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a b s t r a c t 

Gradient polyconvex materials are nonsimple materials where we do not assume smoothness of the elas- 

tic strain but instead regularity of minors of the strain is required. This allows for a larger class of admis- 

sible deformations than in the case of second-grade materials. We describe a possible implementation of 

gradient polyconvex elastic energies in nonlinear finite strain elastostatics. Besides, a new geometric in- 

terpretation of gradient-polyconvexity is given and it is compared with standard second-grade materials. 

Finally, we demonstrate application of the proposed approach using two different models, namely, a Saint 

Venant-Kirchhoff material and a double-well stored energy density. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The modern mathematical theory of nonlinear elasticity typi-

ally assumes that the first Piola-Kirchhoff stress tensor has a po-

ential, the so-called stored energy density W ≥ 0. Materials fulfill-

ng this assumption are referred to as hyperelastic , or Green-elastic,

aterials. 

The state of the hyperelastic material is described by a defor-

ation y : �̄ → R 

n which is a mapping that assigns to each point

n the closed reference configuration �̄ its position after deforma-

ion. In what follows, we assume that � ⊂ R 

n (usually n = 2 or

 = 3 ) is a bounded Lipschitz domain. 

Stable states of a specimen are then found by minimizing the

nergy functional 

( y ) = 

∫ 
�

W ( ∇ y ( x )) d x − �ext ( y ) (1.1) 

ver a class of admissible deformations y : � → R 

n . Here �ext is

 linear bounded functional on the set of deformations express-

ng the work of external loads on the specimen and F = ∇ y is the

eformation gradient. The loading term can be much more gen-

ral, it is, however, important that external forces have potentials;

f. ( Ciarlet, 1988 ) for more details. Let us note that the elastic en-

rgy density in (1.1) depends on the first gradient of y only, which

s the simplest and canonical choice. 
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The principle of frame-indifference requires that W satisfies for

ll F ∈ R 

n ×n and all proper rotations R ∈ SO( n ) that 

 ( F ) = W ( R F ) . (1.2) 

very elastic material will also resist infinite compression and/or a

hange of the orientation, which is usually modeled by assuming 

 ( F ) 

{
→ + ∞ if det F → 0 + , 
= + ∞ if det F ≤ 0 . 

(1.3) 

he second condition also ensures that all admissible deformations

re orientation-preserving. 

From the applied analysis point of view, an important question

s for which stored energy densities the functional � in (1.1) pos-

esses minimizers. Relying on the direct method of the calculus

f variations, the usual approach to address this question is to

tudy (weak) lower semicontinuity of the functional � on appro-

riate Banach spaces containing the admissible deformations. See,

.g., Dacorogna (2007) or a recent review article ( Benešová and

ružík, 2017 ) for a detailed exposition of weak lower semiconti-

uity. 

An exact characterization of weak lower semicontinuity of � in

erms of the integrand is standardly available if W is of p -growth;

hat is, for some c > 1, p ∈ (1 , + ∞ ) and all F ∈ R 

n ×n the inequality

1 

c 
(| F | p − 1) ≤ W ( F ) ≤ c(1 + | F | p ) (1.4)

s satisfied, which in particular implies that W < + ∞ and (1.3) is

iolated. Indeed, in this case, the natural class for admissible de-

ormations is the Sobolev space W 

1 ,p (�; R 

n ) and it is well known

hat the relevant condition is the quasiconvexity of W . 

https://doi.org/10.1016/j.ijsolstr.2020.03.006
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We recall that W : R 

n ×n → R is said to be quasiconvex (in the

sense of Morrey, 1966 ) if 

 ( A ) L 

n (�) ≤
∫ 
�

W ( ∇ ϕ ( x )) d x (1.5)

for all A ∈ R 

n ×n and all ϕ ∈ W 

1 , ∞ (�; R 

n ) such that ϕ ( x ) = A x for

every x ∈ ∂�. There is as a weaker condition than quasiconvexity

(at least if n > 2) called rank-one convexity. We say that W as above

is rank-one convex if 

 (λF 1 + (1 − λF 2 ) ≤ λW ( F 1 ) + (1 − λ) W ( F 2 ) (1.6)

for every 0 ≤λ≤ 1 and every pair F 1 , F 2 ∈ R 

n ×n such that

rank ( F 1 − F 2 ) = 1 . If W is twice continuously differentiable it

means that h ′′ (0) ≥ 0 for h (t) = W ( F + t a � b ) where F ∈ R 

n ×n ,

a , b ∈ R 

n are arbitrary. 

A stronger condition than quasiconvexity is the so-called poly-

convexity ( Ball, 1977 ); function W : R 

3 ×3 → R ∪ { + ∞} is polycon-

vex if there exists a convex and a lower semicontinuous function

g : R 

3 x 3 × R 

3 x 3 × R → R ∪ { + ∞} such that 

 ( F ) = g( F , Cof F , det F ) . (1.7)

Here Cof F = ( det F ) F −� is the cofactor matrix of the invertible

matrix F . If n = 2 then Cof F can be omitted in the definition of

polyconvexity. As we already indicated above it holds for finite-

valued functions that ( Dacorogna, 2007 ) 

polyconvexity = > quasiconvexity = > rank-one convexity . 

The quasiconvexity is a nonlocal and a rather recondite condi-

tion. Moreover, it is not clear if quasiconvexity is sufficient for

weak lower semicontinuity of � if W also takes the value + ∞ ,

which is important in nonlinear elasticity; cf. Ball (2010) . Thus,

usually, the stored energy density is constructed to be polycon-

vex. We refer e.g., to Ciarlet (1988) for various models of poly-

convex stored energy densities including Ogden, Mooney-Rivlin, or

Neo-Hookean constitutive functions of isotropic, rubber-like mate-

rials. Note that polyconvex energies for different anisotropic classes

are given e.g., in ( Schröder et al., 2008 ). Proofs of the existence

of minimizers of � with polyconvex W rely on the sequential

weak continuity of minors in Lebesgue spaces. More precisely

( W 

1 ,p (�; R 

n ) and L q ( �) denote Sobolev and Lebesgue spaces; see

Section 2 for details), if { y k } k ∈ N ⊂ W 

1 ,p (�; R 

n ) for p > n and y k ⇀ y

in W 

1 ,p (�; R 

n ) for k → ∞ then det ∇y k ⇀ det ∇y in L p / n ( �) and

Cof ∇y k ⇀ Cof ∇y in L p/ (n −1) (�; R 

n ×n ) k → ∞ . Various generaliza-

tions can be found in Ciarlet (1988) or ( Dacorogna, 2007 ). Poly-

convexity proved to be beneficial and it is a widely used concept

in nonlinear elasticity. 

