
MATLAB Implementation
of Element-Based Solvers

Leszek Marcinkowski1 and Jan Valdman2(B)

1 Faculty of Mathematics, University of Warsaw, Warszawa, Poland
lmarcin@mimuw.edu.pl

2 Faculty of Science, University of South Bohemia,
České Budějovice, and The Czech Academy of Sciences,

Institute of Information Theory and Automation, Prague, Czechia
jan.valdman@utia.cas.cz

Abstract. Rahman and Valdman (2013) introduced a vectorized way to
assemble finite element stiffness and mass matrices in MATLAB. Local
element matrices are computed all at once by array operations and stored
in multi-dimensional arrays (matrices). We build some iterative solvers
on available multi-dimensional structures completely avoiding the use of
a sparse matrix.

Keywords: MATLAB code vectorization · Finite elements · Stiffness
and mass matrices · Iterative solvers

1 Motivation Example

We solve a benchmark boundary value problem

−�u + νu = f on x ∈ Ω = (0, 1) × (0, 1)

for given f ∈ L2(Ω) and a parameter ν ≥ 0. Nonhomogeneous Dirichlet or
homogeneous Neumann boundary conditions are assumed on parts of boundary
∂Ω and measure of the Dirichlet boundary has to be positive for ν = 0. A finite
element method is applied and leads to a linear system of equations

Au = (K + νM)u = b, (1)

for an unknown vector u ∈ R
nn , where nn denotes the number of mesh nodes

(vertices). Stiffness and mass matrices K,M ∈ R
nn×nn and the right hand side

vector b ∈ R
nn are defined as

Kij =
∫

Ω

∇Φi · ∇Φj dx, Mij =
∫

Ω

Φi Φj dx, bj =
∫

Ω

f Φj dx (2)

The work of the 1st author was partially supported by Polish Scientific Grant: National
Science Center 2016/21/B/ST1/00350.
The work of the 2nd and the corresponding author was supported by the Czech Science
Foundation (GACR), through the grant GA17-04301S.

c© Springer Nature Switzerland AG 2020
I. Lirkov and S. Margenov (Eds.): LSSC 2019, LNCS 11958, pp. 601–609, 2020.
https://doi.org/10.1007/978-3-030-41032-2_69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41032-2_69&domain=pdf
https://doi.org/10.1007/978-3-030-41032-2_69

602 L. Marcinkowski and J. Valdman

using local basis functions Φi for i = 1, . . . , nn and ∇ denotes the gra-
dient operator. Figure 1 shows an example of a 2D discretization of Ω.
Sparse matrices K,M are generated as

x
0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
mesh, level=0

x
0 0.5 1

y
0

0.2

0.4

0.6

0.8

1
mesh, level=1

Fig. 1. Two examples of triangular meshes of a unit square domain Ω with ne = 2
elements and nn = 4 nodes (left) and ne = 8 elements and nn = 9 nodes (right).

K =
ne∑

e=1

CT
e KeCe, M =

ne∑
e=1

CT
e MeCe, (3)

where ne denotes a number of mesh elements (number of triangles in Fig. 1),

Ke,Me ∈ R
nb×nb , e = 1, . . . , ne

are local element matrices and

Ce ∈ R
nb×nn , e = 1, . . . , ne

are Boolean connectivity matrices which distribute the terms in local element
matrices to their associated global degrees of freedom. Here, nb denotes a number
of local basic functions. In the simplest case of nodal linear (P1) finite elements:

nb = 3 for triangles in 2D,

nb = 4 for tetrahedra in 3D.

Extensions to higher order isoparametric elements are also possible. All matrices
Ke,Me for e = 1, . . . , ne are generated at once using vectorized routines of [3].
They are stored as 3-dimensional full matrices (see Fig. 2) of sizes

nb × nb × ne.

The storage of 3-dimensional matrices contains certain memory overheads in
comparison to sparse matrices (which can be automatically generated from

MATLAB Implementation of Element-Based Solvers 603

1 2 3 4 5 6 7 8

K4

Fig. 2. Example of a 3-dimensional array storing all local stiffness matrices. The matrix
corresponds to a triangular mesh with 8 elements displayed on Fig. 1 (right). A partic-
ular local stiffness matrix K4 ∈ R

3×3 is indicated.

them), since local contributions from restrictions of basis functions to shared
elements are stored separately. Our aim is to build and explain in detail simple
linear iterative solvers based on local element matrices Ke,Me without assem-
bling the sparse matrices M,K. This is our first attempt in this direction and
therefore we show the possibility of this approach rather than efficient imple-
mentations and runtimes. The complementary software to this paper is available
for download

https://www.mathworks.com/matlabcentral/fileexchange/70255.

