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Abstract. We propose an effective and flexible way to assemble tangent stiffness matrices in MATLAB. Our technique is applied
to elastoplastic problems formulated in terms of displacements and discretized by the finite element method. The tangent stiffness
matrix is repeatedly assembled in each time step and in each iteration of the semismooth Newton method. We consider von Mises
and Drucker-Prager yield criteria, linear and quadratic finite elements in two and three space dimensions. Our codes are vectorized
and available for download. Comparisons with other available MATLAB codes show, that our technique is also efficient for purely
elastic problems. In elastoplasticity, the assembly times are linearly proportional to the number of integration points.

INTRODUCTION

Vectorization in MATLAB replaces inefficient loops over long arrays by operations with matrices, mainly with sparse
matrices. Vectorized codes are then reasonably scalable and fast for large size problems. In this contribution, we deal
with a vectorized MATLAB implementation in 2D and 3D proposed in [3] for solution of elastoplastic problems.
There are already publicly available MATLAB codes dealing with (pure) elasticity without plasticity [1, 6, 10].

Our implementation arises from a current elastoplastic solution scheme including time discretization by the
implicit Euler method, construction of a constitutive operator and its generalized derivatives by the return-mapping
algorithm, space discretization by the finite element method, and solution of nonlinear systems of equations by the
semismooth Newton method. In [3], the implementation for models including von Mises and Drucker-Prager yield
criteria is described in detail. Similar implementation has been used for other yield criteria within numerical examples
introduced in recent papers [2, 4, 5, 7, 8, 9].

Further, one can optionally choose P1, P2, Q1 and Q2 finite elements with convenient quadrature rule for nu-
merical integration. To be the codes universal, crucial functions are written uniformly regardless on the choice of
elastoplastic models, finite elements or geometries.

The rest of this abstract describes main features of elastoplastic systems of nonlinear equations, assembling of
the elastic and tangent stiffness matrices, and illustrative numerical results.

Elastoplastic problems and their solution

Broadly speaking, in each time step of elastoplastic problems we solve a system of nonlinear equations of the following
type:

find u ∈ Rn : F(u) = f , (1)

International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2019
AIP Conf. Proc. 2293, 330003-1–330003-4; https://doi.org/10.1063/5.0026561

Published by AIP Publishing. 978-0-7354-4025-8/$30.00

330003-1



where u denotes the unknown displacement vector, f ∈ Rn is the vector of external forces, and F : Rn → Rn is a
nonlinear function representing internal forces which is usually Lipschitz continuous and semismooth but nonsmooth
in Rn. Therefore, it is necessary to use the semismooth variant of the Newton method, see, e.g., [9]. In each Newton
iteration � = 1, 2, . . ., we solve a linear system of equations

find δu� ∈ Rn : Ktangentδu� = f − F(u�), (2)

where δu� ∈ Rn is an unknown incremental vector, u� ∈ Rn is a previous iteration of u, and Ktangent ∈ Rn×n is a
tangential stiffness matrix representing a generalized derivative of F at u� ∈ Rn.

The systems of nonlinear equations (1) have other specific features. First, if the load f is sufficiently small
then solutions of elastic and elastoplastic problems usually coincide, i.e., F(u) = Kelastu, where Kelast ∈ Rn×n is the
corresponding elastic stiffness matrix. Further, for larger loads these solutions significantly differ and in addition, the
solution u need not exist for some elastoplastic models due to the presence of limit loads [7, 8, 9]. In vicinity of
the limit load, one can also observe locking phenomena and higher order finite elements are recommended. Then,
assemblies of F and Ktangent require suitable quadrature rules of higher order. Finally, the definition of F is based on
solution of the elastoplastic constitutive problems at each integration point of the investigated body. Such solutions
(constitutive operators) are given in an implicit form and depend on history of loading. Therefore, constructions of F
and Ktangent are technically complicated and not straightforward [8, 9].