However, to describe certain materials, including nematic elas-

tomers, shape memory alloys, magnetostrictive or ferroelectric ma-

terials, polyconvex energy densities are not appropriate. These ma-

terials typically exhibit a fine structure. The reason for the forma-

tion of microstructures is that no exact optimum can be achieved,

and optimizing sequences have to develop finer and finer os-

cillations. This is intimately connected with non-quasiconvexity

(and therefore also non-polyconvexity) of the stored energy den-

sity resulting in the (generic) non-existence of minimizers of the

functional �. A typical example is a microstructure in shape

memory alloys which is closely related to the so-called shape

memory effect, i.e., the ability of some materials to recover,

on heating, their original shape. Such materials have a high-

temperature phase called austenite and a low-temperature phase

called martensite. The austenitic phase has only one variant,

but the martensitic phase exists in many symmetry-related vari-

ants and can form a microstructure by mixing those variants

(possibly also with the austenite variant) on a fine scale. Such

shape memory alloys, as e.g., Ni-Ti, Cu-Al-Ni or In-Th, have vari-

ous technological applications. We refer to Ball and James (1987,
992) ; Bhattacharya (2003) ; Müller (1999) ; Sedlák et al. (2012) ;

 ̊uma et al. (2016) for a rich variety of mechanical and mathemat-

cal aspects of the corresponding material models. 

Functionals that are not weakly lower semicontinuous might

till possess minimizers in some specific situations ( Benešová and

ružík, 2017 ), but, in general, their existence cannot be expected.

 generally accepted modeling approach for such materials is to

alculate the (weakly) lower semicontinuous envelope of �, the

o-called relaxation , see, e.g., Dacorogna (2007) ; DeSimone (1993) ;

hu and Bhattacharya (2001) ; DeSimone and Dolzmann (2002) .

his results in finding the quasiconvex envelope of W , i.e. the

argest quasiconvex function below W , which is generally not pos-

ible to obtain in a closed form except a few available exam-

les; see ( DeSimone and Dolzmann, 2002 ), and this approach at-

ains lots of attention also from the numerical point of view,

f. ( Furer and Casta ̌neda, 2018 ), for instance. 

Another possibility is to resort to a second-grade material

odel whose stored energy density depends on the whole sec-

nd gradient of y , i.e., on ∇ 

2 y as introduced by Toupin (1962,

964) and later studied by many authors both from mechanical

s well as mathematical viewpoints, see,e.g., Ball et al. (1981) ;

ell’Isola et al. (2009) ; Mielke and Roubíček (2015) ; Podio-

uidugli (2002) ; Forest et al. (1999) ; Forest and Sab (2017) . It is

ell known (see for example Ciarlet, 1988 ) that for q ∈ R 

3 small in

he Frobenius norm 

 y ( x 0 + q ) − y ( x 0 ) | 2 ∼= 

( q � q ) : C ( x 0 ) , (1.8)

here C ( x 0 ) = ∇ y ( x 0 ) 
� ∇ y ( x 0 ) . Similarly, 

 y ( x 0 + x 1 + q ) − y ( x 0 + x 1 ) | 2 ∼= 

( q � q ) : C ( x 0 + x 1 ) , (1.9)

nd, consequently, 

| y ( x 0 + x 1 + q ) − y ( x 0 + x 1 ) | 2 − | y ( x 0 + q ) − y ( x 0 ) | 2 
∣∣

∼= 

| ( q � q ) : ∇ C ( x 0 ) · x 1 | , (1.10)

hus, the second gradient penalizes sudden spatial changes of the

ength of infinitesimal line segments where the length is measured

n the deformed configuration. 

This paper deals with a different approach, the so-called gra-

ient polyconvexity as introduced in Benešová et al. (2018) , see

lso ( Kružík and Roubíček, 2019 ). Namely, we do not make the

nergy density depend (besides ∇y ) on the full ∇ 

2 y but only on

 [Cof ∇ y ] and possibly also on ∇ [det ∇ y ]. Indeed, this is a weaker

ondition because there are maps whose second gradient is not in-

egrable while Cof ∇y and det ∇y are both Lipschitz continuous;

ee ( Benešová et al., 2018 ) and Example 3.2 below. Denoting F the

eformation gradient, we have already seen that F T F measures the

atio between the squared distance of points in the deformed and

he reference configuration of the body. At the same time |(Cof F ) N |

easures the area of the infinitesimal reference planar segment

ith the unit normal N after deformation and det F quantifies vol-

me changes between the two configurations. Consider x 0 ∈ � such

hat x 0 + x 1 ∈ � for some x 1 ∈ R 

3 with | x 1 | very small. Take N ∈ R 

3 

 unit vector. Consider an infinitesimal area element containing the

oint x 0 with the normal vector N and the parallel (i.e. with the

ame normal N ) element containing x 0 + x 1 . We estimate the dif-

erence of areas of both elements in the configuration deformed by

 : �̄ → R 

3 : 

| Cof ∇ y ( x 0 + x 1 ) N | − | Cof ∇ y ( x 0 ) N | ∣∣
≤ | Cof ∇ y ( x 0 + x 1 ) N − Cof ∇ y ( x 0 ) N | 
∼= 

| ∇ [ Cof ∇ y ( x 0 ) N ] · x 1 | . (1.11)

ence, taking into account that N and x 1 were arbitrary, the gra-

ient of Cof ∇y penalizes abrupt local changes of areas in the
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eformed configuration. Obviously, 

et ∇ y ( x 0 ) = lim 

r→ 0 + 

3 L 

3 ( y (B (x 0 , r))) 