2 Element-Based Solvers

Some examples of element-based iterative solvers are provided including their
simple MATLAB implementations. All are based on a vectorized computation
of a (column) residual vector

r := b − Ax (4)

for a given approximation (column) vector x ∈ R
nn . The residual is computed

using local matrices and local vectors

Ae := Ke + νMe ∈ R
nb×nb , be ∈ R

nb , e = 1, . . . , ne.

Matrices Re ∈ R
nb×nn , e = 1, . . . , ne are restriction matrices from global to local

indices. Note that elementwise evaluations inside the loop (lines 2 and 3) operate
with local matrices and local vectors only. A fully vectorized MATLAB version
of Algorithm 1 follows:

https://www.mathworks.com/matlabcentral/fileexchange/70255

604 L. Marcinkowski and J. Valdman

Algorithm 1 residual computation - looped version

1: for e = 1, . . . , ne do
2: xe = Rex, (restriction)
3: re = be − Aexe, (local residual)
4: end for
5: r =

∑ne

e=1 CT
e re. (assembly)

1 f unc t i on r=r e s i d u a l e (A e , bt e , x , ind e , indt)

2 x e=x(ind e) ; %r e s t r i c t i o n − a l l

3 r t e=bt e−avtam(x e , A e) ; %r e s i d u a l − a l l

4 r=accumarray (indt (:) , r t e (:)) ; %assembly − a l l

5 end

Clearly, matrices Re and Ce of Algorithm 1 are not stored, but their opera-
tions are replaced by a convenient indexing using two index arrays:

ind e ∈ I
nb×1×ne , indt ∈ I

nb×ne .

Both arrays contain the same global nodes numbers corresponding to each ele-
ment, but they are ordered differently with respect to their operations.

All objects indexed by elements are stored as full higher dimensional matrices
and their names end with a symbol _e.

2.1 Richardson Iteration

We recall few examples of iterative methods based on a residual computation
More details about them can be found eg. in [2,4]. One of the simplest iterative
methods to solve (1) is the Richardson iteration for iterations k = 0, 1, 2, . . . in
the form

rk = b − Axk,

xk+1 = xk + ω rk
(5)

with the initial column vector x0 ∈ R
n and a given positive parameter ω > 0.

The optimal coefficient is equal to ωopt = 1
λ1+λ2

for A = AT > 0, where λ1 is
the smallest and λ2 the largest eigenvalue of A. For this ωopt the convergence
estimate is the fastest, i.e.

‖xk − u‖2 ≤ λ2 − λ1

λ2 + λ1
‖xk−1 − u‖2.

MATLAB Implementation of Element-Based Solvers 605

Here, u ∈ R
n is the solution of (1). A MATLAB version follows:

1 f unc t i on x=Richardson e (A e , bt e , x0 , ind e , indt , i t e r s , lam2 , lam1 ,

nd)

2 omega=2/(lam2+lam1) ; %optimal parameter

3 x=x0 ; %i t e r a t i o n i n i t i a l

4 f o r k=0: i t e r s −1

5 r=r e s i d u a l e (A e , bt e , x , ind e , indt) ; %r e s i d u a l comput .

6 r (nd)=0; %d i r i c h l e t cond i t .

7 x=x+omega∗ r ; %i t e r a t i o n update

8 end

9 end

2.2 Chebyshev Iteration

The Chebyshev polynomial (of the first kind) of degree N ∈ N0 is defined by

TN (x) := cos(N arccos(x)), x ∈ [−1, 1]

and it is known to have roots in the form

αk = cos(π(k + 1/2)/N), k = 0, . . . , N − 1.

Consequently, a shifted and scaled polynomial

PN (t) = TN

((−2
λ2 − λ1

)(
t − λ1 + λ2

2

))
/CN , t ∈ [λ1, λ2],

with the scaling factor CN = TN

(
λ1+λ2
λ2−λ1

)
satisfies the condition PN (0) = 1. It

also has N distinct roots

αk =
λ1 + λ2

2
− λ2 − λ1

2
cos

(
π(k + 1/2)

N

)
, k = 0, . . . , N − 1

lying in (λ1, λ2). This polynomial has the smallest maximum norm on [λ1, λ2]
over all polynomials of degree less or equal N which are equal to one at zero.

