is one of the sets in {DEG1loc,CNC, INV,AIBloc,AIloc(Ω)} (a global
constraint preventing self-interpenetration). If G = AIBloc, we also require that
R
3\∂Ω has only two connected components. As to the integrand of E, we assume

that g ∈ L1(Ω;R3) (an external body force, say, gravity) and the following prop-
erties of W : R3×3 → [0,+∞] (the stored energy density of the elastic body):

W is continuous on GL+(3):=
{

F ∈ R
3×3 | det F > 0

}
; (6.6)

W (F) = +∞ if and only if F ∈ R
3×3\GL+(3); (6.7)

W (F) → +∞ as det F → 0; (6.8)

W (F) ≥ |F |p for all F ∈ GL+(3); (6.9)

W is polyconvex (cf. Remark 6.18). (6.10)

Then E attains its minimum in Y , and every minimizer y∗ ∈ Y is almost every-
where injective in Ω . More can be said if the energy controls the inner or the outer
distortion as follows:

(i) If we have in addition that for all F ∈ GL+(3),

W (F) ≥ c
|cof F |3
(det F)2

, (6.11)

with a constant c > 0, then every minimizer y∗ ∈ Y is a homeomorphism on
Ry∗(Ω) ⊂ Ω , the reduced domain of Lemma 5.5, and y∗(Ry∗(Ω)) is open in
R

d and thus a subset of Λ.
(ii) If we even have that for all F ∈ GL+(3),

W (F) ≥ c

(
|F |6

(det F)2
+ |cof F |3q

(det F)2q

)
, (6.12)

with constants q > 1 and c > 0, then every minimizer y∗ ∈ Y is a homeomor-
phism on Ω , y∗(Ω) is open and y∗(Ω) ⊂ Λ.

Remark 6.15. For example, with r > 0 and s ≥ 1,

W1(F):= |F |p + 1

(det F)r
, W2(F):= |F |p + 1

(det F)r
+ |cof F |s

and

W3(F):= |F |p + 1

(det F)r
+ |cof F |s + |F |6

(det F)2
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all satisfy (6.6)–(6.10), where we set Wi (F):= + ∞ if det F ≤ 0. They are also
frame indifferent in the sense that Wi (QF) = Wi (F) for all F ∈ GL+(3) and all
rotations Q ∈ SO(3). Moreover, (6.11) holds

– in case W = W1, if p > 6 and r ≥ 2p
p−6 , and

– in case W = W2 or W = W3 for any p ≥ 3, if r > 2 and s ≥ 3r
r−2 ,

by Young’s inequality. For W = W1 and W = W3, strict inequalities yield (6.12).

Remark 6.16. If Ω\Ry∗(Ω) = ∅, then by the results of Sect. 5, it consists of
connected sets C ⊂ Ω in such a way that for each C , C touches ∂Ω and y∗
compresses C to a point in y∗(Ω)\y∗(Ry∗(Ω)) (⊂ y∗(∂Ω), if y∗ happens to
be continuous up to the boundary). We also know that Ω\Ry∗(Ω) is small in
the sense that it has empty interior; it even has measure zero, because y∗ is almost
everywhere invertible (because any y ∈ Y automatically satisfies the Ciarlet–Nečas
condition y ∈ CNC, see Remark 2.19). For more information on the set Ry(Ω)

see Lemma 5.5, Theorem 5.10 and the Remarks 5.7 and 5.8 .

Remark 6.17. The theorem iswrittenmostly for the case p = d; if we assumed and
exploited p > d and a Lipschitz domain Ω , the results would be slightly stronger
and simpler to state, and we could also admit the constraints G = AIB (if Ω has
connected boundary), G = AI(Ω̄) or G = DEG1.

Remark 6.18. Polyconvexity as required in (6.10) means that there exists a func-
tion

h : R3×3 × R
3×3 × (0,∞) → R convex, such that

W (F) = h(F, cof F, det F) for all F ∈ GL+(3),

cf. [4]. Here, cof F denotes the cofactor matrix, that is, a matrix formed of the
determinants of all 2 × 2-submatrices of F . Usually, they are ordered and given
suitable signs so that (cof F)T F = det F , but this is irrelevant for our purposes.

