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Abstract The frame-indifferent viscoelasticity in Kelvin-Voigt rheology at large strains is
formulated in the reference configuration (i.e., using the Lagrangian approach) considering
also the possible self-contact in the actual deformed configuration. Using the concept of
2nd-grade nonsimple materials, existence of certain weak solutions which are a.e. injective
is shown by converging an approximate solution obtained by the implicit time discretisation.

Keywords Kelvin-Voigt material · Frame indifference · Non-selfinterpenetration · Implicit
time discretisation · Lagrangian description · Pullback
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1 Introduction

Nonlinear elasticity and viscoelasticity is a vital part of the continuum mechanics of solids
and still faces many open fundamental problems even after intensive scrutiny within past
many decades. One of such problem is the possibility of non-physical self-interpenetration
and analytically supported methods to prevent it. The problem is difficult because of an inter-
action of two configurations: the reference one (ultimately needed for analysis of problems
in solid mechanics at large strains) and the actual one (ultimately need for determination the
possible time-varying self-contact boundary region).

So far, besides merely static situations, only rate-independent evolution of some internal
variables based on (not always very realistic) concept of instantaneous global minimization
and energetic solutions, possessing a good variational structure and thus allowing incorpo-
ration of the Ciarlet-Nečas condition [4], has been treated in [10]. In the viscoelasticity, one
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cannot rely purely on a variational structure but should rather work in terms of partial dif-
ferential equations. As emphasized in [8, 9], “the theory of viscoelasticity at finite strain is
notoriously difficult and” that time it seemed “that the present mathematical tools are not suf-
ficient to provide sufficiently strong solutions in the multidimensional, truly geometrically
invariant case”. Since then, the quasistatic viscoelasticity has been treated in [11] and in the
dynamical variant in [7, Sect. 9.3], but without globally ruling out self-interpenetration.

In the case of self-contact, instead of differential equations, it is natural to describe static
critical points by variational inequalities. This was developed for a purely static situation in
[16] for non-simple materials involving a higher order term in the energy. For the case of
a static obstacle problem neglecting possible self-contact and self-interpenetration see also
[20].

The goal of this article is to merge the results of A.Z. Palmer and T.J. Healey [16] with
the evolution viscoelastic model from [11], using a generalization of Korn’s inequality de-
veloped by P. Neff and W. Pompe [13, 18], used already before towards applications in
viscoelasticity [11] or elastoplasticity [14, 15]. By this, we obtain first results for viscoelas-
tic model allowing a self-contact while respecting non-self-interpenetration. Let us point out
that for a long time, this was an open problem and largely ignored in engineering numerical
calculations which admitted interpenetration, relying solely on the fact that for particular
scenarios, computational simulations are often not likely to go into such non-physical situ-
ations.

The plan of the article is following: In Sect. 2, we formulate the problem in terms of
the classical partial differential equations, together with its weak form. Then, in Sect. 3,
we employ a time discretisation, prove basic a-priori estimates and, by convergence for
time-step approaching zero, prove existence of a weak solution. At this point, local non-
selfinterpenetration and avoidance of singularities while keeping the deformation gradient
“uniformly” invertible everywhere is granted by using the so-called 2nd-grade non-simple
(i.e., involving strain-gradient) material concept and the results from [6].

2 Quasistatic Viscoelasticity

Strain-gradient theories describe materials referred to as nonsimple, or also multipolar or
complex. This concept has been introduced a long time ago, cf. [22, 23] or also, e.g., [3, 5,
17, 21, 24].

We will use the Lagrangian approach and formulate the model in the reference (fixed)
domain Ω ⊂ R

d with a smooth boundary Γ := ∂Ω , d ≥ 2. When time comes into play,
we also use the corresponding space-time domain Q := Ω × I and (parabolic) boundary
� := Ω × I , with the time interval I := (0, T ) for a fixed but arbitrary T > 0.

To introduce our model in a broader context, we may define the total free energy and the
total dissipation potential

Ψ (y) =

⎧
⎪⎨

⎪⎩

∫

Ω

ϕ(∇y) + H (∇2y)dx if
∫

Ω

det∇y dx ≤ measy(Ω),

+ ∞ otherwise

(2.1a)

and

R(y,
.
y) =

∫

Ω

ζ(∇y,∇ .
y)dx, (2.1b)
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respectively. The condition
∫

Ω
det∇y dx ≤ measy(Ω) involved in (2.1a) is called the

Ciarlet-Nečas condition [4]. Together with det∇y ≥ 0 on Ω as a property which can (and
will) be ensured by the strain energy ϕ, it guarantees global non-interpenetration.