Two-Level Chebyshev Iteration. The cyclic two-level Chebyshev iterative
methods to solve (1) is in the form

rk = b − Axk,

xk+1 = xk + α−1
k (mod N)r

k.
(6)

The method is convergent if all eigenvalues of A are contained in [λ1, λ2] ⊂
(0,∞). The optimal convergence is accessed where λ1 is the minimal eigenvalue
and λ2 the maximal eigenvalue of A. Note that after N iterations we get

xN − u = ΠN−1
k=0 (I − α−1

k A)(x0 − u) = PN (A)(x0 − u). (7)

606 L. Marcinkowski and J. Valdman

and then after �N iterations we get x�N − u = (PN (A))�(x0 − u). Note that the
Richardson iteration (5) is the special case of this method with N = 1. This
error formula gives us,

‖xN − u‖2 ≤
∑

t∈[λ1,λ2]

|PN (t)|‖x0 − u‖2 ≤ 2
(√

λ2 − √
λ1√

λ2 +
√

λ1

)N

‖x0 − u‖2.

A MATLAB version follows:

1 f unc t i on x=Chebyshev2Level e (A e , bt e , x0 , ind e , indt , i t e r s , lam2 ,

lam1 ,N, nd)

2 d=(lam2+lam1) /2 ; c=(lam2−lam1) /2 ;

3 k=0:N−1; a lphas=d+c∗ cos (p i ∗(1/2+k) /N) ;

4 x=x0 ; %i t e r a t i o n i n i t i a l

5 f o r k=0: i t e r s −1

6 r=r e s i d u a l e (A e , bt e , x , ind e , indt) ; %r e s i d u a l comput .

7 r (nd)=0; %d i r i c h l e t cond i t .

8 alpha=alphas (mod(k ,N)+1) ;

9 x=x+(1/alpha) ∗ r ; %i t e r a t i o n update

10 end

11 end

Three-Level Chebyshev Iteration. We now present the three-level Cheby-
shev iteration, cf. e.g. [2,4], The method is defined by the error equation, cf. also
(7),

xk − u = Pk(A)(x0 − u), k = 0, 1, 2, . . . (8)

and its implementation is based on the following recurrence relation

Tk(t) = 2t Tk−1(t) − Tk−2(t), k > 1, T1(t) = t, T0(t) = 1.

This relation for tk yields the recurrence formula for k > 1,

Pk+1(x) = 2
λ1 + λ2 − 2x

λ2 − λ1

Ck

Ck+1
Pk(x) − Ck−1

Ck+1
Pk−1(x),

Ck+1 = 2
λ1 + λ2

λ2 − λ1
Ck − Ck−1, (9)

where

P1(x) = C−1
1

λ1 + λ2 − 2x

λ2 − λ1
, P0 = 1, C1 =

λ1 + λ2

λ2 − λ1
, C0 = 1.

For k = 1 we get x1 − u = P1(A)(x0 − u) and

x1 = u +
λ2 − λ1

λ1 + λ2

λ1 + λ2 − 2A

λ2 − λ1
(x0 − u) = x0 +

2
λ2 − λ1

r0,

MATLAB Implementation of Element-Based Solvers 607

where r0 = b−Ax0. Note that x1 is computed as one iteration of the Richardson
method applied to x0 with the optimal coefficient, cf. (5). Our method is defined
by (8), thus using the above recurrence relation we get for k > 1,

xk+1 − u =
2Ck

Ck+1

(
λ1 + λ2

λ2 − λ1
I − 2

λ2 − λ1
A

)
(xk − u) − Ck−1

Ck+1
(xk−1 − u).