4 π r 3 
, (1.12) 

hich implies that the gradient of det ∇y controls spatial local

hanges of the volume. Nevertheless, the identity 

et 2 F = det ( F 2 ) = det ( Cof F ) (1.13) 

hich holds for every invertible F ∈ R 

3 ×3 explains that the volume

hanges can be easily steered through the areal ones, hence, from

he mathematical point of view, it is really not necessary to con-

rol ∇ [det ∇ y ] in our model. On the other hand, this term can

e included if it is required by mechanics. This option is already

entioned in (Kružík and Roubíček, 2019, Thm. 4.5.8.) , see also

Kružík and Roubíček, 2019, Exercise 4.5.21.) where the gradient of

of ∇y is omitted but the gradient of det ∇y is supposed to be-

ong to a Sobolev space. Here we can also mention ( Bisconti et al.,

019 ) where the authors define the energy functional depending

n ∇trace e for e being a linearized strain tensor. This can be seen

s linearization of ∇ [det ∇ y ] near the identity matrix. This means

hat second-gradient materials provide a stronger control of the

aterial behavior than gradient-polyconvex ones. 

In this paper we focus on numerical implementation of gradi-

nt polyconvexity with application to two examples of constitutive

odels. The layout of the paper is as follows. In Section 2 , we give

rief mathematical preliminaries, including definition of gradient

olyconvexity. In Section 3 , a micromorphic approach, which over-

omes C 1 continuity requirement of the standard gradient convex-

ty and is thus tailored for finite element implementation, is intro-

uced. In Section 4 , we use it as a starting point for our finite ele-

ent implementation of the gradient polyconvexity. Here we apply

 tensor cross product which greatly simplifies the involved alge-

ra and leads to simple formula, mainly in the linearization of the

nternal forces, e.g., in the formulas of the stiffness matrix. Finally,

n Section 5 , we exploit the proposed methodology in two numer-

cal examples, including a Saint Venant-Kirchhoff material, and a

ouble-well potential. 

. Notation 

The first-order, second-order, third-order, fourth-order, and

ixth-order tensors are denoted by lower-case Latin letters, capital

atin letters, Greek letters, and double struck capital Latin letters,

nd calligraphic letters, respectively. Moreover, the entire tensors

f first, second, and third order are in the Bold face letters. 

The simple, double, and triple contraction are denoted as · , :,

nd �, they are defined through the index notation with respect

o an orthonormal Cartesian basis where the Einstein summation

ule applies: 

a · b = a i b j , (A : b ) i = A i j b j , 

 : B = A i j B i j , (A : B ) i j = A i jkl B kl, 

ε
. . . ε = εi jk εi jk , (I 

. . . ε) i jk = I i jklmn εlmn . 

yadic products designated as � is defined as 

( A � B ) i jkl = A i j B kl . 

oreover, we utilize the tensor cross product which greatly simpli-

es the algebra, see ( Bonet et al., 2016 ) for more details. The tensor

ross product, × , is defined as 

( A × B ) i jkl = ε ikm 

ε jln A kl B mn , 

here ε = (ε i jk ) is the third-order permutation (Levi-Civita) tensor.

sing the tensor cross product, the cofactor of deformation gradi-

nt can be written as 

of F = 

1 

F × F . 

2 o
oreover, the first and derivative of Cof F with respect to deforma-

ion gradient read as 

∂ Cof F 

∂ F 
= F × (2.1) 

here we introduced a fourth order tensor by application of the

ensors cross product on a second-order tensors defined as 

( A ×) i jkl = ε imk ε jnl A mn . (2.2)

Using an orthonormal basis, the gradient and the divergence are

xpressed as: 

( ∇ a ) i j = 

∂a i 
∂x j 

, div A = 

∂A i j 

∂x j 
. 

ote that the derivatives are taken with respect to the reference

onfiguration. 

In what follows, � ⊂ R 

3 will be a bounded Lipschitz domain

epresenting the reference configuration of the specimen. We also

se the standard notation for Lebesgue spaces L p (�; R 

3 ) which

onsist of measurable maps whose modulus is integrable with

he p th power if 1 ≤ p < + ∞ or which are essentially bounded

f p = + ∞ . Maps which are in L p (�; R 

3 ) and their distributional

erivatives belong to L p (�; R 

3 ×3 ) belong to the Sobolev space

 

1 ,p (�; R 

3 ) . We refer e.g. to Adams and Fournier (2003) for more

etails. Further, L 

n denotes the n -dimensional Lebesgue measure,

nd ⇀ stands for the weak convergence. 

. Existence of minimizers 

efinition 3.1. Let � ⊂ R 

3 be a bounded open domain. Let ˆ W :

 

3 ×3 × R 

3 ×3 ×3 → R ∪ { + ∞} be a lower semicontinuous function.

he functional 

int ( y ) = 

∫ 
�

W̄ ( ∇ y (x ) , ∇ [ Cof ∇ y (x )])d x , (3.1) 

efined for any measurable function y : � → R 

3 for which the

eak derivatives ∇ y , ∇ [Cof ∇ y ] exist and are integrable is called

radient polyconvex if the function 

ˆ W ( F , ·) is convex for every F ∈
 

3 ×3 . 

We assume that for some c > 0, a function U : (0 ; + ∞ ) →
0 ; + ∞ ) such that lim a → 0 + U(a ) = + ∞ , and finite numbers p, q,

 ≥ 1 it holds that for every F ∈ R 

3 ×3 and every G ∈ R 

3 ×3 ×3 it

olds 

¯
 ( F , G ) 

≥
{

c 
(| F | p + | Cof F | q + ( det F ) r + U( det F ) + | G | q ) if det F > 0 , 

+ ∞ otherwise. 

