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Abstract
We show the existence of an energetic solution to a model of shape-memory alloys in
which the elastic energy is described by means of a gradient polyconvex functional.
This allows us to show the existence of a solution based onweak continuity of nonlinear
minors of deformation gradients in Sobolev spaces. Admissible deformations do not
necessarily have integrable second derivatives. Under suitable assumptions, our model
allows for solutionswhich are orientation preserving and globally injective everywhere
in the domain representing the specimen.
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1 Introduction

The ideaof non-simplematerials canbe tracedback to1901whenKortewegconsidered
a gradient of the density in his model of fluid capillarity. Considering more than only
the first deformation gradient in the description of elastic behavior of solids goes back
to the 1960s and appeared in the work of Toupin [1,2], and Green and Rivlin [3],
such materials are usually called N -grade materials, where N refers to the highest
deformation gradient appearing in the model. This approach has brought questions on
thermodynamical consistency of such models, treated in [4,5], for instance. From then
on, it has been used in many works, see, e.g., [6–12]. Mathematically, the presence of
higher-order gradients in the model brings additional compactness properties for the
set of admissible functions and ensures the existence of minimizers. We refer to recent
related results on the mathematical treatment of shape-memory materials: [13,14]. We
also refer to [15] for an overview.

The aim of this contribution is to apply a new class of non-simple material models
introduced in [16] (called gradient polyconvex materials) to evolutionary problems of
shape-memory alloys. The novelty consists in considering only gradients on nonlin-
ear minors in the stored energy density of the material. It is shown there, and also in
Example 2.1, that corresponding deformations do not necessarily have integrable sec-
ond weak derivatives. Nevertheless, it is possible to prove the existence of an energetic
solution. The plan of the paper is as follows: We first introduce necessary notation
and tools in Sect. 2. The notion of gradient polyconvexity is thoroughly discussed in
Sect. 3 and the quasistatic evolution in Sect. 4. Finally, we close our exposition with
a short conclusion.

2 Preliminaries

Hyperelasticity is a special area of Cauchy elasticity, where one assumes that the first
Piola–Kirchhoff stress tensor S possesses a potential (called stored energy density)
W : R3×3 → [−w,∞], for some w ≥ 0. In other words,

S := ∂W (F)

∂F
(1)

on its domain, where F ∈ R
3×3 is such that det F > 0. This concept emphasizes

that all work done by external loads on the specimen is stored in it. The principle of
frame indifference requires that W satisfies, for all F ∈ R

3×3 and all proper rotations
R ∈ SO(3),

W (F) = W (RF) = W̃ (F�F) = W̃ (C),

whereC := F�F is the right Cauchy–Green strain tensor and W̃ : R3×3 → [−w,∞].
Additionally, every elasticmaterial is assumed to resist extreme compression,which

is modeled by assuming
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W (F) → +∞, if det F ↘ 0. (2)

Let the reference configuration be a bounded Lipschitz domain� ⊂ R
3. Deformation

y : �̄ → R
3 maps the points in the closure of the reference configuration �̄ to their

positions in the deformation configuration. Solutions to the corresponding elasticity
equations can then be formally found by minimizing the energy functional

I (y) :=
∫

�

W (∇ y(x)) dx − �(y) (3)

over the class of admissible deformations. Here, � is a functional on the set of deforma-
tions, expressing (in a simplified way) the work of external loads on the specimen, and
∇ y is the deformation gradient, which quantifies the strain. We only allow for defor-
mations, which are orientation preserving, i.e., if a, b, c ∈ R

3 satisfy (a × b) · c > 0,
then (Fa × Fb) · Fc > 0 for every F := ∇ y(x) and x ∈ �, which means that
det F > 0. This condition can be expressed by extending W by infinity on matrices
with non-positive determinants, i.e.,

W (F) := +∞, if det F ≤ 0. (4)

In view of (1), (2), and (4), we see that W : R3×3 → [−w,+∞] is continuous in
the sense that if Fk → F in R

3×3 for k → +∞, then limk→+∞ W (Fk) = W (F).
Furthermore, W is differentiable on the set of matrices with positive determinants.

A key question immediately appears: Under which conditions does the functional I
in (3) possess minimizers? Relying on the direct method of the calculus of variations,
the usual approach to address this question is to study (weak) lower semicontinuity
of the functional I on appropriate Banach spaces containing the admissible defor-
mations. For definiteness, we assume that y �→ −�(y) is weakly sequentially lower
semicontinuous. Thus, the question reduces to a discussion of the assumptions on W .
It is well known that (2) prevents us from assuming convexity ofW . See, for example,
[17] or the recent review for a detailed exposition of weak lower semicontinuity. Fol-
lowing earlier work by C. B. Morrey, Jr., [18], J. M. Ball [19] defined a polyconvex
stored energy densityW by assuming that there is a convex and lower semicontinuous
function W : R19 → [−w,+∞] such that

W (F) := W (F,CofF, det F) ∀F ∈ R
3×3.