The mechanical evolution part can then be viewed as an abstract gradient flow

∂ .
yR(y,

.
y) + Ψ ′(y) = F(t) with

〈
F, y

〉 =
∫

Ω

f (x, t)·y(x)dx, (2.2)

cf. also [8, 25] for the case without the Ciarlet-Nečas condition. The sum of the conservative
and the dissipative parts corresponds to the Kelvin-Voigt rheological model in the quasistatic
variant (neglecting inertia). Here and henceforth, the notation “∂” is used for partial deriva-
tives (here functional, or later in Euclidean spaces), while (·)′ is used for the derivative of
functions of only one variable.

The generalized gradient Ψ ′ is to be understood rather formally due to the integral
Ciarlet-Nečas constraint. This constraint gives rise to the reaction force due to a possible
self-contact. The contact zone is time evolving and not a-priori known, which is in some
sense a generalization of a so-called Hertz contact at small strains. At large strains, one
must distinguish between the actual deforming configuration which is relevant for the con-
tact and the reference configuration which is to be used for analysis and for formulation of
the boundary conditions. Here we use the results of Palmer and Healey that describe the
boundary forces that arise due to the constraint in a static situation [16].

Writing (2.2) locally in the classical formulation, one arrives at the nonlinear parabolic
4th-order partial differential equation expressing quasistatic momentum equilibrium,

divσ + g = 0 with σ = σvi + σel − divhel, (2.3)

where the viscous stress is σvi = σvi(F,
.
F) and the elastic stress is σel = σel(F ) with F a

placeholder for the deformation gradient ∇y and
.
F a placeholder for its time derivative,

while hel is a so-called hyperstress arising from the 2nd-grade nonsimple-material concept,
cf., e.g., [17, 21, 22]. In view of the local potentials used in (2.2), we have

σvi(F,
.
F) = ∂ .

F
ζ(F,

.
F), σel(F ) = ϕ′(F ), and hel(G) = H ′(G), (2.4)

where G ∈R
d×d×d is a placeholder for ∇F , i.e., for ∇2y.

An important physical requirement is static and dynamic frame indifference. For the
elastic stresses, static frame indifference means that

σel(RF) = R σel(F ) and hel(RG) = Rhel(G) (2.5a)

for all R ∈ SO(d), F and G. For the viscous stresses, dynamic frame indifference means
that

σvi(RF,
.
RF + R

.
F) = R σvi(F,

.
F) (2.5b)

for all smoothly time-varying R : t 	→ R(t) ∈ SO(d) and F : t 	→ F(t) ∈ GL+(d), cf. [1].
Note that R may depend on t but not on x ∈ Ω , since frame-indifference relates to superim-
posing time-dependent rigid-body motions.

In terms of the thermodynamic potentials ζ , ϕ, and H , these frame indifferences read as

ϕ(RF) = ϕ(F ), H (RG) = H (G), and (2.6a)
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ζ(RF; (RF)
.
) = ζ(RF; .

RF+R
.
F) = ζ(F ; .

F) (2.6b)

for R, F and G as above.
As to ζ , the simplest possible choice with such a frame indifference leads to a viscosity

σvi = ∂ .
F
ζ which is linear in

.
F , while its associated potential is quadratic:

ζ(F ; .
F) := 1

2
D̂(C)

.
C: .C where C := F �F and

.
C := .

F�F + F� .
F . (2.7)

Notice that frame indifference in (2.7) is built in by using a potential which only depends

on the right Cauchy-Green tensor C and its formal time derivative
.
C. To avoid unnecessary

technicalities, we adopt this kind of viscosity term for the rest of the paper. Although the
material viscosity is linear as a consequence of (2.7), the geometrical nonlinearity arising

from large strains is still a vital part of the problem since σvi(F,
.
F) depends on F , too.

Altogether, denoting D(F ) := D̂(F�F), we arrive at the parabolic problem

div
(
σvi(∇y,∇ .

y) + σel(∇y) − divH ′(∇2y)
) + f = 0 (2.8)

with σvi(F,
.
F): = 2FD(F )(F� .