Proof of Theorem 6.14. The existence of minimizers is a standard application of
the direct method. First observe that there always is y ∈ Y with E(y) < ∞, for
instance ŷ(x):=z0 + λx , where z0 ∈ Λ is chosen arbitrarily but fixed and λ > 0 is
small enough so that ŷ(Ω) ⊂ Λ, exploiting that dist (z0; ∂Λ) > 0.

By the constraint y(Ω) ⊂ Λ̄, Y is bounded in L∞. Hence, the linear force
term y �→ ∫

Ω
g · y dx is well defined, and by dominated convergence, it is also

sequentially continuous in Y , first with respect to pointwise convergence almost
everywhere and then also with respect to weak convergence in W 1,p.

Using (6.9) and the a-priori bound in L∞, it is not difficult to show the coercivity
estimate

E(y) ≥ c1 ‖y‖p
W 1,p − c2 for y ∈ W 1,p(Ω;Rd) with y(Ω) ⊂ Λ̄, (6.13)

where c1 > 0 and c2 are real constants. By arguments of [31] (or [4] if p > d = 3),

y �→ ∫
Ω

W (∇ y) dx is weakly sequ. lower semicontinuous

on W 1,p(Ω;Rd) ∩ {E < ∞}. (6.14)



S. Krömer

Here, the essential ingredients for the proof of (6.14) are the weak continuity of
y �→ det∇ y, W 1,p

+ → L1 on compact subsets of Ω , the weak continuity of

y �→ cof ∇ y, W 1,p
+ → L p/2, and the convexity of h (the polyconvexity of W ,

cf. Remark 6.18).
As a consequence of (6.13), any sequence (yk) ⊂ Y with E(yk) →

I := inf y∈Y E(y) < ∞ is bounded and has a weakly convergent subsequence in
W 1,p, say, yk ⇀ y∗. Due to (6.14), E(y∗) ≤ limk E(yk) = I . As we also have
that yk → y∗ locally uniformly (by embedding if p > d = 3, or by Remark 6.4 if
p = 3), we obtain that y∗(Ω) ⊂ Λ̄. In addition, det∇ y∗ > 0 almost everywhere by
(6.7), because E(y∗) < ∞. Hence, y∗ ∈ W 1,p

+ . Finally, y∗ ∈ G, because G ∩ W 1,p
+

is weakly sequentially closed in all cases (see Sect. 2). Altogether, y∗ ∈ Y is a
minimizer.

The remaining assertions (and some additional properties) follow from The-
orem 6.10 and Theorem 6.8, repectively. Here, recall that by Remark 2.19,
G ⊂ DEG1loc in all cases. The assumption on K I

y∗ or K O
y∗ are obtained from

(6.11) or (6.12). �	
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A The Problem of Homeomorphic Extension

When working with injective continuous maps, it is good to keep in mind the
following two well-known facts.

Lemma A.1. Let X, Z be topoogical spaces and y : X → Z continuous and
injective, and suppose that X is compact. Then y : X → y(X) is a homeomorphism,
where y(X) is endowed with the trace topology of Z.

Proof. By continuity of y, y(X) is also compact. Open sets in X and y(X), respec-
tively, are thus exactly the complements of compact sets. Since y : X → y(X) is
bijective and maps compact sets to compact sets, it therefore also maps open sets
in X to open sets in y(X). �	
The statement above does not mean that y maps opens sets in X to open sets in Z ,
because y(X) is usually not open in Z . In Rd , more can be said:

Theorem A.2. Let Ω ⊂ R
d be open, Ω = ∅, and let y : Ω → R

n be injective and
continuous. Then n ≥ d. Moreover, y(Ω) is open in R

n if and only if n = d. For
n = d, y : Ω → y(Ω) is a homeomorphism.

Proof. This is a combination of the openness (invariance of domain) and invari-
ance of dimension theorems based on the topological degree, see [10, Thm. 3.30,
Cor. 3.31 and Cor. 3.32] (for example). The last assertion is a consequence of the
others which also hold for arbitrary open subsets ofΩ , thereby proving that y maps
open subsets of Ω to open sets in Rn = R

d . �	
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A.1 Homeomorphic Extension Versus Schoenflies Extension

We are here mainly interested in homeomorphic extension for functions given on
the boundary of some domain in R

d . In the most general form, this problem reads
as follows:

Problem A.3. (Homeomorphic extension problem in R
d ) Let Ω ⊂ R

d a bounded
domain, and suppose that y : ∂Ω → R

d is continuous and injective. Is there a
homeomorphism h : Ω̄ → h(Ω̄) ⊂ R

d such that h = y on ∂Ω?