Here, CofF denotes the cofactor matrix of F , which, for F being invertible, satisfies
Cramer’s rule:

CofF = (det F)(F−1)�.

It is well known that polyconvexity is satisfied for a large class of constitutive functions
and allows for the existence of minimizers of I under (2) and (4). On the other hand,
there are still situations where polyconvexity cannot be adopted. A prominent exam-
ple is shape-memory alloy, where W has the so-called multi-well structure, see, for
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example, [20–22]. Namely, there is a high-temperature phase, called austenite, which
is usually of cubic symmetry, and a low-temperature phase, called martensite, which
is less symmetric and exists in more variants, for example, in three for the tetragonal
structure (NiMnGa) or in twelve for the monoclinic one (NiTi). We can assume that

W (F) := min
0≤i≤M

Wi (F), (5)

where Wi : R3×3 → [−wi ,+∞], wi ≥ 0, is the stored energy density of the i-th
variant of martensite if i > 0, and W0 is the stored energy density of the austenite.
For every admissible i , we have Wi (F) = −wi if and only if F = RFi for a given
matrix Fi ∈ R

3×3 and an arbitrary proper rotation R ∈ SO(3). This means that each
variant of the martensite and the austenite is modeled as a hyperelastic material with
its own stored energy density Wi . We also assume that each Wi is differentiable on
the set of matrices with positive determinants. Thus, the variants can be described
independently, e.g., the elastic constants can be chosen differently. The drawback is
obviously the non-smoothness ofW ; however, physically realistic elastic strain values
do not occur in the set where W is not differentiable. We refer, for example, to [23]
for other models of the stored energy density of shape-memory alloys.

Given a deformation gradient F , we need to decide whether the corresponding
deformation is in the well of the austenite, or in a martensitic variant. In order to do
so, we define a volume fraction λ(F) as follows:

Let λ : R3×3 → R
M+1. Set

λ j (F) := 1

M

(
1 − dist(C,N (C j ))∑M

i=0 dist(C,N (Ci ))

)
∀C = FT F ∈ R

3×3, j = 0, . . . , M,

(6)

whereN (Ci ) are pairwise disjoint neighborhoods of the strain tensorsCi = F�
i Fi , for

i ∈ {0, . . . , M}. Notice that ∑M
i=0 λ j (F) = 1 for every F , which, together with λ j >

0, allows us to interpret λ as a volume fraction. Moreover, note that λ is continuous
and frame indifferent in the sense that λ(F) = λ(RF) for every proper rotation R.
Volume fractionswill play an important role in the definition of our evolutionarymodel
in Sect. 4.

Remark 2.1 Note that this particular choice of λ allows for some elastic behavior
close to the wells SO(3)Fi , i = 0, . . . , M , since the volume fraction remains constant
on the neighborhoods N (Ci ), i = 0, . . . , M .

Let us emphasize that (5) ruins even generalized notions of convexity as, for
example, rank-one convexity. (We recall that rank-one convex functions are convex
on the line segments with endpoints differing by a rank-one matrix and that rank-
one convexity is a necessary condition for polyconvexity; cf. [17], for instance.)
Namely, it is observed (see, e.g., [20,21]) that wi = w j , whenever i, j = 0, and
that there is a proper rotation Ri j such that rank(Ri j Fi − Fj ) = 1. Hence, generi-
cally, W (Ri j Fi ) = W (Fj ) = −wi , but W (F) > −wi if F is on the line segment
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between Ri j Fi and Fj . Nevertheless, not having a convexity property at hand that
implied existence of minimizers is in accordance with experimental observations for
these alloys.

Indeed, nonexistence of aminimizer corresponds to the formation ofmicrostructure
of strain states. This is mathematically manifested via a faster and faster oscillation of
deformationgradients inminimizing sequences, driving the functional I to its infimum.
One can then formulate a minimization problem for a lower semicontinuous envelope
of I , the so-called relaxation, see, e.g., [17]. Such a relaxation yields information
of the effective behavior of the material and on the set of possible microstructures.
Thus, relaxation is not only an important tool for mathematical analysis, but also for
applications. For numerical considerations, it is a challenging problem, because the
relaxation formula is generically not obtained in a closed form. Further difficulties
come from the fact that a sound mathematical relaxation theory is developed only
if W has p-growth; that is, for some c > 1, p ∈ ]1,+∞[ and all F ∈ R

3×3, the
inequality

1

c
(|F |p − 1) ≤ W (F) ≤ c(1 + |F |p)

is satisfied. This in particular implies that W < +∞. We refer, however, to [24–
26] for results allowing for infinite energies. Nevertheless, these works include other
assumptions that severely restrict their usage. Let us point out that the right Cauchy–
Green strain tensor F�F maps SO(3)F as well as (O(3)\SO(3))F to the same point.
Here, O(3) are the orthogonal matrices with determinant ±1. Thus, for example,
F �→ |F�F−I| is minimized on two energywells, on SO(3) and also onO(3)\SO(3).
However, the latter set is not acceptable in elasticity, because the corresponding mini-
mizing affine deformation is a mirror reflection. In order to distinguish between these
two wells, it is necessary to incorporate det F in the model properly.