F+ .
F�F)

and σel(F ) = ϕ′(F ) ,

on Q.
We complete (2.8) by some boundary conditions. For simplicity, we only consider a

mechanically fixed part ΓD, undeformed and independent of time (i.e., identity):

y(x) = x (identity) on ΓD, (2.9a)

(
σvi(∇y,∇ .

y) + σel(∇y)
)�n − divS(H

′(∇2y)�n) = s (a reaction force) on ΓN, (2.9b)

H ′(∇2y):(�n ⊗ �n) = 0 on Γ, (2.9c)

where Γ = ∂Ω , ΓN = Γ \ ΓD and �n is the outward pointing normal vector. Moreover, “divS”
in (2.9b) denotes the surface divergence defined as divS(·) = tr

(∇S(·)
)
, where tr(·) denotes

the trace and ∇S denotes the surface gradient given by ∇Sv = (I − �n⊗�n)∇v = ∇v − ∂v
∂ �n �n.

Note that for equilibria, (2.9b) and (2.9c) reduce to the natural boundary conditions comple-
menting the Dirichlet condition (2.9a).

The energetics of the system (2.8), (2.9a)–(2.9c) can be revealed by testing (2.8) by.
y, and using the boundary conditions after integration over Ω and using Green’s formula
twice together with another (d−1)-dimensional Green formula over Γ for (2.8). The last
mentioned technique is related with the concept of nonsimple materials; for the details about
how the boundary conditions are handled see, e.g., [19, Sect. 2.4.4]. This test of (2.8) gives
the mechanical energy balance:

∫

Ω

2ζ(∇y,∇ .
y)

︸ ︷︷ ︸
dissipation

rate

+ σel(∇y):∇ .
y

︸ ︷︷ ︸
mechanical

power

dx + d

dt

∫

Ω

H (∇2y)
︸ ︷︷ ︸

“nonsimple” part of
the stored energy

dx =
∫

Ω

f · .y
︸ ︷︷ ︸

power of the
bulk force

dx . (2.10)

In what follows, we will use the (standard) notation for the Lebesgue Lp-spaces and
Wk,p for Sobolev spaces whose k-th distributional derivatives are in Lp-spaces and the
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abbreviation Hk = Wk,2. The notation W
1,p

D will indicate the closed subspace of W 1,p

with zero traces on ΓD. The Banach space of continuous functions on a compact set will
be denoted as C(·), while their dual as Meas(·) being the space of finite Radon mea-
sures; if scalar-valued, the subset of non-negative measures will be denoted by Meas+(·).
Moreover, we will use the standard notation p′ = p/(p−1). In the vectorial case, we will
write Lp(Ω;Rn) ∼= Lp(Ω)n and W 1,p(Ω;Rn) ∼= W 1,p(Ω)n. For the fixed time interval
I = [0, T ], we denote by Lp(I ;X) the standard Bochner space of Bochner-measurable map-
pings I → X with X a Banach space whose norm is in Lp(I). Also, Wk,p(I ;X) denotes
the Banach space of mappings from Lp(I ;X) whose k-th distributional derivative in time is
also in Lp(I ;X). The dual space to X will be denoted by X∗. Moreover, Cw(I ;X) denotes
the Banach space of weakly continuous functions I → X, and L∞

w (I ;X) denotes the Ba-
nach space of essentially bounded, weakly measurable functions I → X. The scalar product
between vectors, matrices, or 3rd-order tensors will be denoted by “ · ”, “ : ”, or “

... ”, respec-
tively. Finally, in what follows, K denotes a positive, possibly large constant.

We consider an initial-value problem, imposing the initial conditions

y(0, ·) = y0 on Ω. (2.11)

Definition 2.1 (Weak solution) The couple (y,s) of a displacement field y : Q → R
d and

a reaction traction s as a distribution ΣN → R
d is called a weak solution of the constrained

initial-boundary-value problem (2.8), (2.9a)–(2.9c), (2.11) if the following three conditions
are satisfied:

(i) (y,s) ∈ Cw(I ;W 2,p(Ω;Rd))×L2(I ;W 2−1/p,p(ΓN;Rd)∗) with ∇ .
y ∈ L2(Q;Rd×d) and

with minQ det∇y > 0 and y|ΣD = identity, and the integral identity

∫

Q

D(∇y)(∇ .
y�∇y+∇y�∇ .

y):(∇y�∇z + ∇z�∇y) + ϕ′(∇y):∇z

+ H ′(∇2y)
...∇2z dxdt =

∫

Q

f ·z dxdt + 〈
s, z|ΣN

〉
(2.12a)

is satisfied for all smooth z : Q →R
d with z = 0 on ΣD together with y(0, ·) = y0.

