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Abstract. Recently introduced marginal problem – which addresses the ques-
tion of whether or not a common extension exists for a given set of marginal
basic assignments – in the framework of evidence theory is recalled. Sets of solu-
tions are studied in more detail and it is shown, by a simple example, that their
structure is much more complicated (i.e. the number of extreme vertices of the
convex set of solutions is substantially greater) than that in an analogous prob-
lem in probabilistic framework. The concept of product extension of two basic
assignments is generalized (via operator of composition) to a finite sequence of
basic assignments. This makes possible not only to express the extension, if it
exists, in a closed form, but also enables us to find the sufficient condition for the
existence of an extension of evidential marginal problem. Presented approach is
illustrated by a simple example.
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1 Introduction

The marginal problem is one of the most challenging problem types in probability the-
ory. It addresses the question of whether or not a common extension exists for a given
set of marginal distributions. The challenges lie not only in a wide range of the relevant
theoretical problems (probably the most important among them is to find conditions
for the existence of a solution to this problem), but also in its applicability to various
problems of artificial intelligence [11], statistics [4] and computer tomography [6]. The
importance of this problem type is emphasized by the fact that from 1990 a series of
conferences with this topic takes place every three years. During the last two decades
it has also been studied in other frameworks, for example, in possibility theory [9] and
quantum mathematics [7].

In [10] we introduced an evidential marginal problem analogous to that encoun-
tered in the probabilistic framework. We demonstrated the similarities between these
frameworks concerning necessary conditions and convexity of sets of solutions. We
also introduced the concept of product extension of two marginal basic assignments.
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This paper is a natural continuation of the above-mentioned one. We study the con-
vex sets of solutions in more details and reveal one substantial difference concerning the
complexity of sets of all extensions between probabilistic and evidential frameworks.
Nevertheless, the main attention is devoted to the generalization of product extension to
finite sets of marginal basic assignments. This generalization is realized via operator of
composition introduced in [5], which makes possible to express the product extension
of a sequence of marginal basic assignments in an elegant way. This finally allows us to
find sufficient condition for the existence of evidential marginal problem solution.

The paper is organised as follows: after a brief overview of necessary concepts and
notation (Sect. 2) we start Sect. 3 by a motivation example, then we recall the evidential
marginal problem (and what was done in [10]) and we also study convex sets of exten-
sions. In Sect. 4 we deal with generalization of product extension to finite sets of basic
assignments and find a sufficient condition for the existence of an extension. Finally,
before the Conclusions we present a solution of the motivation example via perfect
sequence model.

2 Basic Concepts and Notation

In this section we will, as briefly as possible, recall basic concepts from evidence theory
[8] concerning sets and set functions.

2.1 Set Projections and Extension

For an index set N = {1,2, . . . ,n}, let {Xi}i∈N be a system of variables, each Xi having
its values in a finite set Xi. In this paper we will deal with a multidimensional frame of
discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

Throughout this paper, XK will denote a group of variables {Xi}i∈K when dealing
with groups of variables on these subframes.

For M ⊂ K ⊆ N and A ⊂ XK , we denote by A↓M a projection of A into XM:

A↓M = {y ∈ XM | ∃x ∈ A : y= x↓M},

where, forM = {i1, i2, . . . , im},
x↓M = (xi1 ,xi2 , . . . ,xim) ∈ XM.

In addition to the projection, in this text we will also need its inverse operation that
is usually called a cylindrical extension. The cylindrical extension of A ⊂ XK to XL

(K ⊂ L) is the set
A↑L = {x ∈ XL : x

↓K ∈ A} = A×XL\K .
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A more complex instance is to make a common extension of two sets, which will
be called a join [1]. By a join of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N), we will
understand a set

A �� B= {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that, for anyC ⊆ XK∪L, it naturally holdsC ⊆C↓K ��C↓L, but generally
C 	=C↓K ��C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just their
Cartesian product, A �� B= A×B, and if K = L then A �� B= A∩B. If K ∩L 	= /0 and
A↓K∩L ∩B↓K∩L = /0 then A �� B = /0 as well. Generally, A �� B = A↑K∪L ∩B↑K∪L, i.e.,
a join of two sets is the intersection of their cylindrical extensions.