Besides relaxation, another approach guaranteeing existence of minimizers is to
resort to non-simple materials, i.e., materials whose stored energy density depends
also on higher-order derivatives. Simple examples are functionals of the form

I (y) :=
∫

�

W (∇ y(x)) + ε|∇2y(x)|p dx − �(y),

where ε > 0. Obviously, the second gradient term brings additional compactness to
the problem, which allows to require only strong lower semicontinuity of the term

∇ y �→
∫

�

W (∇ y(x)) dx

for existence of minimizers.
Here, we follow a different approach, recently suggested in [16], which is a natural

extension of polyconvexity exploiting weak continuity of minors in Sobolev spaces.
Instead of the full second gradient, it is assumed that the stored energy density of the
material depends on the deformation gradient∇ y and on gradients of nonlinear minors
of ∇ y, i.e., on ∇[Cof∇ y] and on ∇[det∇ y]. The corresponding functionals are then
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called gradient polyconvex. While we assume convexity of the stored energy density
in the two latter variables, this is not assumed in the∇ y variable. The advantage is that
minimizers are elements of Sobolev spaces W 1,p(�,R3), and no higher regularity is
required.

The following example is inspired from [16]. It shows that there are maps with
smooth nonlinear minors whose deformation gradient is not a Sobolev map. Hence,
gradient polyconvex energies are more general than second gradient ones.

Example 2.1 Let � = ]0, 1[3. For functions f , g : ]0, 1[ → ]0,+∞[ to be specified
later, let us consider the deformation

y(x1, x2, x3) := (x1, x2 f (x1), x3g(x1)) .

Then,

∇ y(x1, x2, x3) =
⎛
⎝ 1 0 0
x2 f ′(x1) f (x1) 0
x3g′(x1) 0 g(x1)

⎞
⎠ ,

Cof∇ y(x1, x2, x3) =
⎛
⎝ f (x1)g(x1) − x2 f ′(x1)g(x1) −x3 f (x1)g′(x1)

0 g(x1) 0
0 0 f (x1)

⎞
⎠

and

det∇ y(x1, x2, x3) = f (x1)g(x1) > 0 .

Finally, the nonzero entries of ∇2y(x1, x2, x3) are

x2 f
′′(x1), f ′(x1), x3g

′′(x1), g′(x1). (7)

Note that we have in particular

|∇2y(x1, x2, x3)| ≥ |x2|| f ′′(x1)|.

Any functions f , g such that y ∈ W 1,p(�;R3), Cof∇ y ∈ W 1,q(�;R3×3), 0 <

det∇ y ∈ W 1,r (�), (det∇ y)−s ∈ L1(�) for some p, q, r ≥ 1 and s > 0, but such
that one of the quantities in (7) is not a function in L p(�), yield a useful example
since then y /∈ W 2,p(�;R3). To be specific, we choose, for 1 > ε > 0,

f (x1) = x1−ε
1 and g(x1) = x1+ε

1 .

Hence,

f ′(x1) = (1 − ε)x−ε
1 , g′(x1) = (1 + ε)xε

1,

f ′′(x1) = −ε(1 − ε)x−1−ε
1 , g′′(x1) = ε(1 + ε)x−1+ε

1 .

123



Journal of Optimization Theory and Applications (2020) 184:5–20 11

Since x2 f ′′(x1) is not integrable, we have ∇2y /∈ L1(�;R3×3×3), and thus, y /∈
W 2,1(�;R3). We have only y ∈ W 1,p(�;R3) ∩ L∞(�;R3) for every 1 ≤ p < 1/ε.
Moreover, direct computation shows that both Cof∇ y and det∇ y lie inW 1,∞. Finally,
det∇ y = x21 > 0 and (det∇ y)−s ∈ L1(�) for all 0 < s < 1/2.

Therefore, for any r , q ≥ 1, s > 0, requiring a deformation y : � → R
3 to satisfy

det∇ y ∈ W 1,r (�), (det∇ y)−s ∈ L1(�) and Cof∇ y ∈ W 1,q(�;R3×3) is a weaker
assumption than y ∈ W 2,1(�;R3).