(3.2) 

Condition (3.2) expresses that the energy is finite only for

rientation-preserving deformations and that it grows whenever

ny of the quantities on the right-hand side grows. The first four

erms on the right hand side are standard and can be found e.g., in

iarlet (1988) . They indicate that the energy growth with a change

f volume, area, or a change of a distance of points due to the de-

ormation, see also ( Schröder et al., 2011; Bonet et al., 2015 ) for

omputational approach for large strain polyconvex hyperelasticity

ased on the independent discretization of these quantities. 

Stored energy complying with (3.2) is, for instance, 

¯
 ( F , G ) = 

{
W ( F ) + α( | G | q + ( det F ) −s ) if det F > 0 , 

+ ∞ otherwise. 
(3.3) 

or some α > 0, U(a ) = a −s , q = 2 , s > 0 is indeed gradient polycon-

ex if W ( F ) ≥ c 
(| F | p + | Cof F | q + ( det F ) r is a continuous function

n the set of matrices with positive determinants. 
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Define for y : � → R 

3 smooth enough the following func-

tional 

�( y ) = �int ( y ) − �ext ( y ) , (3.4)

where �int is as in Definition 3.1 . The following existence result

was proved in Benešová et al. (2018) . 

Theorem 3.1. Let � ⊂ R 

3 be a bounded Lipschitz domain, and let

� = �0 ∪ �1 be a measurable partition of � = ∂� with L 

2 (�0 ) > 0 .

Let further �ext : W 

1 ,p (�; R 

3 ) → R be a linear bounded functional

and � as in (3.4) with 

�int ( y ) = 

∫ 
�

W̄ (∇ y , ∇ [ Cof ∇ y ])d x (3.5)

being gradient polyconvex and such that (3.2) holds true. Finally, let

p ≥ 2, q ≥ p 
p−1 , r > 1, s > 0 and assume that for some given map y 0 ∈

 

1 ,p (�; R 

3 ) the following set 

A : = { y ∈ W 

1 ,p (�;R 

3 ) : Cof ∇ y ∈ W 

1 ,q (�;R 

3 ×3 ) , det ∇ y ∈ L r (�) , 

( det ∇ y ) −s ∈ L 1 (�) , det ∇ y > 0 a.e.in �, y = y 0 on �0 } 
is nonempty and that inf A � < + ∞ . Then the following holds: 

(i) The functional � has a minimizer on A , i.e., inf A � is attained.

(ii) Moreover, if q > 3 and s > 6 q/ (q − 3) then there is ˜ ε > 0 such

that for every minimizer ˜ y ∈ A of � it holds that det ∇ ̃

 y ≥ ε̃
in �̄. 

The proof of this result relies on sequential weak continu-

ity of the minors of ∇y in Sobolev spaces. Indeed, if { y k } k ∈ N ⊂
 

1 ,p (�; R 

3 ) for p > 3 and y k ⇀ y in W 

1 ,p (�; R 

3 ) for k → ∞ and

det ∇ y k ⇀ D in W 

1, p /3 ( �) and Cof ∇ y k ⇀ C in W 

1 ,p/ 2 (�;R 

3 ×3 )

k → ∞ then D = det ∇ y and C = Cof ∇ y . 

Example 3.2. It was already observed in Benešová

et al. (2018) that there is a deformation y ∈ W 

1 , 4 (�; R 

3 ) such

that Cof ∇ y ∈ W 

1 , ∞ (�; R 

3 ×3 ) , det ∇y > 0 almost everywhere in �

but y �∈ W 

2 , 1 (�; R 

3 ) . To see this, let us take � = (0 , 1) 3 and the

following deformation 

y (x 1 , x 2 , x 3 ) = 

(
x 2 1 , x 2 x 

4 / 5 
1 

, x 3 x 
2 
1 

)
, 

so that ∇ y (x 1 , x 2 , x 3 ) = 

( 

2 x 1 0 0 

4 
5 

x 2 x 
−1 / 5 
1 

x 4 / 5 
1 

0 

2 x 1 x 3 0 x 2 1 

) 

. 

It follows that 

det ∇ y (x 1 , x 2 , x 3 ) = 2 x 19 / 5 
1 

> 0 

and 

Cof ∇ y (x 1 , x 2 , x 3 ) = 

⎛ 

⎝ 

x 14 / 5 
1 

− 4 
5 

x 2 x 
9 / 5 
1 

−2 x 9 / 5 
1 

x 3 
0 2 x 3 1 0 

0 0 2 x 9 / 5 
1 

⎞ 

⎠ . 

Notice that det ∇y ∈ W 

1, ∞ ( �), Cof ∇ y ∈ W 

1 , ∞ (�; R 

3 ×3 ) ,

( det ∇ y ) −1 / (4 t+3) ∈ L 1 (�) but we see that ∇ 

2 
y �∈ L 1 (�; R 

3 ×3 ×3 )

which means that y �∈ W 

2 , 1 (�; R 

3 ) . On the other hand,

y ∈ W 

1 ,p (�; R 

3 ) ∩ L ∞ (�; R 

3 ) for every 1 ≤ p < 5. 

4. Micromorphic approach 

It is well known that to implement the gradient continuum

within the standard finite element framework, C 1 continuity is re-

quired, see, e.g., Kirchner and Steinmann (2005) . To bypass C 1 con-

tinuity requirement, we utilize the micromorphic approach, see

Forest (2009) for further details. In this framework, a new second-

order auxiliary tensor field χ and its gradient are introduced into

the strain energy density. Subsequently, the continuum constraint

χ = Cof F is enforced weakly using penalty approach. 
The potential energy is written as 

( y , χ, ∇ χ) = 

∫ 
�

ˆ W ( F ( y ) , χ, ∇ χ) d x − �ext ( y ) (4.1)

here the strain energy ˆ W ( F ) is considered in form 

ˆ 
 ( F , χ, ∇ χ) = W 0 ( F ) + U(J) + 

1 

2 

H χ ( Cof ( F ) − χ) 
2 

+ 

1 

2 

K ∇ χ
. . . ∇ χ (4.2)

nd 

ext ( y ) = 

∫ 
�

b · y d x + 

∫ 
�1 

t · y d x (4.3)

s the standard potential energy of external forces with body load

 and boundary traction t . 