(ii) For a.e. t ∈ I , y(t, ·) satisfies the Ciarlet-Nečas condition, i.e.,
∫

Ω

det∇y(t, x)dx ≤ measy(t,Ω). (2.12b)

(iii) The support of s is contained in the part of ΣN which, after deformation, is in self-
contact:

〈
s(t, ·), z〉 = 0 for a.e. t ∈ I and every z ∈ W 2−1/p,p(ΓN;Rd) vanishing on St ,

(2.12c)

where the self-contact set at time t given by

St := {x ∈ ΓN | ∃x̃ ∈ Ω \ {x} : y(t, x) = y(t, x̃)}.

Remark 2.2 (The role of s) The constraint (2.12b), effectively ruling out self-interpenetra-
tion, is also built into our definition (2.1a) of the total free energy � . The reaction force s
has the role of a Lagrange multiplier which only appears at the “boundary” of this constraint,
i.e., when there is self-contact.
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Remark 2.3 (Frame indifference and more general viscosity terms) Even in the case when
ζ is not quadratic, the frame indifferences (2.6a), (2.6b) imply (cf. [2, 8]) the existence of
reduced potentials ϕ̂, ζ̂ , and Ĥ such that

ζ(F,
.
F) = ζ̂ (C,

.
C), ϕ(F ) = ϕ̂(C), and H (G) = Ĥ (B) (2.13)

where B = G�· G ∈ R
(d×d)×(d×d), and C ∈R

d×d
sym is the right Cauchy-Green tensor with time

derivative
.
C as in (2.7). More specifically, denoting G = [Gαij ] the placeholder for ∂

∂xj
Fαi

with Fαi the placeholder for ∂
∂xi

yα , the exact meaning is [G� · G]ijkl := ∑d

α=1 Gαij Gαkl and

[F�F ]ij := ∑d

α=1 FαiFαj . The ansatz (2.13) also means that

σel = 2F∂Cϕ̂(F�F), hel(G) = 2G∂BĤ (G�· G) = 2G∂BĤ (B), (2.14a)

σvi(F,
.
F) = 2F∂ .

C
ζ̂ (F�F,

.
F�F+F� .

F) = 2F∂ .
C
ζ̂ (C,

.
C). (2.14b)

Furthermore, the specific dissipation rate can easily be identified in terms of ζ̂ as

ξ(F,
.
F) = σvi(F,

.
F): .F = 2F∂ .

C
ζ̂ (F�F,

.
F�F+F� .

F): .F
= ∂ .

C
ζ̂ (F�F,

.
F�F+F� .

F):( .F�F+F� .
F). (2.15)

For our choice (2.7), we thus have ξ(F,
.
F) = D̂(C)

.
C: .C = 2ζ(F ; .

F).

3 Analysis by Time Discretisation

Let us summarize the assumptions we impose on the data:

∃p > d, s > 1, q ≥ pd/(p−d) ∃α,K, ε > 0 :
ϕ : GL+(d) → R

+ continuously differentiable, ∀F ∈ GL+(d) :
ϕ(F ) ≥ ε|F |s + ε/(detF)q, (3.1a)

H :Rd×d×d →R
+convex, continuously differentiable, ∀G,G1,G2 ∈ R

d×d×d :
ε|G|p ≤ H (G) ≤ K(1+|G|p), |H ′(G)| ≤ K(1+|G|p−1), (3.1b)

α|G1 − G2|p ≤ [H ′(G1) − H ′(G2)] ...(G1 − G2), (3.1c)

ζ(F,
.
F) = 1

2D(F )(F� .
F + .

F�F) : (F� .
F + .

F�F) with D(F ) = D̂(F�F) (cf. (2.7)),

C 	→ D̂(C) continuous and bounded, ∀C,
.
C ∈R

d×d
sym :

D̂(C) :Rd×d
sym →R

d×d
sym is linear and symmetric, (3.1d)

D̂(C)
.
C : .

C ≥ α| .C|2, (3.1e)

f ∈H 1(I ;L2(Ω;Rd)), (3.1f)
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y0 ∈ W 2,p(Ω;Rd), det(∇y0) ≥ ε, y0|ΓD = identity, (3.1g)

where GL+(d) denotes the set of matrices in R
d×d with positive determinant.