3 Gradient Polyconvexity

We start with a definition of gradient polyconvexity.

Definition 3.1 (See [16]) Let Ŵ : R3×3 × R
3×3×3 × R

3 → R ∪ {+∞} be a lower
semicontinuous function, and let � ⊂ R

3 be a bounded open domain. The functional

J (y) =
∫

�

Ŵ (∇ y(x),∇[Cof∇ y(x)],∇[det∇ y(x)])dx, (8)

defined for any measurable function y : � → R
3 for which the weak derivatives ∇ y,

∇[Cof∇ y], ∇[det∇ y] exist and which are integrable, is called gradient polyconvex if
the function Ŵ (F, ·, ·) is convex for every F ∈ R

3×3.

With J defined as in (8) and a functional y �→ −�(y) expressing the work of
external loads, we set

I (y) := J (y) − �(y). (9)

Besides convexity properties, the results of weak lower semicontinuity of I
on W 1,p(�;R3), in the case 1 ≤ p < +∞, rely on suitable coercivity proper-
ties. Here we assume that there are numbers q, r > 1 and c, s > 0 such that for every
F ∈ R

3×3, �1 ∈ R
3×3×3, and every �2 ∈ R

3

Ŵ (F,�1,�2)

≥
{
c
(|F |p + |CofF |q + (det F)r + (det F)−s + |�1|q + |�2|r

)
, if det F > 0,

+∞, otherwise.

(10)

The following existence result is taken from [16]. For the reader’s convenience, we
provide a proof below.

Proposition 3.1 Let � ⊂ R
3 be a bounded Lipschitz domain, and let � = �0 ∪ �1

be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let further
−� : W 1,p(�;R3) → R be a weakly lower semicontinuous functional satisfying, for
some C̃ > 0 and 1 ≤ p̄ < p,

�(y) ≤ C̃‖y‖ p̄
W 1,p(�;R3)

, for all y ∈ W 1,p(�;R3). (11)
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Further, let J , as in (8), be gradient polyconvex on � and such that there is a Ŵ
as in Definition 3.1 which in addition satisfies (10) for p > 2, q ≥ p

p−1 , r > 1,

s > 0. Moreover, assume that, for some given measurable function y0 : �0 → R
3,

the following set

A : = {
y ∈ W 1,p(�;R3) : Cof∇ y ∈ W 1,q(�;R3×3), det∇ y ∈ W 1,r (�),

(det∇ y)−s ∈ L1(�), det∇ y > 0 a.e. in �, y = y0 on �0
}

is non-empty. If infA I < ∞ for I from (9), then the functional I has a minimizer on
A.

Proof Our proof closely follows the approach in [16]. Let {yk} ⊂ A be a minimizing
sequence of I . Due to coercivity assumption (10), the bound on the loading (11), the
Poincaré inequality, and the Dirichlet boundary conditions on �0, we obtain that

sup
k∈N

(‖yk‖W 1,p(�;R3) + ‖Cof∇ yk‖W 1,q (�;R3×3)

+‖ det∇ yk‖W 1,r (�) + ‖(det∇ yk)
−s‖L1(�)

)
< ∞. (12)

Hence, by standard results on weak convergence of minors, see, e.g., [27, Thm. 7.6-1],
there are (not explicitly labeled) subsequences such that

yk⇀y in W 1,p(�;R3), Cof∇ yk⇀Cof∇ y in Lq(�;R3×3), det∇ yk
⇀ det∇ y in Lr (�)

for k → ∞. Moreover, since bounded sets in uniformly convex Sobolev spaces are
weakly sequentially compact,

Cof∇ yk⇀H in W 1,q(�;R3×3), det∇ yk⇀D in W 1,r (�) (13)

for some H ∈ W 1,q(�;R3×3) and D ∈ W 1,r (�). Since the weak limit is unique, we
have H = Cof∇ y and D = det∇ y. By compact embedding, also Cof∇ yk → H in
Lq(�;R3×3) and hence we obtain a (not explicitly labeled) subsequence such that,
for k → ∞,

Cof∇ yk → Cof∇ y a.e. in �. (14)

Since, by Cramer’s formula, det(Cof∇ y) = (det∇ y)2, we have, for k → ∞, that

det∇ yk → det∇ y a.e. in �. (15)

Next we show that y belongs to the set of admissible functions A. Notice that
det∇ y ≥ 0 since det∇ yk > 0 for any k ∈ N. Further, conditions (10), (11), (12), and
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the Fatou lemma imply that

+∞ > lim inf
k→∞ I (yk) + �(yk) ≥ lim inf

k→∞

∫
�

1

(det∇ yk(x))s
dx ≥

∫
�

1

(det∇ y(x))s
dx .