In (4.1) , J �→ U ( J ) denotes an energy function related to volumet-

ic changes which is a nonnegative function and fulfills certain

rowth condition, see the previous section. Note that a possible

orm is, e.g., U(J) = 

1 
2 K v ( ln J) 2 which is used in the subsequent sec-

ions. Moreover, H χ is a new material parameter that in our case

cts as a penalty parameter forcing the new auxiliary field χ to re-

ain as close as possible to Cof F , for the limit case H χ → ∞ the

riginal gradient continua is exactly restored. However, material

ith strain energy density (4.2) can be also interpreted as a special

ind of the so-called micromorphic continua which to the best of

ur knowledge has not been presented yet. 

The search for stationary points of � leads to the principle of

irtual power 

 �[ δv , δξ] = 

∫ 
�

∂ ˆ W 

∂ F 
: ∇ δv + 

∂ ˆ W 

∂ χ
: δξ + 

∂ ˆ W 

∂ ∇ χ

. . . ∇ δξ d x = 0 

∀ δv ∈ W 

1 ,p (�; R 

3 ) ; ∀ δξ ∈ W 

1 ,q (�; R 

3 ×3 ) . (4.4)

inally, we can write the Euler-Lagrangian conditions, i.e., the equi-

ibrium equations for the first Piola Kirchhoff stress P , and gener-

lized stresses S m 

and μ

 · P + b = 0 , ∀ x ∈ �, (4.5)

 · μ − S m 

= 0 , ∀ x ∈ �, (4.6)

ith the associated boundary conditions 

 · N = t , ∀ x ∈ �1 (4.7)

· N = 0 , ∀ x ∈ ∂� (4.8)

here the first Piola-Kirchhoff stress P , relative stress S m 

and

igher-order stress μ are defined as 

 m 

= 

∂ ˆ W 

∂ χ
= H χ ( χ − Cof ( F ) ) , (4.9)

= 

∂ ˆ W 

∂ ∇ χ
= K ∇ χ , (4.10)

 = 

∂ ˆ W 

∂ F 
= 

∂W 

∂ F 
+ U 

′ (J ) J F −T + H χ ( Cof ( F ) − χ) : 
∂ Cof F 

∂ F 
(4.11)

 P 0 + U 

′ (J) Cof F − S m 

× F . (4.12)

oreover, N is a unit normal vector in reference configuration and

 is the classical traction vector; generalized traction are for sim-

licity not considered here. To finish the formulation, the basic

quations must be supplemented by an appropriate Dirichlet-type

oundary condition for displacement field 

 ( x ) = ū ( x ) , ∀ x ∈ �0 (4.13)
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here �0 is a part of the boundary where the displacements are

rescribed, such that �0 ∩ �1 = ∅ and �0 ∪ �1 = ∂�. In general,

he Dirichlet-type boundary condition can also be prescribed for

he micromorphic field. However, the physical interpretation of this

oundary condition is challenging, and it is not considered here. 

It is worth noting that by inserting the constitutive

qs. (4.10) and (4.9) into micromorphic balance Eq. (4.6) we

btain a screened-Poisson differential equation 

− l 2 � χ = Cof F (4.14) 

here � stands for the Laplace operator and the internal length l

s defined by 

 = 

√ 

K 

H χ
. (4.15) 

To obtain the tangent operator, let us first write the second di-

ectional derivative of the total potential energy: 

 

2 �[ δv , δξ, �v , �ξ] = 

[
δv δξ

]
: D : 

[
�v 
�ξ

]
(4.16) 

here tensor D contains four blocks 

 = 

[
D uu D uχ

D 

T 
uχ D χχ

]
(4.17) 

hich are related to second derivatives of the strain energy. The

ndividual terms can be expressed as 

 uu = 

∂ 2 W 

∂ F ∂ F 
= A 0 + A V − H χ ( F ×) × F + ( S ×) (4.18)

 uχ = 

∂ 2 W 

∂ F ∂ χ
= −H χ ( F ×) (4.19)

 χχ = 

∂ 2 W 

∂ χ∂ χ
= KI (4.20) 

n the equations above, 

 0 = 

∂ P 0 
∂ F 

(4.21) 

s the first elasticity tensor of the non-regularized model; addition-

lly 

 V = 

∂ 2 U(J) 

∂ F ∂ F 
= U 

′′ Cof F � Cof F + U 

′ ( F ×) (4.22)

nd I is the sixth-order unit tensor. 

. Finite element formulation 

The tensor notation used in the previous sections is advanta-

eous for theoretical formulation. However, it is convenient to in-

roduce matrix notation for the finite element formulation. There-

ore, in this section, the Voigt notation is used. As was already

oted, using the strategy presented above, standard, i.e., C 0 finite

lement discretization can be used. Within the each finite element,

pproximation of displacements u and micromorphic field χ is in-

roduced as 

 ( x ) ≈ N u (x ) d u (5.1) 

( x ) ≈ N χ (x ) d χ (5.2) 

here N u and N χ are matrices collecting displacement and micro-

orphic shape functions. Applying the gradient operator to the fi-

ite element approximations gives 

 u ( x ) ≈ B u ( x ) d u (5.3) 
 χ( x ) ≈ B χ ( x ) d χ (5.4) 

here B u and B χ are matrices containing derivatives of the shape

unctions and represent discrete gradient operators, that is, mul-

iplication of the matrix with vector of nodal degrees of freedom

f particular field gives an array of gradient of the field. Moreover,

he so-called Bubnov-Galerkin approach is used, i.e., the same ap-

roximation is used for the virtual fields, such as 

u ( x ) ≈ N u (x ) δd u (5.5) 

χ( x ) ≈ N χ (x ) δd χ (5.6) 

 δu ( x ) ≈ B u ( x ) δd u (5.7) 