Additional assumptions on the topological nature ofΩ and ∂Ω are typically added,
as it is well-known that simple counterexamples exist when Ω is topologically
complicated. For instance, on an annulus, homeomorphic extension is impossible
if the winding numbers of y on the two boundary pieces are not the same (for
example, one clockwise and the other counterclockwise).
A close relative is the following question which is much more widely studied in
the literature:

Problem A.4. (Schoenflies extension problem) Let y : Sd−1 → Sd continuous
and injective. Is there a homeomorphism h : Sd → Sd such that h(Sd−1) =
Σd−1:=y(Sd−1), where Sd−1 ⊂ Sd is interpreted as the equator of the d-
dimensional sphere Sd ⊂ R

d+1?

The Schoenflies extension problem imposes a restriction on the topological type of
admissible domains (one of the half-spheres separated by the equator)—it must be
a topological ball—which is also commonly used for the homeomorphic extension
problem. Apart from that, the two problems are essentially equivalent.

Proposition A.5. (Schoenflies versus homeomorphic extension)
Suppose that Ω ⊂ R

d is a bounded domain such that there exists a homeomorphism
γ : Ω̄ → H̄ , where H ⊂ Sd ⊂ R

d+1 is one of the two hemispheres of Sd separated
by the “equator” Sd−1. Moreover, let y : Sd−1 → Sd continuous and injective
and let δ : Sd → R

d ∪ {∞} be a homeomorphism with δ(y(Sd−1)) ⊂ R
d , where

R
d ∪{∞} denotes the one-point compactification ofRd . Then we have the following

for ỹ:=δ ◦ y ◦ γ :

(i) If there exists Schoenflies extension h : Sd → Sd of y as in Problem A.4, then
a homeomorphic extension h̃ of ỹ as in Problem A.3 exists, too.

(ii) Conversely, if no Schoenflies extension h : Sd → Sd of y exists, a homeomor-
phic extension also fails to exist for one of the following two maps:
(a) ỹ : ∂Ω → R

d , or
(b) ŷ:=ỹ ◦ ι : ∂Ω̂ → R

d , with Ω̂ denoting the bounded connected component
of Rd\ι(∂Ω).

Here, ι : Rd ∪ {∞} → R
d ∪ {∞}, ι(x):= |x − x0|−2 (x − x0), is the inversion map

with respect to a point x0 ∈ R
d; for (ii), we choose an arbitrary but fixed x0 ∈ Ω .
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Proof. (i) �̃:=h−1 ◦ y : Sd−1 → Sd−1 is a homeomorphism of the equator Sd−1

onto itself. It has an explicit “radial” homeomorphic extension � : Sd → Sd . Using
cylindrical coordinates (x, t) ∈ Sd−1 × [−1, 1], it is given by

�
(
(1 − t2)

1
2 x, t

):=(
(1 − t2)

1
2 �̃(x), t

) ∈ Sd ⊂ R
d × R.

Using the inversion map ι with respect to a point x0 in the bounded connected
component of ỹ(∂Ω) ⊂ R

d , we now define h̃:=δ◦h◦�◦γ or h̃:=ι◦δ◦h◦�◦γ . One
of the two options satisfies ∞ /∈ h̃(Ω̄), and for this choice, h̃|Ω̄ is a homeomorphic
extension of ỹ in the sense of Problem A.3.
(ii) If a Schoenflies extension h : Sd → Sd of y does not exists, then extension
already fails in one of the two hemispheres of Sd separated by Sd−1, either H̄ =
γ (Ω̄) or Sd\H . (Otherwise, the extensions to the hemispheres can be glued to a
Schoenflies extension, after first matching their parametrization of y(Sd−1) using
the radial homeomorphic extension of the proof of (i).) Accordingly, for either ỹ or
ŷ = ỹ◦ι, where ι is takenwith respect to an x0 ∈ Ω , there exists no homeomorphism
defined on the closure ofΩ or Ω̂ , respectively,whomaps the boundary of its domain
to ỹ(∂Ω) = ŷ(∂Ω̂). In particular, either ỹ or ŷ has no homeomorphic extension to
its domain in the sense of Problem A.3. �	