Since
1 = 2

λ1 + λ2

λ2 − λ1

Ck

Ck+1
− Ck−1

Ck+1

we see that

xk+1 =
2Ck

Ck+1

λ1 + λ2

λ2 − λ1
xk +

4
λ2 − λ1

Ck

Ck+1
(b − Axk) − Ck−1

Ck+1
xk−1

and utilizing this identity once more we have the three level Chebyshev iterations

xk+1 = xk +
Ck−1

Ck+1
(xk − xk−1) +

4
λ2 − λ1

Ck

Ck+1
rk, k > 1, (10)

x1 = x0 +
2

λ2 − λ1
r0

with rk = b − Axk k = 0, 1, 2, We remind that the scaling factors Ck are
defined by (9). Note that xN in the both 2-level and 3-level iterations, cf. (6)
and (10), are equal to each other what follows from (7) and (8). A MATLAB
version reads:

1 f unc t i on x=Chebyshev3Level e (A e , bt e , x0 , ind e , indt , i t e r s , lam2 ,

lam1 , nd)

2 d=(lam2+lam1) /2 ; c=(lam2−lam1) /2 ;

3 x=x0 ;

4 r=r e s i d u a l e (A e , bt e , x , ind e , indt) ; %residuum comput .

5 r (nd)=0; %d i r i c h l e t cond i t .

6 f o r k = 0 : i t e r s −1

7 z=r ;

8 i f (k==0)

9 p=z ; alpha=1/d ;

10 e l s e

11 beta=(c∗ alpha /2) ˆ2 ;
12 p=z+beta ∗p ; alpha=1/(d − beta / alpha) ;

13

14 end

15 x=x+alpha ∗p ;

16 r=r e s i d u a l e (A e , bt e , x , ind e , indt) ; %residuum comput .

17 r (nd)=0; %d i r i c h l e t cond i t .

18 end

19 end

608 L. Marcinkowski and J. Valdman

3 Numerical Experiments

We consider for simplicity the case of the square domain Ω = (0, 1) × (0, 1), no
mass matrix (ν = 0) and nonhomogenous Dirichlet boundary conditions u = 1
for x ∈ ∂Ω. For a uniformly refined triangular mesh (see Fig. 1) with n2 nodes
(also counting boundary nodes), there are (n − 2)2 eigenvalues of A = K in the
form

λ = 4
(

sin2 iπ

2(n − 1)
+ sin2 jπ

2(n − 1)

)
, i, j = 1, . . . , n − 2

and the minimal eigenvalue λ1 is obtained for i = j = 1 and the maximal
eigenvalue λ2 for i = j = n − 2. We utilize these eigenvalue bounds for all
mentioned iterations methods. Furthermore, we assume a constant function f =
1 for x ∈ Ω.

Fig. 3. Final iterates.

For a given number of iterations (we choose 124 iterations) and a (level 5)
mesh with 1089 = 332 nodes, final iterates are displayed in Fig. 3. Only the 3-level
Chebyshev method converged optically to the exact solution. Richardson requires
more steps to improve its convergence and the 2-level Chebyshev (with N =
32) demonstrates a known instability. The remedy to fix this instability would
be to reorder values of precomputed parameters αk to enhance the stability.
Time performance is also reasonable for finer meshes. On a (level 10) mesh with
1050625 = 10252 nodes, the assemblies of 3-dimensional arrays Ke,Me take
around 5 s each and 124 iterations take around 50 s for all iteration methods.
The direct solver of MATLAB takes 5 s. Since number of iterations to obtain
a convergence with respect to a given tolerance is known to grow as a function
of condition number of finer meshes, we need to combine studied solvers with
preconditioners or use several iterations of them as smoothers for instance in
multigrid procedures.

MATLAB Implementation of Element-Based Solvers 609

Outlooks

We are interested in developing preconditioners for discussed solvers on multi-
dimensional structures and extension to edge elements based on [1].

References

1. Anjam, I., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D:
edge elements. Appl. Math. Computat. 267, 252–263 (2015)

2. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Applied
Mathematical Sciences, vol. 95. Springer-Verlag, New York (1994). https://doi.org/
10.1007/978-1-4612-4288-8. Translated and revised from the 1991 German original

3. Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D:
nodal elements. Appl. Math. Computat. 219, 7151–7158 (2013)

4. Samarskii, A.A., Nikolaev, E.S.: Numerical Methods for Grid Equations. Vol. II.
Iterative Methods. Birkhäuser Verlag, Basel (1989). https://doi.org/10.1007/978-3-
0348-9272-8. Translated from the Russian and with a note by Stephen G. Nash

https://doi.org/10.1007/978-1-4612-4288-8
https://doi.org/10.1007/978-1-4612-4288-8
https://doi.org/10.1007/978-3-0348-9272-8
https://doi.org/10.1007/978-3-0348-9272-8