 δχ( x ) ≈ B χ ( x ) δd χ (5.8) 

ubstituting finite element approximation into the principle of vir-

ual power (4.4) , its discrete form is obtained 

δd 

T 
u 

[∫ 
�

B 

T 
u P − N 

T 
u b d x −

∫ 
�1 

N 

T 
u t d x 

]
+ 

δd 

T 
χ

[ ∫ 
�

N 

T 
χ S m 

+ B 

T 
χμ d x 

] 
= 0 (5.9) 

q. (5.9) is satisfied for any virtual fields if and only if 

 int (d u , d φ ) = f ext (5.10)

 int (d u , d φ ) = 0 (5.11)

here 

 int = 

∫ 
�

B 

T 
u P d x , g int = 

∫ 
�

B 

T 
χμ + N 

T 
χ S m 

d x 

re the standard and generalized internal forces and 

 ext = 

∫ 
�

N 

T 
u b d x + 

∫ 
�1 

N 

T 
u t d x 

s the external forces vector. 

The set of nonlinear Eqs. (5.10) and (5.11) and is solved by

he Newton-Raphson iteration scheme. This numerical method re-

uires a tangent operator which is obtained by differentiation of

he nodal internal forces with respect to the nodal degrees of

reedom. Thus, the tangent stiffness operator contains the second

erivative can be written as 

 = 

[
K uu K u χ

K χ u K χ χ

]
(5.12) 

ith 

 uu = 

∫ 
�

B 

T 
u D uu B u d x , K u χ = 

∫ 
�

B 

T 
u D uχ N χ d x (5.13)

 χ u = 

∫ 
�

N 

T 
χ D 

T 
uχ B u d x , K χ χ = 

∫ 
�

(
H χ N 

T 
χ N χ + A χ B 

T 
χ B χ

)
d x 

(5.14) 

here D are matrix counterparts of tensors D from Eqs. (4.18) –

4.20) . 
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6. Numerical examples 

The proposed micromorphic approach to gradient polyconvexity

has been implemented into finite element code OOFEM, see, e.g.,

Patzák and Bittnar (2001) ; Patzák (2012) ; Horák et al. (2014) . We

give here a few classical examples of energy densities lacking qua-

siconvexity which generically implies that there is no minimizer

of �. However, we regularize them suitably in such a way that

the resulting energy functional is gradient polyconvex and min-

imizers exist due to Theorem 3.1 . Other possibility is to extend

the notion of a minimizers from functions to measures. We refer

to Roubíček (1997) for advanced concepts of measure-valued so-

lutions and to Benešová (2011) for a sophisticated numerical ap-

proach in this direction. 

It is important to note, that the presented micromorphic

approach leads to purely minimization problem; therefore, the

Babuška-Brezzi condition is not applicable. However, numerical ex-

periments show that the same interpolation of the displacement

and micromorphic degrees of freedom leads to locking in the sense

that the results are insensitive to the internal length parameter and

strongly dependent on the penalty parameter caused by the in-

compatibility between finite element approximation and kinematic

requirements that links the micromorphic field to Cof F which has

the same order as the gradient of displacement. Therefore, we

choose displacement interpolation one degree higher than inter-

polation of the micromorphic field. 

In all the examples, we restrict our attention to problems in

three dimensions, i.e., n = 3 and we use a twenty-node isopara-

metric brick element with 132 degrees of freedom, i.e., with

quadratic interpolation of displacements and linear interpolation of

micromorphic degrees of freedom. 

6.1. Saint Venant-Kirchoff model 

Here, we focus on the very widely used Saint Venant-Kirchhoff

model which models a homogeneous and isotropic material. The

strain energy for the Saint Venant-Kirchhoff model can be written

as 

 0 ( F ) = 

λ

2 

Tr ( E ) 2 + μE : E (6.1)

where E = 

1 
2 ( F 

T F − I ) is the Green-Lagrange strain tensor, while

λ and μ are the Lame constants. The first Piola-Kirchhoff stress

tensor for this model can be obtained as 

P 0 ( F ) = λTr ( E ) F + 2 μF E . (6.2)

This model can be easily generalized by setting 

 0 ( F ) = 

1 

8 

( C − I ) : C : ( C − I ) = 

1 

2 

E : C : E (6.3)

where C is the so-called second elasticity tensor, not necessarily

isotropic. 

Even thought it is well-known that the Saint Venant-Kirchhoff

material is not polyconvex, it pathological behavior is often at-

tributed to the fact that finite energy is enough to compress this

model to a point, e.g., to the zero volume. Here, we show firstly

analytically and then numerically, that a non-stable behavior can

be observed under biaxial compression for enough large compres-

sion, but far from zero volume. 

In particular, taking C = 2 I we get 

 0 ( F ) = ( C − I ) : ( C − I ) = E : E (6.4)

where C = F � F , I is the second-order unit tensor, and I is the

fourth-order unit tensor. 

It is well-known that the Saint Venant-Kirchhoff stored energy

density is not rank-one convex; see Le Dret and Raoult (1994) . Here
e sketch a new proof of this fact. Consider two vectors a , b ∈ R 

3 .

t is easy to see that h : R → R defined as h (t) = W 0 ( F + t a � b ) is

ot convex at zero and consequently W 0 in (6.4) is not rank-one

onvex if and only if F , a , and b satisfy h ′′ (0) < 0, in other words 

 a | 2 C : b � b + | F � a � b | 2 + ( F � a � b ) : ( F � a � b ) � − | a | 2 | b | 2 < 0 . 

(6.5)

ake 
√ 

2 / 2 > ε > 0 and define F = diag (ε , ε , 1) , a = (1 , 0 , 0) , and

 = (0 , 1 , 0) . 