A. 2 Known Results and Counterexamples

For d = 2, the answer to Problem A.4 is affirmative, given by the classical Schoen-
flies Theorem. Extension theorems for more regular classes of invertible functions
are also known in this case, for instance bi-Lipschitz extensions [9,41]. Recently,
an extension result (also) valid in the class of Sobolev homeomorphisms has been
established in [19, Theorem 4 and Corollary 5]. This is based on p-harmonic exten-
sion and even smooth in Ω .
For d ≥ 3, the situation is significantly more complicated. In general, a Schoen-
flies extension can fail to exist, for instance in case of Alexander’s horned sphere
[1]. However, the result can be recovered for d ≥ 3 if the embedded sphere
Σd−1:=y(Sd−1) is locally flat:

Theorem A.6. (Generalized Schoenflies Theorem [7, Theorem 4])
Let Σd−1 ⊂ Sd be a homeomorphic embedding of Sd−1 which is locally flat in the
following sense:

For each x0 ∈ Σd−1, there exists a neighborhood V of x0 in Sd and

a homeomorphism ζ : V → ζ(V ) ⊂ Sd s.t. ζ(V ∩ Σd−1) = ζ(V ) ∩ Sd−1,

where Sd−1 is interpreted as the equator of Sd . Then Σd−1 is flat, that is, there is
a homeomorphism h : Sd → Sd such that h(Σd−1) = Sd−1.

There are also variants of the Generalized Schoenflies Theorem that require higher
regularity of Σd−1 instead of assuming a locally flat embedding. In particular, this
is possible for the piecewise affine (polyhedral) [2] or diffeomorphic [27] case.
As pointed out in [24, Example 3.10 (5)] for d = 3, bi-Lipschitz regularity is not
enough.
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Remark A.7. (Homeomorphic extension may fail for d ≥ 3) In view of Propo-
sition A.5, [24, Example 3.10 (5)] also entails that for d = 3, homeomorphic
extension is in general impossible even if the given boundary homeomorphism
y : ∂Ω → Σd−1:=y(∂Ω) is bi-Lipschitz.

Remark A.8. The example of [24] is based on the Fox-Artin arc [11, Example
1.1], a bi-Lipschitz embedding of a compact interval into R

3 whose image has
a complement which is not simply connected. By thickening it, surrounding the
original interval by a domain consisting of two thin cones back-to-back with tips at
the two end points of the interval, the self-similar construction yields a bi-Lipschitz
mapping of the domain boundary onto a surface inR3. This surface is a topological
2-sphere, and from the Fox-Artin arc, it inherits that the unbounded component of
its complement is not simply connected. In particular, a Schoenflies extension (after
identifyingR3∪{∞}with S3) is impossible because its existence would imply that
both halves of S3 separated by the surface are topological 3-balls which are simply
connected.

On the other hand, if we look for a solution of Problem A.4 when the embedding
of the sphere is known to be locally flat with higher regularity given in the whole
neighborhood of its imageΣd−1, then this regularity sometimes can be carried over
to a suitable extension. In particular, this is possible in the bi-Lipschitz case [24,
Theorem 7.7], or for the second order bi-Sobolev homeomorphisms where both the
function and its inverse are inW 2,p with 1 ≤ p < d [13].As far as I know, there is no
comparable result for bi-Sobolev homeomorphisms in W 1,p (yet?), only the theory
for maps with finite distortion [16] which is conceptually closer to regularity theory
than to extension results. In the diffeomorphic category, extensions starting from
locally flat embeddings face another obstacle in higher dimensions, the possible
existence of exotic spheres, for example for d = 8 (7-dimensional spheres) [29,
Theorem 3.4].

6.4. Homeomorphic Extension for C1 Functions on Lipschitz Domains

As shown in Proposition A.5, a solution to Problem A.4 can be used to build
homeomorphic extensions of maps y|∂Ω , at least if Ω is homeomorphic to the
closed unit ball. A more practical application in the same spirit is given below,
using Theorem A.6 to obtain a homeomorphic extension of a C1-deformation on
a Lipschitz domain which is invertible on the boundary. Despite the similarity, it
does not directly follow from the Schoenflies extension for a C1 map outlined in
[27, p.11], because we would first have to transform the given Lipschitz domain to
the unit ball. This is possible, but the transformation is only bi-Lipschitz and we
would lose the crucial C1 regularity (cf. Remark A.7).