Assembly of stiffness matrices Kelast and Ktangent

Stiffness matrices based on the finite element method are usually assembled elementwisely by using local stiffness
matrices. For example, one can write

Kelast =

ne∑

e=1

R�e Ke,elast Re, (3)

where ne denotes a number of finite elements, Re is a matrix restricting the displacement vector into its components
belonging to a finite element and Ke,elast is the local stiffness matrix of the form

Ke,elast =

nq∑

q=1

ωe,qB�e,qCe,qBe,q. (4)

Here, nq is a number of quadrature points at any element, ωe,q denotes quadrature weights, Be,q is the strain-
displacement matrix, and Ce,q is the elastic constitutive matrix following from the Hooke’s law (Ce,q ∈ R3×3 in 2D and
Ce,q ∈ R6×6 in 3D). For homogeneous materials, Ce,q is fixed for any element and any quadrature point.

The assembly of Kelast introduced in [3] arises from the following split:

Kelast = B�Delast B, (5)

where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1R1

B1,2R1

...
B1,nq R1

B2,1R2

...

...
Bne,nq Rne

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Delast =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃1,1

C̃1,2

. . .

C̃1,nq

C̃2,1

. . .

. . .

C̃ne,nq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with C̃e,q = ωe,qCe,q, e = 1, 2, . . . , ne, q = 1, 2, . . . , nq. The matrices B and Delast are large and sparse. Moreover, we
see that Delast is block diagonal. The multiplications in (5) are possible and convenient in MATLAB if these matrices
are defined as sparse.
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FIGURE 1. 3D problem with the von Mises yield criterion and kinematic hardening. Total displacement (left), assembly times of
tangential stiffness matrix versus number of plastic integration points (right).

Similarly, one can assemble the tangent stiffness matrix for an elastoplastic problem:

Ktangent = B�Dtangent B. (6)

Here, the matrix Dtangent has the same size and structure as Delast. Each block of Dtangent represents a generalized
derivative of the elastoplastic constitutive operator at any integration point. Moreover, one can write [3]:

Ktangent = Kelast + B�(Dtangent − Delast)B, (7)

Although (6) and (7) are algebraically identical, the form (7) is more convenient for MATLAB implementation since
the sparse matrix Dtangent−Delast is typically sparser than Dtangent. This occurs when most of integration points remains
in the elastic phase. Therefore, for problems with smaller plastic regions, the assembly of the tangential stiffness matrix
can be faster than for problems with larger plastic regions, see Figure 1 (left).

Finally, it is important to note that the matrices Kelast, B, Delast can be precomputed and only the matrix Dtangent
depends on a particular plasticity model and needs to be partially reassembled in each Newton iteration. Additionally,
B can be also used for the assembly of the function F.

Illustrative numerical results

The first illustrative result is depicted in Figure 1. It is considered a 3D problem with L-shaped geometry and cycling
loading. The body obeys the associative plastic flow rule and the linear kinematic hardening law. The von Mises yield
criterion is used. The left figure visualizes the total displacement. The right figure compares assembly times of Ktangent
at particular time steps and Newton iterations. These times do not include the assembly of the elastic stiffness matrix
Kelast which is precomputed and fixed. We see that the assembly times of Ktangent linearly depend on the numbers of
elements with plastic response and are always lower than the assembly time of Kelast.

The second illustrative result is depicted in Figure 2. It is considered a strip-footing problem under the plane
strain assumption. The aim is to analyze bearing capacity of a soil foundation and visualize the plastic collapse of
the body. Monotone displacement loading is prescribed on the left part of the top. The body is perfectly plastic
with the Drucker-Prager yield criterion. Failure mechanism is visualized by displacement fields and deformed shape.
We observe significant jumps in displacement fields. The interface between the blue and yellow regions defines the
expected failure zone.

C

The paper is focused on an efficient and flexible implementation of elastoplastic problems. We have mainly proposed 
the innovative assembly of elastoplastic FEM matrices based on the split (7). Additional effort to build
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FIGURE 2. Strip-footing 2D problem solved by perfect plasticity with the Drucker-Prager yield criterion. Failure mechanism is 
visualized by the deform shape (left) and jumps in displacement fields (right).

the tangential stiffness matrices in each Newton iteration and each time step of elastoplastic problems does not
exceed the cost for the elastic stiffness matrix. The smaller is the number of the plastic integrations points, the faster
is the assembly. Our techniques are explained and implemented in the vectorized code available for download at
https://github.com/matlabfem/matlab_fem_elastoplasticity.
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[4] M. Čermák. Elastoplastic one dimensional problem. AIP Conference Proceedings 2116 (2019) art. no.
320002.
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