The balance of the mechanical energy (2.10) can be written in the more specific form

∫

Ω

ζ(∇y,∇ .
y)

︸ ︷︷ ︸
dissipation

rate

dx + d

dt

∫

Ω

ϕ(∇y) + H (∇2y)
︸ ︷︷ ︸

stored
energy

dx =
∫

Ω

f ·.y
︸︷︷︸

power of
bulk load

dx . (3.2)

Our main result is the following:

Theorem 3.1 (Existence of weak solutions) Let (3.1a)–(3.1g) hold. Then there exists a weak
solution to the constrained initial-boundary-value problem (2.8), (2.9a)–(2.9c), (2.11) in the
sense of Definition 2.1.

Proof As we have neglected inertial effects, we can use time discretisation. We consider a
time step τ > 0 such that T/τ is integer, and an equidistant partition of the time interval
I = [0, T ]. Thus the regularized system (2.8), (2.9a)–(2.9c) after this discretisation takes the
form

− div

(

σvi

(
∇yk−1

τ ,∇ yk
τ −yk−1

τ

τ

)
+ σel(∇yk

τ )

− divH ′(∇2yk
τ )

)

= f k
τ := 1

τ

∫ kτ

(k−1)τ

f (t)dt on Ω, (3.3a)

(

σvi

(
∇yk−1

τ ,∇ yk
τ −yk−1

τ

τ

)
+ σel(∇yk

τ )

)

�n − divS(H
′(∇2yk

τ )�n) = sk
τ on ΓN, (3.3b)

yk
τ = identity on ΓD, H ′(∇2yk

τ ):(�n ⊗ �n) = 0 on Γ, (3.3c)

which is to be solved recursively for k = 1, ..., T /τ , starting with y0
τ = y0.

This boundary-value problem (in its suitable weak formulation) has a variational struc-
ture. More specifically, a weak solution can be obtained from the problem:

minimize
∫

Ω

ϕ(∇y) + H (∇2y) + τζ
(
∇yk−1

τ ,
∇y−∇yk−1

τ

τ

)
− f k

τ · y dx

subject to measy(Ω) ≥
∫

Ω

det∇y dx , y = 0 on ΓD, y ∈ W 2,p(Ω;Rd) .

⎫
⎪⎪⎬

⎪⎪⎭

(3.4)

By the standard direct-method arguments, this problem has a solution which we will denote
as yk

τ .
Comparing the value of the functional in the first line of (3.4) at y = yk

τ with its value
at y = yk−1

τ which must be bigger of equal, and summing it for k = 1, ...,K , we obtain the
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discrete energy imbalance for arbitrary K ≤ T/τ :

∫

Ω

ϕ(∇yK
τ ) + H (∇2yK

τ )dx + τ

K∑

k=1

∫

Ω

ζ
(
∇yk−1

τ ,∇ yk
τ −yk−1

τ

τ

)
dx

≤ τ

K∑

k=1

∫

Ω

f k
τ · yk

τ −yk−1
τ

τ
dx +

∫

Ω

ϕ(∇y0) + H (∇2y0)dx.

=
∫

Ω

f K
τ · yK

τ dx − τ

K∑

k=1

∫

Ω

yk−1
τ · f k

τ −f k−1
τ

τ
dx +

∫

Ω

ϕ(∇y0) + H (∇2y0) − f 0
τ · y0 dx

≤ C‖f ‖H 1(I ;L2(Ω;Rn)) sup
0≤k≤T/τ

‖yk
τ ‖L2(Ω;Rn) +

∫

Ω

ϕ(∇y0) + H (∇2y0) − f 0
τ · y0 dx .

(3.5)

Considering {yk
τ }k=0,...,T /τ , we introduce a notation for the piecewise-constant and the

piecewise affine interpolants defined respectively by

yτ (t) = yk
τ , y

τ
(t) = yk−1

τ , and (3.6a)

yτ (t) = t − (k−1)τ

τ
yk

τ + kτ − t

τ
yk−1

τ for (k−1)τ < t ≤ kτ. (3.6b)

We will also use the notation σ τ and f τ with analogous meaning.
Since ζ ≥ 0, taking the supremum over K in (3.5) and using the Poincaré inequality

based on the Dirichlet condition and the coercivity (3.1b) and (3.1a) of H and ϕ, respec-
tively, we obtain the a-priori estimate

‖yτ‖L∞(I ;W2,p(Ω;Rd )) ≤ C , (3.7a)

with some constant C = C(I,f, y0,Ω,ΓD,p, s, d) > 0. Using [6], from (3.7a) and (3.1a) we
can also deduce that det∇yτ > 0 and even that

∥
∥
∥

1

det∇yτ

∥
∥
∥

L∞(Q)
≤ C. (3.7b)