Theorem A.9. Suppose that Ω ⊂ R
d is a Lipschitz domain such that Ω̄ is home-

omorphic to the closed unit ball. Moreover, let y ∈ C1(Ω̄;Rd) such that y|∂Ω is
injective and det∇ y = 0 on ∂Ω . Then y|∂Ω admits a homeomorphic extension to
Ω̄ .



S. Krömer

Proof. The proof is based on Theorem A.6 and Proposition A.5 (i). To apply the
theorem,we identify Sd with the one-point compactificationRd ∪{∞} ofRd . In this
sense, Rd ⊂ Sd (homeomorphically embedded), and y maps Ω̄ to R

d ⊂ Sd , and
Σd−1:=y(∂Ω) is a homeomorphic embedding of a topological (d−1)-dimensional
sphere into Rd ⊂ Sd . To see that this embedding is also locally flat in the sense of
Theorem A.6, it suffices to define local bi-Lipschitz extensions of y ∈ C1(Ω̄;Rd)

in a neighborhood of each boundary point x0 ∈ ∂Ω . Here, notice that ∂Ω is locally
the graph of a Lipschitz function. This implies that ∂Ω is locally flat, and we may
therefore assume that the homeomorphism mapping Ω to the unit ball is defined
on a whole neighborhood of Ω̄ .
Since ∂Ω is Lipschitz, we can choose a cylidrical neigborhood of the form
Cε(x0):=Dε(x0) + (−ε, ε)ν ⊂ R

d with a unit vector ν = ν(x0) ∈ R
d and a

(d − 1)-dimensional disc Dε(x0) of radius ε, centered at x0 and perpendicular
to ν. For ε > 0 small enough and an appropriate choice of ν, ∂Ω ∩ Cε(x0) can
be represented as the graph of a Lipschitz function g : Dε(x0) → (−ε, ε), such
that Ω ∩ Cε(x0) = {

x ′ + tν
∣∣ t < g(x ′)

}
. We can now extend y|∂Ω to a function

ŷ : Cε(x0) → R
d by setting

ŷ(x ′ + tν):=y(x ′ + g(x ′)ν) + (t − g(x ′))Dy(x0)ν.

for x ′ ∈ Dε(x0) and t ∈ (−ε, ε). Close to x0, this extension divides Cε(x0) into
surfaces of the form ∂Ω + sν (parametrized by x ′ +g(x ′) ∈ ∂Ω and s = t −g(x ′))
and maps each such surface onto y(∂Ω) + s Dy(x0)ν, a shifted copy of y(∂Ω).
To see that ŷ is bi-Lipschitz in a neighborhood of x0, the key observation is the
following: Just like ν and ∂Ω , Dy(x0)ν and the surface y(∂Ω) always form an angle
bounded away from zero as long as we remain close enough to x0, because Dy is
continuous and Dy(x0) is invertible. As an immediate consequence, ∂Ω → R

d ,
σ �→ y(σ ) + s Dy(x0) is injective near x0 for each s, and in a small enough
neighborhood V of y(x0) in Rd , we also have that

V ∩ [y(∂Ω) + s Dy(x0)ν] ∩ [y(∂Ω) + s2Dy(x0)ν] = ∅ for s1 = s2.

Hence, ŷ is injective near x0. Further details are omitted.
Theorem A.6 now gives us a Schoenfliess extension of Σd−1:=y(∂Ω) ⊂ R

d ∪
{∞} ∼= Sd , and by PropositionA.5 (i), this implies the existence of a homeomorphic
extension of y|∂Ω to Ω̄ . �	

B Counterexamples for Domains with Holes

The following examples illustrate that the assumption that Rd\∂Ω has only two
connected components cannot be dropped in Theorem 4.2. For simplicity, they
are all constructed for d = 2, but they have straightforward equivalents in higher
dimensions, still using domains with holes. In particular, it does not really matter
whetherΩ is simply connected or not. In both examples, the explicit values asserted
for the degree are always taken at a suitable regular value of y with just one pre-
image x0 ∈ Ω , and are therefore given as the sign of det∇ y(x0). Geometric
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intuition provides a good heuristic, observing whether or not the local deformation
is orientation-preserving. If yes, the sign is positive, otherwise negative.