Hence, inevitably, det∇ y > 0 almost everywhere in � and (det∇ y)−s ∈ L1(�).
Since the trace operator is continuous, we obtain that y ∈ A.

By Cramer’s rule, the inverse of the deformation gradient satisfies, for almost all
x ∈ � and k → ∞, that

(∇ yk(x))
−1 = (Cof∇ yk(x))�

det∇ yk(x)
−→ (Cof∇ y(x))�

det∇ y(x)
= (∇ y(x))−1. (16)

Notice that, for almost all x ∈ �,

sup
k∈N

|∇ yk(x)| = sup
k∈N

det∇ yk(x) |((Cof(∇ yk(x)))
−1))�|

≤ sup
k∈N

3

2
det∇ yk(x) |(∇ yk(x))

−1|2 < ∞

because of the pointwise convergence of {det∇ yk} and (16).
Due to (16), we have, for almost all x ∈ � and k → ∞, that

∇ yk(x) = ((Cof(∇ yk(x))
−1)� det∇ yk(x) −→ ((Cof(∇ y(x))−1)� det∇ y(x)

= ∇ y(x),

where we have used that the cofactor of some matrix is invertible whenever the matrix
itself is invertible too. As the Lebesgue measure on � is finite, we get by the Egoroff
theorem, c.f. [28, Thm. 2.22],

∇ yk → ∇ y in measure. (17)

Since Ŵ is nonnegative and continuous and Ŵ (F, ·, ·) is convex, we may use [28,
Cor. 7.9] to conclude, from (17) and (13), that

∫
�

Ŵ (∇ y(x),∇Cof∇ y(x),∇ det∇ y(x)) dx

≤ lim inf
k→∞

∫
�

Ŵ (∇ yk(x),∇Cof∇ yk(x),∇ det∇ yk(x)) dx .

To pass to the limit in the functional −�, we exploit its weak lower semicontinuity.
Therefore, the whole functional I is weakly lower semicontinuous along {yk} ⊂ A,
and hence, y ∈ A is a minimizer of I . ��
Remark 3.1 Note that the pointwise convergence (15) of the determinant, necessary
for obtaining the crucial convergence in (17),was not achieved by compact embedding,
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as it was done for Cof∇ y in (14). Hence, the coercivity in ∇[det∇ y] is of minor
importance and can be relaxed, provided the function Ŵ from (8) does not depend
on its last argument, c.f. [16, Prop. 5.1]. On the other hand, although only∇[Cof∇ y] is
necessary for regularizing the whole problem, making the functional in (8) dependent
also on ∇[det∇ y] may be interesting from the applications point of view.

Let L3 denote the Lebesgue measure in R3. If p > 3 and y ∈ W 1,p(�;R3) is such
that det∇ y > 0 almost everywhere in �, then the so-called Ciarlet–Nečas condition

∫
�

det∇ y(x) dx ≤ L3(y(�)), (18)

derived in [29] ensures almost-everywhere injectivity of deformations. We also refer
to [30, Sec. 6, Thm.2] and to [31] for other conditions ensuring injectivity of defor-
mations, requiring, however, a prescribed Dirichlet boundary datum on the whole ∂�,
which is difficult to ensure in a physical laboratory. If

|∇ y|3
det∇ y

∈ Lδ(�) (19)

for some δ > 2 and (18) holds, then we even get invertibility everywhere in � due to
[32, Theorem 3.4]. Namely, this then implies that y is an open map. Hence, we get
the following corollary of Proposition 3.1.

Corollary 3.1 Let � ⊂ R
3 be a bounded Lipschitz domain, and let � = �0 ∪ �1

be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let further
� : W 1,p(�;R3) → R be a weakly upper semicontinuous functional and J as in (8)
be gradient polyconvex on � such that Ŵ satisfies (10). Finally, let p > 6, q ≥ p

p−1 ,
r > 1, s > 2p/(p − 6), and assume that, for some given measurable function
y0 : �0 → R

3, the following set

A : = {y ∈ W 1,p(�;R3) : Cof∇ y ∈ W 1,q(�;R3×3), det∇ y ∈ W 1,r (�),

(det∇ y)−s ∈ L1(�), det∇ y > 0 a.e. in �, y = y0 on �0, (18)holds}

is non-empty. If infA I < ∞ for I from (9), then the functional I has a minimizer on
A which is injective everywhere in �.