2.2 Set Functions

In evidence theory [8], two dual measures are used to model the uncertainty: belief and
plausibility measures. Each of them can be defined with the help of another set function
called a basic (probability or belief) assignment m on XN , i.e.,

m :P(XN) −→ [0,1],

where P(XN) is the power set of XN , and

∑
A⊆XN

m(A) = 1.

Furthermore, we assume that m( /0) = 0.1 A set A ∈ P(XN) is a focal element if
m(A) > 0.

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m on
XM is defined (for each A ⊆ XM) by the equality

m↓M(A) = ∑
B⊆XK

B↓M=A

m(B). (1)

In this paper we will confine ourselves to basic assignments.

3 Marginal Problem and Its Solutions

In this section we first recall what we understand under evidential marginal problem,
then we briefly discuss the necessary condition for the existence of a solution and finally
study in more detail convex sets of its solutions.

1 This assumption is not generally accepted, e.g. , in [2] it is omitted.
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3.1 Motivation Example—Poll Opinion

Let us consider the following situation. We have obtained poll opinion contained in the
left part of Table 1 expressing the dependence of preferences P with values A and B on
sex S (M,F). Some voters are still undecided, we denote this fact by {A,B}.

From last census we can get data concerning education E (primary—P, high
school—H and university—U) and place of residence R (town—T and countryside—
C) both of them with respect to sex. They are contained in the middle and right part of
of Table 1, respectively. In both cases some values, denoted by {P,H,U} and {T,C} are
missing.

Throughout this example we will express values of basic assignments in the per-
centage form in order to avoid to small numbers in the joint model.

Table 1. Motivation example: poll opinion and census.

S & P percentage S & E percentage S & R percentage

M,A 19 M,P 24 M,T 22

M,B 23 M,H 15 M,C 25

M,{A,B} 7 M,U 7 M,{T,C} 2

F,A 25 M,{P,H,U} 3 F,T 27

F,B 16 F,P 18 F,C 23

F,{A,B} 10 F,H 23 F,{T,C} 1

F,U 8

F,{P,H,U} 2

Our aim is to get more detailed information about the voters by integrating infor-
mation from all these tables together. Undecided voters and missing data suggest that
this problem has to be modeled by evidence theory. In Sect. 5 one can find solution via
method presented in this paper, more precisely in Sect. 4.

3.2 Definition

The evidential marginal problem was, analogous to probability theory, introduced in
[10] as follows: Let us assume that Xi, i ∈ N, 1 ≤ |N| < ∞ are finitely-valued variables,
K is a system of nonempty subsets of N and

S = {mK ,K ∈ K } (2)

is a family of basic assignments, where each mK is a basic assignment on XK .
The problem we are interested in is the existence of an extension, i.e., a basic assign-

ment m on X whose marginals are basic assignments from S ; or, more generally, the
set

E = {m : m↓K = mK ,K ∈ K } (3)

is of interest.
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In the above-mentioned paper we proved that the necessary condition for the exis-
tence of an extension of basic assignments fromS is their pairwise projectivity. Having
two basic assignments m1 and m2 on XK and XL, respectively (K,L ⊆ N), we say that
these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 .

If set S consists of just two basic assignments this condition is also sufficient, but
in more general case it need not be, as we showed in [10].

3.3 Sets of Solutions

In [10] we started to study also sets of all solutions of a marginal problem. We proved
that, analogous to probabilistic framework, the set is convex. Nevertheless, as suggests
the following simple example, resulting convex set is much more complicated.