In addition, by a variant of Korn’s inequality [18] (cf. (3.8) below) and (3.7a), we can also
exploit the coercivity (3.1e) of ζ in (3.5), which gives that

‖∇ .
yτ‖L2(Q;Rd×d ) ≤ C . (3.7c)

More precisely, for the proof of (3.7c) we used the following generalized Korn inequality
proved by W. Pompe [18], generalizing earlier results by P. Neff [13]:

‖∇ .
yτ‖L2(Q;Rd×d ) ≤ C‖F∇ .

yτ + (∇ .
yτ )

�F�‖L2(Q;Rd×d ), (3.8)

for a field F ∈ C(Ω;Rd×d) with min
Ω

det F > 0, here applied in a further generalized form
with F := (∇yτ )

�, which is always contained in a fixed compact subset of the admissible
fields F due to the uniform bounds (3.7a) and (3.7b).

By the results from [16] applied to (3.4), we can claim that yk
τ ∈ W 2,p(Ω;Rd) satisfies

also the identity
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∫

Ω

D(∇yk−1
τ )([∇ .

yk
τ ]�∇yk−1

τ +[∇yk−1
τ ]�∇ .

yk
τ ):([∇yk−1

τ ]�∇z + [∇z]�∇yk−1
τ ) + ϕ′(∇yk

τ ):∇z

+ H ′(∇2yk
τ )

...∇2z dx =
∫

Ω

f k
τ ·z dx +

∫

ΓN

(∇yk
τ )

−��n·z dσ k
τ (3.9)

for all z ∈ W 2,p(Ω;Rd) with z|ΓD
= 0 and with some scalar-valued non-negative measure

σ k
τ ∈ Meas+(ΓN). Here, note that to apply [16], we have temporarily interpreted the ζ -term

as absorbed into the elastic energy density ϕ with τ > 0 and ∇yk−1
τ ∈ C(Ω;Rd×d) fixed;

this possibly breaks frame indifference which is assumed but not exploited in [16]. The
expression sk

τ := (∇yk
τ |ΓN

)−��nσ k
τ occurring in the last integral was obtained in [16]. It is in

the position of a traction in direction of the outer normal in the actual deformed configuration
which (up to a positive scalar factor) is given by (∇yk

τ |ΓN
)−��n. Also notice that both ∇yk

τ

and its inverse (∇yk
τ )

−1 (by (3.7b)) are uniformly bounded and (even Hölder) continuous
on the closure of Ω , and so are their traces on ΓN. In particular, the traction σ k

τ itself is a
measure.

As shown in [16], σ k
τ therefore sk

τ vanishes outside the self-contact set, i.e.,

0 = σ k
τ ({x ∈ ΓN | yk

τ (t, x) �= yk
τ (x̃) for all x̃ ∈ ΓN \ {x}}). (3.10)

By comparison, we obtain an estimate on the measure (∇yk
τ )�nσ k

τ ∈ Meas(ΓN;Rd), but
unfortunately in a bigger space than the space of measures. Namely, writing (3.9) in terms
of the interpolants as

∫

Q

D(∇y
τ
)([∇ .

yτ ]�∇y
τ
+[∇y

τ
]�∇ .

yτ ):([∇y
τ
]�∇z + [∇z]�∇y

τ
) + ϕ′(∇yτ ):∇z

+ H ′(∇2yτ )
...∇2z dxdt =

∫

Q

f τ ·z dxdt +
∫

ΣN

(∇yτ )
−��n·z dσ τ (3.11)

for all z ∈ L1(I ;W 2,p(Ω;Rd)) with z|ΣD
= 0, we can estimate

sup
‖z‖

L2(I ;W2−1/p,p(ΓN;Rd ))
≤1

∫

ΣN

(∇yτ )
−��n·z dσ τ

≤ C1 sup
‖z‖

L2(I ;W2,p(Ω;Rd ))
≤1

∫

ΣN

(∇yτ )
−��n·z|ΣN

dσ τ

= C1 sup
‖z‖

L2(I ;W2,p(Ω;Rd ))
≤1

∫

Q

D(∇y
τ
)([∇ .

yτ ]�∇y
τ
+[∇y

τ
]�∇ .

yτ ):([∇y
τ
]�∇z+[∇z]�∇y

τ
)

+ ϕ′(∇yτ ):∇z + H ′(∇2yτ )
...∇2z − f τ ·z dxdt

≤ C2

(
(max |D|)∥∥∇y

τ
‖L∞(Q;Rd×d )