Example B.1. Take the annulus Ω:=B2(0)\B̄1(0) ⊂ R
2 and for x ∈ Ω consider

y ∈ W 1,∞(Ω;R2),

y(x):=2
|x | − 1

|x | x + 2 − |x |
|x | (x + (3, 0)) .

As defined, y keeps the outer boundary ∂ B2(0) fixed while translating the inner
boundary onto y1(∂ B1(0)) = (3, 0) + ∂ B1(0). In particular, y|∂Ω is invertible,
but it maps ∂Ω to two circles that lie outside of each other. Now, B = B2(0) ∪
[(3, 0) + B1(0)] and σ changes sign; more precisely, deg(y;Ω; (0, 0)) = 1 while
deg(y;Ω; (3, 0)) = −1.

It is also not enough to have that ∂Ω is connected:

Example B.2. Take a fixed unit vector e ⊂ R
2 and truncated open cones of the form

V̂ (α, r):=O(r, α) ∪
{

x ∈ R
2 | x · e > (1 − α) |x | , |x | < r

}
, α, r > 0,

where O(r, α) ⊂ R
s denotes the unique open ball which touches the surface of

the unbounded cone tangentially at |x | = r . Consequently, Vα,r has a boundary of
class C1 everywhere except at its tip in the origin. We create a domain by removing
a smaller cone from a bigger one sharing the same tip:

Ω:=V2\V̄1, where Vs :=V̂
( s
3 , s

)
.

As a first step, we now consider amap y ∈ W 1,∞(Ω;R2)which keeps the outer part
of the boundary fixed while flipping the inner part outside, with affine interpolation
on suitable rays in between. For its explicit definition, the flip is realized by the
reflection R across {x · e = 0}, Rx :=x − 2(x · e)e, and we use the (nonlinear)
projections Q(x) and P(x) onto the inner and the outer boundary, respectively,
along lines perpendicular to the inner boundary ∂V1: For all x ∈ Ω\{0},

Q(x) ∈ ∂V1, P(x) ∈ ∂V2 and P(x) − Q(x) ⊥ ∂V1 at Q(x).

Notice that Q, P : Ω → R
2 are Lipschitz and thus in W 1,∞ (even C1 away from

x = 0), and both converge to the origin as |x | → 0, x ∈ Ω . As illustrated in Fig. 3,
we now can define

y(x):= |x − Q(x)|
|P(x) − Q(x)| P(x) + |P(x) − x |

|P(x) − Q(x)| R[Q(x)]

=
(
1 + |P(x) − x |

|P(x) − Q(x)|
) (

R[Q(x)] − P(x)
)
.

The latter representation shows that y is Lipschitz also at the origin.
This construction does not yet contradict the assertion of Theorem 4.2, because
as a matter of fact, deg(y;Ω; ·) = 1 on both components of B(Rd\y(∂Ω)) =
V2∪(−V1). In any case,with a second deformation that squeezes the line orthogonal
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Ω

0

Q(x)
R[Q(x)]

e

P (x)

x
y(x)

Fig. 3. Ω and the definition of y in Example B.2

to e in the image to the origin and simultaneously reflects the half-space {x · e < 0}
containing −V1 across the line in direction e, we can make the degree change sign
at the value −e ∈ −V1 while keeping it fixed at e ∈ V2. More precisely, for

ŷ:=F ◦ y with F(z):=(z · e)e + (z · e)(z · e⊥)e⊥,

we have that e,−e ∈ B(Rd\ŷ(∂Ω)). Moreover, F keeps the line in direction e
including those twopoints fixed, and they are regular values for both F and y.Hence,
deg(ŷ;Ω; e) = + deg(y;Ω; e) = 1 and deg(ŷ;Ω;−e) = − deg(y;Ω;−e) =
−1, because det∇F(−e) < 0 < det∇F(e).

Remark B.3. Startingwith a domainwith several holes, a similar construction as in
Example B.1 with a subsequent orientation-preserving deformation can also cause
the images of holes to be stacked inside of each other. In fact, this way, with |n|
holes for any given n ∈ Z, we can get a deformation y invertible on ∂Ω , such
that deg(y;Ω; ·) attains the value n somewhere. This also works in context of
Example B.2 if we have several small conical holes that all meet at the tip of the
big outer cone.
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