A simple example of an energy density which satisfies the assumptions of Propo-
sition 3.1 and Corollary 3.1 is

Ŵ (F,�1,�2)

=
{
W (F) + ε

(|F |p + |CofF |q + (det F)r + (det F)−s + |�1|q + |�2|r
)
, i f det F > 0,

+∞, otherwise,

for W defined in (5).
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Remark 3.2 (Gradient polyconvex materials and smoothness of stress) Gradient
polyconvex materials enable us to control the regularity of the first Piola–Kirchhoff
stress tensor by means of smoothness of the Cauchy stress. Assume that the Cauchy
stress tensor T y : y(�) → R

3×3 is Lipschitz continuous, for instance. If Cof∇ y :
� → R

3×3 is Lipschitz continuous too, then the first Piola–Kirchhoff stress tensor S
inherits the Lipschitz continuity from T y because

S(x) := T y (
x y

)
Cof∇ y(x),

where x y := y(x). In a similar fashion, one can transfer Hölder continuity of T y to S
via Hölder continuity of x �→ Cof∇ y.

In the literature, examples of stored energy density functions in nonlinear elasticity
are usually minimized on SO(3). In the context of shape-memory alloys, the stored
energy density isminimized on SO(3)Fi , Fi = Fj , i, j = 0, . . . , M . To construct such
energy densities explicitly, we can now proceed as follows. Assume that V : R3×3 →
R ∪ {+∞} is minimized on SO(3) and that V (F) = ϕ(F�F) = ϕ(C) for some
function ϕ : R3×3

sym → R∪ {+∞} and the right Cauchy–Green tensor C = F�F . It is
easy to see that ϕ attains its minimum at the identity matrix I. Considering the polar
decomposition of Fi ∈ R

3×3 with det Fi > 0, we can write Fi = RiUi , where Ri is a
rotation andUi is symmetric and positive definitematrix.Note thatCi := F�

i Fi = U 2
i .

Bearing this in mind, we define the energy of the i-th variant via a shift

Wi (F) := V
(
FU−1

i

)
= ϕ

(
U−1
i CU−1

i

)
,

which is clearly minimized on SO(3)Fi . Notice also that if V is polyconvex, so isWi .

4 Evolution

If the loading changes in time or if the boundary condition becomes time dependent,
then the specimen evolves as well. We consider here the case, in which evolution
is connected with energy dissipation. Experimental evidence shows that considering
a rate-independent dissipation mechanism is a reasonable approximation in a wide
range of rates of external loads.We hence need to define a suitable dissipation function.
Sincewe consider a rate-independent processes, this dissipationwill be positively one-
homogeneous. We associate the dissipation with the magnitude of the time derivative
of the dissipative variable z ∈ R

M+1, where M ∈ N, i.e., with |ż|M+1, where | · |M+1
denotes a norm onRM+1. (In our setting, the internal variable z can be seen as a vector
of volume fractions of austenite and M variants of martensite.) Therefore, the specific
dissipated energy associated with a change from state z1 to z2 is postulated as

D
(
z1, z2

)
:=

∣∣∣z1 − z2
∣∣∣
M+1

.
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Hence, for zi : � → R
M+1, i = 1, 2, the total dissipation reads

D(z1, z2) :=
∫

�

D(z1(x), z2(x)) dx,

and the total D-dissipation of a time-dependent curve z : t ∈ [0, T ] �→ z(t), where
z(t) : � → R

M+1 is defined as

DissD(z, [s, t]) := sup

⎧⎨
⎩

N∑
j=1

D(z(ti−1), z(ti )) : N ∈ N, s = t0 ≤ . . . ≤ tN = t

⎫⎬
⎭ .

Let Z denote the set of all admissible states of internal variables z : � → R
M+1

and A be the set of admissible deformations as before. For a given triple (t, y, z) ∈
[0, T ] × A × Z , we define the total energy of the system by

E(t, y, z) =
{
J (y) − L(t, y), if z = λ(∇ y) a.e. in �,

+∞, otherwise,

where L(t, ·) is a functional on deformations expressing time-dependent loading
of the specimen, and λ is defined in (6).

4.1 Energetic Solution

Suppose that we look for the time evolution of t �→ y(t) ∈ A and t �→ z(t) ∈ Z :=
L∞(�,RM+1) during a process on a time interval [0, T ], where T > 0 is the time
horizon. We use the following notion of solution from [33], see also [34,35].

Definition 4.1 (Energetic solution) Let an energy E : [0, T ] ×A×Z → R ∪ {+∞}
and a dissipation distance D : Z × Z → R ∪ {+∞} be given. The set of admissible
configurations is defined as

Q := {(y, z) ∈ A × Z : λ(∇ y) = z a.e. in �}.