∥
∥∇ .

yτ‖L2(Q;Rd×d )
+ ∥

∥ϕ′(∇yτ )
∥
∥

L∞(Q;Rd×d )

+ ∥
∥H ′(∇2yτ )‖L2(I ;Lp′

(Ω;Rd×d×d ))
+ ‖f ‖L2(I ;L2(Ω;Rd ))

)
(3.12)

with some constants C1, C2 depending on Ω , d and p. Together with (3.7a)–(3.7c), this
implies the estimate

∥
∥(∇yτ )

−�|ΣN
�nσ τ

∥
∥

L2(I ;W2−1/p,p(ΓN;Rd )∗)
≤ C . (3.13)
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By the Poincaré inequality, (3.7c) together with the time-constant Dirichlet boundary
conditions gives even the estimate on

.
yτ in L2(I ;H 1(Ω;Rd)).

The estimates (3.7a), (3.7c) and (3.13) hold for the piecewise constant interpolants yτ

and y
τ
, as well. Therefore, now we can select a subsequence converging for τ → 0 in the

sense

yτ → y, yτ → y, and y
τ
→ y weakly* in L∞

w (I ;W 2,p(Ω;Rd)) , (3.14a)

.
yτ → .

y weakly in L2(I ;H 1(Ω;Rd)) , (3.14b)

(∇yτ |ΓN
)�nσ τ → s1 weakly in L2(I ;W 2−1/p,p(ΓN;Rd)∗) . (3.14c)

Note that the limit y also inherits (3.7b) and the Ciarlet-Nečas condition (2.12b) from yτ ,
since for a.e. t ∈ I , yτ → y in C1 and measyτ (Ω) → measy(Ω) (see [12, Prop. 4.3], e.g.).
Moreover, by the Aubin-Lions compact-embedding theorem (see [19, Lemma 7.7]) and its
generalization for time derivative measures (see [19, Cor. 7.9]), respectively, we also have
that

yτ → y, yτ → y, and y
τ
→ y strongly in L2(I ;H 1(Ω;Rd)) . (3.14d)

We now want to pass to the limit in (3.11) as τ → 0. The only problematic term there is
the one with H ′, because the other terms converge strongly due to (3.14d) or are essentially
linear (the dissipation term involving D is linear in ∇ .

yτ , while its other factors converge
strongly). We now exploit the strict monotonicity of H ′ to obtain better convergence for
∇2yτ . Consider the test functions

zτ := φ · (y − yτ ), where φ ∈ L∞(I ;C2(Ω;R+)) such that
∫

Γ

φ dσ τ = 0 on I for all τ .

Notice that zτ → 0 strongly in L2(I ;H 1(Ω;Rd)) and weakly in Lp(I ;W 2,p(Ω;Rd)) by
(3.14d) and (3.14a). Using (3.11), we get that

lim sup
τ→0

∫

Q

φ[H ′(∇2y) − H ′(∇2yτ )] ...[∇2(y − yτ )]dxdt

= lim sup
τ→0

∫

Q

[H ′(∇2y) − H ′(∇2yτ )] ...∇2zτ dxdt

= lim sup
τ→0

∫

Q

(
−D(∇y

τ
)([∇ .

yτ ]�∇y
τ
+[∇y

τ
]�∇ .

yτ ):([∇y
τ
]�∇zτ + [∇zτ ]�∇y

τ
)

− ϕ′(∇yτ ):∇zτ +
∫

Q

f τ ·zτ

)
dxdt = 0 .

Since φ ∈ L∞(I ;C2(Ω;R+)) was arbitrary apart from the requirement that
∫

Γ
φ dσ τ = 0

on I for all (small enough) τ , the strict monotonicity (3.1c) of H ′ thus implies that

∇2yτ → ∇2y in Lp(I ;Lp(Ω\Ut ;Rd)), i.e.,
∫

I

∫

Ω\Ut

|∇2yτ−∇2y|p dxdt → 0, (3.15)

for any measurable set U ⊂ I ×R
d , U = ⋃

t∈I {t} × Ut , such that

the support of σ τ (t) is contained in the interior of Ut

for a.e. t ∈ I and (small enough) τ > 0.
(3.16)
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In particular, yτ → y strongly in Lp(I ;W 2,p

loc (Ω;Rd)) because U := I ×V is admissible for
any closed neighborhood V of Γ in R

d .
In view of (3.16) and (3.15), it is clear that for a.e. t ∈ I , the limit function y inherits its

trace on the boundary as a strong limit of the traces of yτ , except on the part Γ ∗
t of Γ that is

always excluded by Ut , that is,

Γ ∗
t :=

{

x ∈ ΓN

∣
∣
∣
∣
∣

x = lim
n→∞xτ(n) for a suitable subsequence (τ (n)) of (τ )

and points xτ(n) ∈ suppσ τ(n)(t) ⊂ ΓN

}

⊂St . (3.17)