Example 1. Consider, for i= 1,2, two basic assignments mi on Xi = {ai,bi}, specified
in Table 2. Our task is to find basic assignments on X1×X2 which are extreme points of
the set E (m1,m2). We found the 23 extreme points2 summarized in Table 3. Let us note,
that any of basic assignments m2−7, m9−14 and m16−21 stands for six basic assignments,
where three focal elements are fixed (as suggested in the table) and the fourth one is
one set A from

A = {X1 ×X2 \{(a1,a2)},X1 ×X2 \{(a1,b2)},X1 ×X2 \{(b1,a2)},

X1 ×X2 \{(b1,b2)},{(a1,a2),(b1,b2)},{(a1,b2),(b1,a2)}},

with the values contained in the last column.

Table 2. Example 1: basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)

{a1} 0.2 {a2} 0.6

{b1} 0.3 {b2} 0

X1 0.5 X2 0.4

On the other hand, although they are numerous, they are quite “nice”, as any of
them has only four focal elements in contrary to the basic assignments from the interior
of E , any of which has twelve focal elements (from possible 15 in case of two binary
variables). An example of these basic assignments is mi, presented in last line of the
table, a convex combination of m1, . . . ,m22, where, in contrary to m1, . . . ,m22 each set
from A is a focal element with the same value (as indicated in the table).

From this point of view a deeper study of extreme points of solutions seems to be
of importance. We intend to concentrate to this problem in the future research.

2 Let us note that in analogous case of two binary variables in probabilistic framework the result-
ing convex set has two extreme points.
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Table 3. Example 1: extreme points of E (m1,m2).

{(a1,a2)} {(b1,a2)} {a1}×X2 {b1}×X2 X1 ×{a2} X1 ×X2 A

m1 0.2 0.3 0 0 0.1 0.4 0

m2−7 0.2 0.3 0 0 0.1 0 0.4

m8 0.2 0 0 0.3 0.4 0.1 0

m9−14 0.2 0 0 0.3 0.4 0 0.1

m15 0 0.3 0.2 0 0.3 0.2 0

m16−21 0 0.3 0.2 0 0.3 0 0.2

m22 0 0.1 0.2 0.2 0.5 0 0

m23 0.1 0 0.1 0.3 0.5 0 0

mi 0.1 0.205 0.1 0.095 0.295 0.07 0.0225

4 Product Extension of Sets of Marginals

In this section we will first recall the concept of product extension [10] as well as the
composition operator [5] of two basic assignments. We will show that the former is a
special case of the latter. Then we use this relationship in order to generalize product
extension to finite sets of basic assignments and finally to find a sufficient condition for
the existence of an extension.

4.1 Product Extensions

Dempster’s rule of combination [8] (and its various modifications as e.g. [3]) is the
usual way to combine, in the framework of evidence theory, information from different
sources. It is quite natural that several attempts were done to use it in order to merge
information expressed by marginal basic assignments. Nevertheless none of them was
able to keep both marginals even in case of projective basic assignments. We discussed
this problem in more detail in [10].

Instead of the use of Dempster’s rule we suggested to use product extension of
marginal basic assignments defined as follows.

Definition 1. Let m1 and m2 be projective basic assignments on XK and XL (K,L⊆N),
respectively. We will call basic assignment m on XK∪L product extension of m1 and m2

if for any A= A↓K �� A↓L

m(A) =
m↓K
1 (A↓K) ·m↓L

2 (A↓L)
m↓K∩L
1 (A↓K∩L)

, (4)

whenever the right-hand side is defined, and m(A) = 0 otherwise.

Let us note that the expression on the right-hand side of (4) is only seemingly asym-
metric, as m1 and m2 are supposed to be projective. Therefore, it is irrelevant which
marginal is used in the denominator.

From the following theorem proven in [10] one can easily see that product extension
is superior to Dempster’s rule as concerns keeping marginals.
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Theorem 1. Let m1 and m2 be two projective basic assignments on XK and XL (K,L⊆
N), respectively, and m be their product extension. Then

m↓K(B) = m1(B),
m↓L(C) = m2(C)

for any B ∈ XK and C ∈ XL, respectively.