Moreover, setting 

 ± = 

[ 

ε ±√ 

1 − 2 ε 2 0 

0 ε 0 

0 0 1 

] 

(6.6)

hows that rank ( F + − F −) = 1 , F = ( F + + F −) / 2 , and det F =
et F ± = ε 2 > 0 . As 

 ± = 

[ 

ε 2 ±ε 
√ 

1 − 2 ε 2 0 

±ε 
√ 

1 − 2 ε 2 1 − ε 2 0 

0 0 1 

] 

(6.7)

e see that 

 0 ( F + ) = W 0 ( F −) = (ε 2 − 1) 2 + (−ε 2 ) 2 + 2 ε 2 (1 − 2 ε 2 ) 

= 2 ε 4 − 2 ε 2 + 1 + 2 ε 2 − 4 ε 4 = 1 − 2 ε 4 . (6.8)

n the other hand, 

 0 ( F ) = 2(ε 2 − 1) 2 = 2 − 4 ε 2 + 2 ε 4 . 

onsequently 

 0 ( F )− 1 

2 

W 0 ( F + ) − 1 

2 

W 0 ( F −) = 1 − 4 ε 2 + 4 ε 4 = (2 ε 2 − 1) 2 > 0 

(6.9)

or | ε| � = 

√ 

2 / 2 and W is not rank-one convex at F . Assuming affine

oundary conditions y (x ) = F x for x ∈ ∂� then a horizontally lami-

ated structure with deformation gradients F + and F − has a lower

nergy than the homogeneous deformation y ( x ) = F x for x ∈ �. It

pparently shows that W in (6.4) is not rank-one convex and con-

equently not quasiconvex. 

The results of such a numerical experiment are depicted in

ig. 1 where expected laminates are visible. Fig. 1 (a) and (b) show

ifferent com ponents of deformation gradient for displacements u x 
nd u y equal to 21, 75% of the original length. The subsequent

ig. 2 (a)–(c) shows deformation for displacements u x and u y equal

o 25% of the original length for (a) the standard Saint Venant-

irchhoff model, while (b) shows the same model including regu-

arizing volumetric term avoiding self penetration of the material.

inally, Fig. 2 (c) shows results obtained with gradient-polyconvex

ersion of the Saint Venant-Kirchhoff material. Clearly, there are

o laminates and the shear component F 12 is of the order of mag-

itude of numerical error. 

.2. Double-well potential 

In this section, we present a model with double-well

otential. The same double-well stored energy density was

sed in Kružík (1998) , and a similar one was used, e.g., in

hipot et al. (1995) . This model is suitable for description of

ustenitic-martensitic transformation 

 0 ( F ) = α
[ (

F T F − ˜ C 
1 
)

: 

(
F T F − ˜ C 

1 
)] [ (

F T F − ˜ C 
2 
)

: 

(
F T F − ˜ C 

2 
)] 

(6.10)

here α is a material constant and the right Cauchy-Green like

ensors ˜ C 
1 

and 

˜ C 
2 

defining the wells are given as 

˜ 
 

1 = 

[ 

1 ε 0 

ε 1 + ε2 0 

0 0 1 

] 

, ˜ C 
2 = 

[ 

1 −ε 0 

−ε 1 + ε2 0 

0 0 1 

] 

. 
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Fig. 1. Saint Venant-Kirchhoff laminates for ε = 0 . 7825 : (a) deformation gradient component F 11 (b) deformation gradient component F 12 . 

Fig. 2. Saint Venant-Kirchhoff laminates for ε = 0 . 75 ; deformation gradient component F 12 : (a) for standard model leading to self-penetration; (b) for the case with the 

volumetric regularization; (c) for the gradient-polyconvex formulation. 
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hese two wells correspond to deformation gradients 

 

1 = 

[ 

1 ε 0 

0 1 0 

0 0 1 

] 

, F 2 = 

[ 

1 −ε 0 

0 1 0 

0 0 1 

] 

hich are rank-one connected and represent pure shear defor-

ations. Apparently, the minimum energy configuration is repre-

ented by zig-zag laminates composed of these two shear states. 

To show the capabilities of the gradient polyconvex approach, a

lock specimen with the same length in x any y directions, l 1 =
 2 = 5 , and with thickness l 3 = l 1 / 10 = 0 . 5 was simulated. First,

he pathological mesh sensitivity of the original model (6.10) was

emonstrated. The specimen was discretized into different num-

er of elements. The top and bottom surfaces were fixed. No load

as applied, the specimen was simply let to relax. The expected

athological mesh-size dependence consisting of the zig-zag lami-

ates at the element level as given by the wells mentioned above
s shown on Fig. 3 (a)–(c), where the results on different mesh size

re depicted. 

The color represents an equivalent deformation computed as 

 eq = 

‖ C − ˜ C 
1 ‖ 

2 

‖ C − ˜ C 
1 ‖ 

2 + ‖ C − ˜ C 
2 ‖ 

2 
(6.11) 

hich provides distance between the actual right Cauchy-Green

eformation and the first well ˜ C 
1 
, i.e., C eq = 0 means that the de-

ormation coincide with the first well, while C eq = 1 corresponds

o the second well ˜ C 
2 
. 

Further, to remedy this pathological behavior, the model was

egularized by gradient-polyconvexity approach. The same block

ith slightly different boundary conditions was simulated using

he same gradient polyconvex double-well model. In this case, the

hole boundary of the block was fixed and the only deformation

as cause by relaxation of the material. Note that the parameters

f model were chosen as α = 1 .e 9 , H χ = 1 .e 5 , and ε = 0 . 05 ; where
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Fig. 3. Contour plots for C eq of the local double-well material model on different meshes: (a) 10x10x2 elements (b) 20x20x2 elements (c) 50x50x2 elements. 

Fig. 4. Contour plots for C eq of the local double-well material model on different meshes: (a) 20x20x2 elements (b) 34x34x2 elements (c) 40x40x2 elements. 

Fig. 5. Contour plots for C eq of the double-well material model: (a) K = 1 (b) K = 10 (c) K = 50 . 

 

 

 

 

l  

o  

0  

m  
α and H χ are in dimensions of Pa and ε in dimensionless, dimen-

sion of parameter K is Pa · m 

2 

Fig. 4 (a)–(c) show results computed on three different mesh

densities, consisting of 200, 2312, and 3200 elements with fixed

value of parameter K = 10 . This value corresponds to internal
ength l = 0 . 01 , see Eq. (4.15) . Recall that the color shows value

f the equivalent strain C eq defined in Eq. (6.11) and ranging from

 for red color to one for blue color. Apparently, the pathological

esh sensitivity observed for the original model (6.10) is removed
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ince the solution converges upon mesh refinement with constant

ize of the laminates. 