Here, we indeed have that Γ ∗
t ⊂St (the self-contact set of y at time t , cf. Definition 2.1),

due to (3.10), the definition of Γ ∗
t and the fact that yτ (t, ·) → y(t, ·) strongly in C(Ω;Rd),

the latter by (3.14c) and compact embedding. Moreover, as a consequence of (3.10), (3.14c)
and (3.16),

Γ ∗
t contains the support of s1(t, ·) ∈ W 2−1/p,p(ΓN;Rd)∗. (3.18)

As a consequence of (3.15) and (3.1b),

H ′(∇2yτ ) → H ′(∇2y) strongly in Lp′
(I ;Lp′

(Ω\Ut ;Rd)). (3.19)

On the other hand, by (3.7a), passing to a subsequence if necessary, there exists
h ∈ L∞

w (I ;W 2,p(Ω;Rd)∗) such that

H ′(∇2yτ ) → h weakly* in L∞
w (I ;W 2,p(Ω;Rd)∗) = L1(I ;W 2,p(Ω;Rd))∗. (3.20)

Interpreting H ′(∇2y) as a distribution in L1(I ;W 2,p(Ω;Rd))∗, i.e.,

〈H ′(∇2y), z〉 :=
∫

Q

H ′(∇2y)
...∇2z dxdt for z ∈ L1(I ;W 2,p(Ω;Rd)),

we see that

〈h, z〉 = 〈H ′(∇2y), z〉 ∀ z ∈ L1(I ;W 2,p(Ω;Rd)) with z = 0 on Σ∗ :=
⋃

t∈I

({t} × Γ ∗
t

)
.

(3.21)

In particular,

s2 := h− H ′(∇2y) ∈ L1(I ;W 2,p(Ω;Rd))∗ is supported in Σ∗, and

s2 ∈ L1(I ;W 2− 1
p ,p

(ΓN ;Rd))∗ = L∞
w (I ;W 2− 1

p ,p
(ΓN ;Rd)∗).

(3.22)

The latter holds because due to (3.21), 〈s2, z〉 actually only depends on the traces of z(t, ·)
on Γ ∗

t ⊂ ΓN , t ∈ I . Altogether, we can now pass to the limit in (3.11), using (3.20), (3.14c)
and (3.14d). This yields the limit equation (2.12a) with

s := s1 + s2 ∈ L2(I ;W 2− 1
p ,p

(ΓN ;Rd)∗).

Moreover, by (3.17), (3.18), and (3.22), the total contact reaction force s satisfies (2.12c),
and we conclude that (y,s) is a weak solution to the initial-boundary-value problem (2.8),
(2.9a)–(2.9c), (2.11) in the sense of Definition 2.1. �
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Remark 3.2 (Open problem: actual reaction force) In the static situations, the contact reac-
tion force s is a measure as shown in [16], and it has a natural pullback to the reference
configuration given by �nσ = (∇y|ΓN

)�s. By contrast, in the evolution case, we are loosing
this property, cf. the estimate (3.13), because ∇y|ΣN

is not regular enough to justify multi-
plication with the distribution s. Additional information about the reaction force in the static
case contained in the “complementary slackness principle” of [16] is also lost in the limit,
as least if s2 does not vanish.

Remark 3.3 (Open problem: dynamical problems) In many applications, inertia cannot be
neglected. Yet, when inertial forces of the form �

..
y , with � > 0 a mass density in the ref-

erence configuration, would be involved in (2.8), serious difficulties would occur in (3.12)
where now only the sum

∫

ΣN
(∇yτ )

−��n·z dσ τ + ∫

Q
�
..
y τ ·z dxdt could be estimated. As a

result, in the limit problem, one could not distinguish between inertial forces and reaction
forces arising from the possible self-contact. Thus, one would have to devise a very weak
solution concept.
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4. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97,

171–188 (1987)
5. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with ap-

plication to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)
6. Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Con-

trol Optim. Calc. Var. 15, 863–871 (2009)
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