4.2 Composition Operator

Now, let us recall the concept of composition operator, introduced in [5].

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL a compo-
sition m1 �m2 is defined for all A ⊆ XK∪L by one of the following expressions:

[a] if m↓K∩L
2 (A↓K∩L) > 0 and A= A↓K �� A↓L then

(m1 �m2)(A) =
m1(A↓K) ·m2(A↓L)
m↓K∩L
2 (A↓K∩L)

;

[b] if m↓K∩L
2 (A↓K∩L) = 0 and A= A↓K ×XL\K then

(m1 �m2)(A) = m1(A↓K);

[c] in all other cases
(m1 �m2)(A) = 0.

The purpose of the composition operator is to integrate information from two
sources expressed by basic assignments m1 and m2. The resulting basic assignment
m1 �m2 has to keep all the information contained in the first basic assignment, and as
much as possible from the second one.

The definition completely fulfills this requirement. The only focal elements are
those obtained via [a] or [b]. Both of them keep the first marginal, i.e. all the infor-
mation contained in m1.

In case [a] “as much as possible from the second basic assignment” is obtained via
multiplication by m2 (divided by its marginal). If m1 and m2 are projective, then also all
the information from m2 is kept3 (cf. Theorem 1 and Lemma 1).

In case [b] no information about A↓K∩L is available, so m1 �m2 is the least specific
basic assignment with marginal m1—its vacuous extension.

The following lemma reveals, that product extension of two basic assignments is a
special case of composition of two basic assignments.

Lemma 1. Let m1 and m2 be projective basic assignments. Then (m1 �m2)(A) is equal
to their product extension defined by (4).

Proof. First, let us note that when m1 and m2 are projective, case [b] is not applied.
Therefore, (m1 �m2)(A) is computed via [a], which is equal to the right hand side of
(4) (due to projectivity of m1 and m2), whenever it is defined. Otherwise, by [c] (m1 �
m2)(A) = 0.

3 Let us note that if K and L are disjoint, then m1 and m2 are trivially projective.
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4.3 Iterative Application of Composition Operator

Composing of m1,m2, . . . ,mn defined on XK1 , . . . ,XKn , respectively, together by multi-
ple application of the operator of composition, one gets multidimensional basic assign-
ments on XK1∪K2∪...∪Kn . However, since the operator of composition is neither com-
mutative nor associative (cf. [5]), we have to specify what “composing them together”
means.

To avoid using too many brackets let us make the following convention. Whenever
we put down the expression m1 �m2 � . . . �mn we will understand that the operator of
composition is performed successively from left to right:4

m1 �m2 � . . . �mn = (. . .((m1 �m2)�m3)� . . .)�mn.

Therefore, it is obvious that ordering of basic assignments in question is substantial
for the properties of the resulting model. Let us demonstrate it by the following simple
example.

Example 2. Consider three variables X1,X2 and X3 with values in X1,X2 and X3,
respectively, Xi = {ai,bi}, i= 1,2,3. Let m1,m2 and m3 be defined as shown in Table 4.

Table 4. Example 2: basic assignments m1, m2 and m3.

A ⊆ X1 ×X2 m1(A) A ⊆ X2 ×X3 m2(A) A ⊆ X1 ×X3 m3(A)

{(a1,a2)} 0.5 {(a2,a3)} 0.5 {a1}×X3 0.5

X1 ×X2 0.5 X2 ×X3 0.5 X1 ×{a3} 0.5

These basic assignments are pairwise projective (any one-dimensional marginal has
just two focal elements, namely {ai} and Xi), but common extension does not exist (as
we already showed in [10]). One can judge that application of the operator of compo-
sition to different orderings of these three basic assignments will lead to different joint
basic assignments on X1 × X2 × X3. And it is the case. Each of these composed basic
assignments has again only two focal elements, namely

{(a1,a2,a3)},X1 ×X2 ×X3

for m1,m2,m3 and m2,m1,m3,

{(a1,a2)}×X3,X1 ×X2 ×{a3}
for m1,m3,m2 and m3,m1,m2 and, finally,

X1 ×{(a2,a3)},{a1}×X2 ×X3

for m2,m3,m1 and m3,m2,m1.