We say that (y, z) : [0, T ] → Q is an energetic solution to (Q, E,D), if the mapping
t �→ ∂tE(y(t), z(t)) is in L1(0, T ) and if, for all t ∈ [0, T ], the stability condition

E(t, y(t), z(t)) ≤ E(t, ỹ, z̃) + D(z(t), z̃) ∀(ỹ, z̃) ∈ Q. (S)

and the energy balance

E(t, y(t), z(t)) + DissD(z; [s, t]) = E(s, y(s), z(s)) +
∫ t

s
∂tE(ϑ, y(ϑ), z(ϑ)) dϑ

(E)

are satisfied for any 0 ≤ s < t ≤ T .
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An important role is played by the set of so-called stable states, defined for each
t ∈ [0, T ] as

S(t) := {(y, z) ∈ Q : E(t, y, z) < +∞ and E(t, y, z) ≤ E(t, ỹ, z̃)

+D(z, z̃) ∀(ỹ, z̃) ∈ Q} .

4.2 Existence of an Energetic Solution

A standard way how to prove the existence of an energetic solution is to construct
time-discrete minimization problems and then to pass to the limit. Before we give the
existence proof, we need some auxiliary results. For given N ∈ N and for 0 ≤ k ≤ N ,
we define the time increments tk := kT /N . Furthermore, we use the abbreviation
q := (y, z) ∈ Q. We assume that there exists an admissible deformation y0 being
compatible with the initial volume fraction z0, i.e., q0 := (y0, z0) ∈ S(0). For k =
1, . . . , N , we define a sequence of minimization problems

minimize Ik(y, z) := E (tk, y, z) + D
(
z, zk−1

)
, (y, z) ∈ Q. (20)

We denote a minimizer of (20), for a given k, as qN
k := (yk, zk) ∈ Q for 1 ≤ k ≤ N .

The following lemma shows that a minimizer always exists if the elastic energy is not
identically infinite on Q:

Lemma 4.1 Let � ⊂ R
3 be a bounded Lipschitz domain, and let � = �0 ∪ �1 be

an H2-measurable partition of � = ∂� with the area of �0 > 0. Let J , of the from
(8), be gradient polyconvex on � and such that the stored energy density Ŵ satisfies
(10). Moreover, let L ∈ C1([0, T ];W 1,p(�;R3)) be such that, for some C > 0 and
1 ≤ α < p,

L(t, y) ≤ C‖y‖α
W 1,p , for all t ∈ [0, T ]

and y �→ −L(t, y) is weakly lower semicontinuous on W 1,p(�;R3) for all t ∈ [0, T ].
Finally, let p > 6, q ≥ p

p−1 , r > 1, s > 2p/(p − 6).
If there is (y, z) ∈ Q such that Ik(y, z) < ∞ for Ik from (20), then the functional

Ik has a minimizer qN
k = (yk, zk) ∈ Q such that yk is injective everywhere in �.

Moreover, qN
k ∈ S(tk) for all 1 ≤ k ≤ N.

Proof Since the discretized problem (20) has a purely static character, we can follow
the proof of Proposition 3.1. Let {(ykj , zkj )} j∈N ⊂ Q be a minimizing sequence. As

∇ ykj −→ ∇ yk strongly in L p̃(�,R3×3) as j → ∞

for every 1 ≤ p̃ < p and λ ∈ C(R3×3,RM+1) is bounded, we obtain that

zkj = λ(∇ ykj ) −→ λ(∇ yk) strongly in L p̃(�,RM+1) as j → ∞.
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Since ‖zkj‖L1(�,RM+1) is uniformly bounded in j , there is a subsequence (not explicitly

relabeled) such that zkj
∗
⇀ μk in Radon measures on �. This shows that zk := μk =

λ(∇ yk) and hence qN
k = (yk, zk) ∈ Q. SinceD(·, zk−1) is convex, we obtain that qN

k
is indeed aminimizer ofIk .Moreover, yk is injective everywhere by the reasoning used
for proving Corollary 3.1. The stability qN

k ∈ S(tk) follows by standard arguments;
see, e.g., [33]. ��

Denoting by B ([0, T ];A) the set of bounded maps t ∈ [0, T ] �→ y(t) ∈ A, we
have the following result showing the existence of an energetic solution to the problem
(Q, E,D):

Theorem 4.1 Let T > 0 and let the assumptions in Lemma 4.1 be satisfied. Moreover,
let the initial condition be stable, i.e., q0 := (y0, z0) ∈ S(0). Then, there is an energetic
solution to (Q, E,D) satisfying q(0) = q0 and such that y ∈ B ([0, T ];A), z ∈
BV

([0, T ]; L1(�;RM+1)
)∩L∞(0, T ;Z), and such that for all t ∈ [0, T ] the identity

λ(∇ y(t, ·)) = z(t, ·) holds a.e. in �. Moreover, for all t ∈ [0, T ], the deformation
y(t) is injective everywhere in �.