In the second case, the influence of the value of parameter K ,

.e., of the internal length scale is investigated. Results of three

xamples with fixed mesh density using 50 0 0 elements but with

 equal to 1, 10, and 50 are illustrated in Fig. 5 (a)–(c). The de-

icted equivalent strain clearly shows that the number of lami-

ates is decreasing with increasing internal length which is the de-

ired behavior. Note that a homogeneous solution was obtained for

 = 250 . 

It must be pointed out that the proposed Newton-Raphson pro-

edure does not generally lead to the global minimum, but rather a

ritical point is obtained. Since the inspected double-well problem

ffers multiple local minima and maxima, we can not be sure that

he global minimum has been obtained. We check the positive-

efiniteness of the tangent operator. 

eclaration of Competing Interest 

None. 

cknowledgments 

We are indebted to Antonio J. Gil and Ond ̌rej Rokoš for interest-

ng discussions and suggestions. This research has been performed

n the Center of Advanced Applied Sciences (CAAS), financially sup-

orted by the European Regional Development Fund (Project no.

Z.02.1.01/0.0/0.0/16_019/0 0 0 0778 ). MK was partially supported by

he GA ̌CR project 18-03834S. 

eferences 

dams, R. , Fournier, J. , 2003. Sobolev Spaces, second ed. Acad. Press/Elsevier, Ams-
terdam . 

all, J. , 1977. Convexity conditions and existence theorems in nonlinear elasticity.

Arch. Ration. Mech. Anal. 63, 337–403 . 
all, J. , 2010. Progress and puzzles in nonlinear elasticity. In: Schröder, J., Neff, P.

(Eds.), Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer,
Wien. CISM Intl. Centre for Mech. Sci. 516, pp. 1–15 . 

all, J., Currie, J., Olver, P., 1981. Null Lagrangians, weak continuity, and varia-
tional problems of arbitrary order.. J. Funct. Anal. 41, 135–174. doi: 10.1016/

0 022-1236(81)90 085-9 . 

all, J. , James, R. , 1987. Fine phase mixtures as minimizers of energy. Arch. Ration.
Mech. Anal. 100, 13–52 . 

all, J. , James, R. , 1992. Proposed experimental tests of a theory of fine microstruc-
ture and the two-well problem. Phil. Trans. R. Soc. Lond. Ser. A 338, 389–450 . 

enešová, B. , 2011. Global optimization numerical strategies for rate-independent
processes. J. Glob. Optim. 50, 197–220 . 

enešová, B. , Kružík, M. , 2017. Weak lower semicontinuity of integral functionals

and applications. SIAM Rev. 59, 703–766 . 
enešová, B. , Kružík, M. , Schlömerkemper, A. , 2018. A note on locking materials and

gradient polyconvexity. Math. Models Meth. Appl. Sci. 28, 2367–2401 . 
hattacharya, K. , 2003. Microstructure of Martensite: Why it Forms and How It

Gives Rise to the Shape-memory Effect. Oxford Univ. Press, Oxford . 
isconti, L. , Mariano, P. , Markenscoff, X. , 2019. A model of isotropic damage with

strain-gradient effects: existence and uniqueness of weak solutions for progres-

sive damage processes. Math. Mech. Solids 24 (9), 2726–2741 . 
onet, J. , Gil, A. , Ortigosa, R. , 2015. A computational framework for polyconvex large

strain elasticity. Comput. Meth. Appl. Mech. Eng. 283, 1061–1094 . 
onet, J. , Gil, A. , Ortigosa, R. , 2016. On a tensor cross product based formulation of
large strain solid mechanics. Int. J. Solids Struct. 84, 49–63 . 

hipot, M. , Collins, C. , Kinderlehrer, D. , 1995. Numerical analysis of oscillations in
multiple well problems. Numer. Math. 70, 259–282 . 

iarlet, P. , 1988. Mathematical Elasticity. Vol.I: Three-Dimensional Elasticity.
North-Holland, Amsterdam . 

acorogna, B. , 2007. Direct Methods in the Calculus of Variations. Springer, New
York . 

ell’Isola, F. , Sciarra, G. , Vidoli, S. , 2009. Generalized Hooke’s law for isotropic sec-

ond gradient materials. Proc. R. Soc. Lond. A 465, 2177–2196 . 
eSimone, A. , 1993. Energy minimizers for large ferromagnetic bodies. Arch. Ration.

Mech. Anal. 125 (2), 99–143 . 
eSimone, A. , Dolzmann, G. , 2002. Macroscopic response of nematic elastomers via

relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161,
181–204 . 

orest, S. , 2009. Micromorphic approach for gradient elasticity, viscoplasticity, and

damage. J. Eng. Mech. 135 (3), 117–131 . 
orest, S. , Cardona, J. , Sievert, R. , 1999. Towards a theory of second grade thermoe-

lasticity. Extracta Math. 14, 127–140 . 
orest, S. , Sab, K. , 2017. Finite-deformation second-order micromorphic theory and

its relations to strain and stress gradient models. Math. Mech. Solids 1–21 .
1081286517720844 

urer, J. , Casta ̌neda, P.P. , 2018. Macroscopic instabilities and domain formation in

neo-Hookean laminates. J. Mech. Phys. Solids 118, 98–114 . 
orák, M. , Patzák, B. , Jirásek, M. , 2014. On design of element evaluators in OOFEM.

Adv. Eng. Softw. 72, 193–202 . 
irchner, N. , Steinmann, P. , 2005. A unifying treatise on variational principles for

gradient and micromorphic continua. Philos. Mag. 85, 3875–3895 . 
ružík, M. , 1998. Numerical approach to double well problems. SIAM J. Numer. Anal.

35, 1833–1849 . 
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