In the next section we will deal with special kind of sequences of basic assignments.

4 Naturally, if we want to change the ordering in which the operators are to be performed we
will do so with the help of brackets.
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4.4 Perfect Sequences and Sufficient Condition

When representing knowledge in a specific area of interest, a special role is played by
the so-called perfect sequences, i.e., sequences m1,m2, . . . ,mn, for which

m1 �m2 = m2 �m1,

m1 �m2 �m3 = m3 � (m1 �m2),
...

m1 �m2 � . . . �mn = mn � (m1 � . . . �mn−1).

The following theorem proven in [5] explains why perfect sequences are useful for
marginal problem solution.

Theorem 2. A sequence m1,m2, . . . ,mn is perfect if and only if all m1, m2, . . . , mn are
marginal basic assignments of the multidimensional basic assignment m1�m2�. . .�mn:

(m1 �m2 � . . . �mn)↓Ki = mi,

for all i= 1, . . . ,n.

Let us note that this theorem expresses necessary and sufficient condition for the
existence of an extension of basic assignments from S , however, this condition is
hardly verifiable as it is obvious from the definition of the perfect sequence. Never-
theless, we can formulate a sufficient condition expressed by Theorem 3. Before doing
it, let us recall the well-known running intersection property and a lemma (proven in
[5]) necessary to prove Theorem 3.

We say that K1,K2, . . . ,Kn meets the running intersection property iff

∀i= 2,3, . . . ,n ∃ j(1 ≤ j < i) such that Ki ∩ (K1 ∪ . . .∪Ki−1) ⊆ Kj.

Lemma 2. A sequence m1,m2, . . . ,mn is perfect iff the pairs of basic assignments mi

and (m1 � . . . �mi−1) are projective, i.e. if

m↓Ki∩(K1∪...∪Ki−1)
i = (m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1),

for all i= 2,3, . . . ,n.

Theorem 3. Let S be a system of pairwise projective basic assignments on XK, K ∈
K , and let K be ordered in such a way that K1,K2, . . . ,Kn meets running intersection
property. Then E 	= /0.

Proof. We have to prove that the sequence of basic assignments m1,m2, . . . ,mn on
XK1 ,XK2 , . . . ,XKn , respectively, is perfect. Then, according to Theorem 2 (m1 �m2 �
. . . �mn) ∈ E .

Due to Lemma 2 it is enough to show that for each i= 2, . . . ,n basic assignment mi

and the composed assignmentm1�. . .�mi−1 are projective. Let us prove it by induction.
For i = 2 the required projectivity is guaranteed by the fact that we assume pair-

wise projectivity of all m1, . . . ,mn. So we have to prove it for general i > 2 under the
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assumption that the assertion holds for i− 1, which means (due to Theorem 2) that all
m1,m2, . . . ,mi−1 are marginal to m1 � . . . �mi−1. Since we assume that K1, . . . ,Kn meets
the running intersection property, there exists j ∈ {1,2, . . . i− 1} such that Ki ∩ (K1 ∪
. . . ∪Ki−1) ⊆ Kj. Therefore (m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) and m↓Ki∩(K1∪...∪Ki−1)

j are
the same marginals of m1 � . . . �mi−1 and therefore they have to equal to each other:

(m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) = m↓Ki∩(K1∪...∪Ki−1)
j .

However we assume that mi and mj are projective and therefore also

(m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) = m↓Ki∩(K1∪...∪Ki−1)
i .

Nevertheless, there exist a big “grey zone” of problems satisfying necessary condi-
tion but not the sufficient one. In this case the answer can be negative (as in Example 2)
or positive (as in the following example).