Proof Let qN
k := (yk, zk) be the solution of (20), which exists by Lemma 4.1, and let

qN : [0, T ] → Q be given by

qN (t) :=
{
qN
k , if t ∈ [tk, tk+1[if k = 0, . . . , N − 1,

qN
N , if t = T .

Following [33], we get, for some C > 0 and for all N ∈ N, the estimates

‖zN‖BV (0,T ;L1(�;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (�;RM+1)) ≤ C, (21a)

‖yN‖L∞(0,T ;W 1,p(�;R3)) ≤ C, (21b)

as well as the following two-sided energy inequality

∫ tk

tk−1

∂tE
(
θ, qN

k

)
dθ ≤ E

(
tk, q

N
k

)
+ D

(
zk, zk−1

)
− E

(
tk−1, q

N
k−1

)

≤
∫ tk

tk−1

∂tE
(
θ, qN

k−1

)
dθ. (22)

The second inequality in (22) follows since qN
k is a minimizer of (20) and by com-

parison of its energy with q := qN
k−1. The lower estimate is implied by the stability

of qN
k−1 ∈ S(tk−1), see Lemma 4.1, when compared with q̃ := qN

k . By this inequality,
the a priori estimates and a generalized Helly’s selection principle [35, Cor. 2.8], we
get that there is indeed an energetic solution obtained as a limit for N → ∞.

Let us comment more on the two main properties of the minimizer, namely, that it
is orientation preserving and injective everywhere in�. The condition det∇ y > 0 a.e.
in � follows from the fact that if t j → t , (y( j), z( j)) ∈ S(t j ) and (y( j), z( j))⇀(y, z)
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in W 1,p(�;R3) × BV (�;RM+1), then (y, z) ∈ S(t). Indeed, we have z( j) → z
in L1(�;RM+1) in our setting and hence for all (ỹ, z̃) ∈ Q, we get

E(t, y, z) ≤ lim inf
j→∞ E (

t j , y( j), z( j)
) ≤ lim inf

j→∞
(E(t j , ỹ, z̃) + D(z( j), z̃)

)

= E(t, ỹ, z̃) + D(z, z̃).

In particular, as E(t j , ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q, we get E(t, y, z) < +∞ and
thus det∇ y > 0 a.e. in � in view of (10).

To prove injectivity, we profit again from the fact that quasistatic evolution of
energetic solutions is very close to a purely static problem. In view of (21), we obtain,
for each t ∈ [0, T ], all necessary convergences that were used in the proof of Corollary
3.1 to pass to the limit in conditions (18) and (19). ��

5 Conclusions

We showed the existence of a solution to an evolutionary model of shape-memory
alloys with gradient polyconvex stored energy density. It is a natural extension of
polyconvexity, which exploits weak continuity of nonlinear minors of deformation
gradients not only in Lebesgue but also in Sobolev spaces. This brings additional
smoothness of volume and area element changes between the reference and deformed
configuration; however, better mechanical understanding of this notion is still needed.
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Project 16-34894L. This work was partially supported also by the Project PPP 57212737 with funds from
the BMBF.

References

1. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)
2. Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)
3. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147

(1964)
4. Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88,

95–133 (1985)
5. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)
6. Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of

arbitrary order. J. Funct. Anal. 41, 135–174 (1981)
7. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials.

Proc. R. Soc. Lond. A 465, 2177–2196 (2009)
8. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech.

135, 117 (2009)
9. Kouranbaeva, S., Shkoller, S.: A variational approach to second-order multisymplectic field theory. J.

Geom. Phys. 35, 333–366 (2000)
10. Mariano, P.M.: Geometry and balance of hyperstresses. Rend. Lincei Mat. Appl. 18, 311–331 (2007)
11. Segev, R.: Geometric analysis of hyper-stresses. Int. J. Eng. Sci. 120, 100–118 (2017)

123



20 Journal of Optimization Theory and Applications (2020) 184:5–20

12. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Ration. Mech. Anal. 88, 135–161 (1985)
13. Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with

interfacial energy. Calc. Var. 40, 501–538 (2011)
14. Ball, J.M., Mora-Corral, C.: A variational model allowing both smooth and sharp phase boundaries in

solids. Commun. Pure Appl. Anal. 8, 55–81 (2009)
15. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM

Rev. 59, 703–766 (2017)
16. Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polycon-

vexity. Math. Mod. Methods Appl. Sci. 28, 2367–2401 (2018)
17. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)
18. Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2,

25–53 (1952)
19. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech.

Anal. 63, 337–403 (1977)
20. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100,

13–52 (1988)
21. Bhattacharya, K.: Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape-

Memory Effect. Oxford University Press, New York (2003)
22. Müller, S.: Variational models for microstructure and phase transitions. Lecture Notes in Mathematics,

vol. 1713, pp. 85–210. Springer, Berlin (1999)
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