Example 3. Consider again three variables X1,X2 and X3 with values in X1,X2 and X3,
respectively, Xi = {ai,bi}, i= 1,2,3. Let m1,m2 and m′

3 be defined as shown in Table 5.
The only difference with Example 2 consists in using m′

3 instead of m3.

Table 5. Example 3: basic assignments m1, m2 and m′
3.

A ⊆ X1 ×X2 m1(A) A ⊆ X2 ×X3 m2(A) A ⊆ X1 ×X3 m′
3(A)

{(a1,a2)} 0.5 {(a2,a3)} 0.5 {(a1,a3)} 0.5

X1 ×X2 0.5 X2 ×X2 0.5 X1 ×X3 0.5

These basic assignments are again pairwise projective and the running intersection
property for {1,2},{2,3} and {1,3} (for any ordering of these sets) does not again
hold. However, in this case a common extensions exist; product extension can be found
in Table 6.

Table 6. Example 3: product extension of m1, m2 and m′
3.

A ⊆ X1 ×X2 ×X3 m(A)

{(a1,a2,a3)} 0.5

X1 ×X2 ×X3 0.5

The difference between Examples 2 and 3 consists in the fact that m1, m2 and m′
3

is perfect (although running intersection property is no satisfied) in contrary to m1, m2

and m3.
From this example one can see, that perfectness does not depend only on relations

among different subframes (or their index sets), on which low-dimensional basic assign-
ments are defined, but also of the individual structure of any of them.
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5 Poll Opinion—Solution

It can be easily seen from Table 1 that m1,m2 and m3 are pairwise projective, as

m1(M) = m2(M) = m3(M) = 0.49

and
m1(F) = m2(F) = m3(F) = 0.51.

Since the sequence {S,O},{S,E},{S,R}, satisfies RIP, m1,m2 and m3 form a perfect
sequence. Application of composition operator to m1 and m2 and then to m1 �m2 and
m3 gives rise to the joint basic assignment contained in Table 7.

Table 7. Poll opinion—solution

Male Female

T C {C,T} T C {C,T}
P= A E = P 4.19 4.75 0.38 4.67 3.98 0.17

E = H 2.61 2.97 0.24 5.99 5.1 0.22

E = A 1.21 1.38 0.11 2.07 1.76 0.08

E = {P,H,U} 0.54 0.61 0.05 0.53 0.45 0.02

P= B E = P 5.08 5.78 0.46 2.96 2.53 0.11

E = H 3.15 3.58 0.29 3.82 3.26 0.14

E = A 1.49 1.69 0.13 1.33 1.13 0.05

E = {P,H,U} 0.63 0.71 0.06 0.32 0.27 0.01

P= {A,B} E = P 1.54 1.74 0.14 1.86 1.57 0.07

E = H 0.94 1.07 0.09 2.39 2.04 0.09

E = A 0.45 0.51 0.04 0.85 0.72 0.03

E = {P,H,U} 0.18 0.2 0.02 0.21 0.18 0.01

This table contains all focal elements of the basic assignment m1 �m2 �m3, i.e
only 72 from possible almost 17 million. Therefore it is evident, that despite the fact
that evidential models are super-exponentially complex, compositional models belong
(among them) to those with lower complexity. However, complexity of the resulting
model strongly depends on the complexity of input basic assignments as well as on
their number.

From this table one can obtain by simple marginalization marginal tables of the
relationship between some variables of interest — e.g. preference and education.

6 Conclusions

We have recalled an evidential marginal problem introduced in [10] in a way analogous
to a probability setting, where marginal probabilities are substituted by marginal basic
assignments.
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We studied the structure of the sets of extensions of the problem in more detail and
realized that it is much more complicated than that in analogous probabilistic case. This
will be topic of our future research.

We also generalized concept of product extension to a finite set of basic assignments
using the operator of composition introduced in [5]. The result of this effort is not only
the closed form of an extension of a finite set of basic assignments (if it exists), but also
the sufficient condition for the existence of such an extension. The obtained results are
illustrated by a simple practical example.
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