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Abstract—This paper introduces multispectral rotationally in-
variant textural features of the Markovian type applied for
the effective coniferous tree needles categorization. Presented
texture features are inferred from the descriptive multispectral
spiral wide-sense Markov model. Unlike the alternative texture
recognition methods based on various gray-scale discriminative
textural descriptions, we take advantage of the needles texture
representation, which is fully descriptive multispectral and rota-
tionally invariant.

The presented method achieves high accuracy for needles
recognition. Thus it can be used for reliable coniferous tree taxon
classification. Our classifier is tested on the open source needles
database Aff, which contains 716 high-resolution images from 11
diverse coniferous tree species.

Index Terms—Coniferous needles categorization, Tree taxon-
omy recognition, Spiral Markov random field model

I. INTRODUCTION

Automatic tree taxon classification is a challenging but prac-
tical plant taxonomy application which permits non-invasive
quick tree categorization. Automatic needles categorization
allows identification or learning of coniferous tree species pos-
sible without specific botanical knowledge using, for example,
a dedicated mobile application. Tree’s species identification
based on manual listing in a botanical key of needles images is
a tedious task which would typically requires a book scrolling.
Even if needles can be more easily described than for example
bark texture [1], [2], the observer still has to search through
the whole needles printed or electronic encyclopedia looking
for the corresponding needles image. An automatic recognition
application can even overcome human scholars. The authors
[1] reports 56.6% and 77.8% classification accuracy on the
Austrian Federal Forest (AFF) dataset for two human spe-
cialits, while two published automatic classifiers [3] and [4]
achieve more accurate results than the top human specialist.

The benefit of needles-based features is their relative sta-
bility during the corresponding tree’s lifetime. Single conif-
erous shrubs or trees have distinct needles which can be
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advantageously used for their identification. Numerous practi-
cal applications might be ecological such as plant resource
management or fast identification of invading tree species.
Industrial applications can be in sawmills automatization or
detection of bark beetle tree infestation.

Unfortunately, the only needles database we are aware of is
AFF [1] as well as the only partially reported results on this
database. The authors [1] first segmented the image to find
the needles endings and then calculated the skeleton of the
needles. From the needles endings, they inferred features like
the eccentricity, solidity, the moment invariants, and curvature
features. However, they did not find any solution to identify
the tree species from images of the needles where the needles
grow in clusters. Thus they could classify only five fir images
with precision 100 % and nine spruce images with precision
77 %.

II. SPIRAL MARKOVIAN TEXTURE REPRESENTATION

Fig. 1. The octagonal spirals path. The numbers mark the order in which the
pixels r, i.e., Icsr neighborhoods are traversed, and the center pixel is marked
as the red square.

The spiral 2D causal auto-regressive adaptive random
(2DSCAR) field model is a generalization of our directional
2DCAR model [5] to the rotationally invariant form, which
was introduced in [4] for bark classification application. The
model’s contextual neighbor index shift set (Fig. 2) denoted
Icsr is functional. The model for d spectral bands can be
defined in the following matrix form:

Yr = γZr + er , (1)978-1-7281-4187-9/19/$31.0©2019 IEEE



where γ = [A1, . . . , Aη] is the parameter matrix, Ai =
diag[ai1, . . . , aid] ∀i, η = cardinality(Icsr ), r = [r1, r2]
is spatial multi-index denoting history of movements on the
lattice I , er denotes the driving white Gaussian noise vector
with zero mean and a constant but unknown covariance matrix
Σ, and Zr is a neighborhood support vector of multispectral
pixels Yr−s where s ∈ Icsr .

All 2DSCAR model statistics can be efficiently estimated
analytically as proven in [5]. The Bayesian parameter estima-
tion (conditional mean value) γ̂ can be accomplished using
fast, numerically robust and recursive statistics [5], given the
known 2DSCAR process history

Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} :

γ̂Tt−1 = V −1
zz(t−1)Vzy(t−1) , (2)

Vt−1 = Ṽt−1 + V0 , (3)
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Ṽyy(t−1) Ṽ Tzy(t−1)
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where V0 is a positive definite initialization matrix (see [5]).
We introduce a new traversing order multi-index t of the
sequence of multi-indices r, to simplify notation, which
depends on the selected model movement in the underlying
lattice I (e.g., t16 = {t16 + (1;−1), t16 + (2;−1), . . . , t16 +
(−1; 1)} for Fig. 1). The optimal functional causal contextual
neighbourhood Icsr (Fig. 2) can be solved analytically
by a straightforward generalization of the Bayesian estimate
derived in [5]. We did not optimize the neighbourhood Icsr
but used its fixed form Fig. 2 to simplify and speed up our
experiments. However, if this neighborhood is optimized, we
can expect further accuracy improvement. The model can
be easily applied also to various synthesis and restoration
applications. The 2DSCAR model pixel-wise synthesis is a
direct application of the equation (1) fed from a Gaussian
noise generator for any 2DSCAR model.

A. Spiral models

The 2DSCAR model moves (r) on the circular path on the
lattice I as is illustrated in Fig. 1. The causal neighborhood
Icr has to be transformed to be consistent for each direction
in the traversed path, as denoted in Fig. 2. The paths used
can be arbitrary as long as they keep transforming the causal
neighborhood into Icsr in such a way that the model has
visited all neighbors of a control pixel r. Thus these neighbors
are known from the previous steps. We shall call all these
causal paths as spirals further on. In this paper we present
the octagonal type of path - (Fig. 1), however, alternatively, a
spiral path can be used as well. The parameters for the center
pixel (the red square in Fig. 1) of the spiral are estimated after
the whole path is completed. Since this model’s equations do
not need the whole history of movement through the image but
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Fig. 2. The applied fixed causal functional contextual neighbourhood Icsr in
four directions. Upper left: rightwards, upper right: downwards, bottom left
upwards, bottom right leftwards direction, respectively.

only the local neighborhood of a single spiral, the 2DSCAR
models can be easily parallelized. This memory restriction is
advantageous in comparison to the standard directional CAR
models [5]. The 2DSCAR models exhibit rotational invariant
properties for the circular shape spiral paths, thanks to the
CAR model’s memory of all the visited pixels. Additional
prior contextual information can be easily incorporated if every
initialization matrix V0 = Vt−1, for example, this matrix can
be initialized from the previous data gathering matrix.

B. Multispectral rotationally invariant features

We analyzed the 2DSCAR model around all pixels with the
vertical and horizontal stride of 2 to speed up the computation
for feature extraction. The following α1, α2, α3 illumination
invariant features initially derived for the 3DCAR model [5]
were adapted for the 2DSCAR model:

α1 = 1 + ZTr V
−1
zz Zr , (5)

α2 =

√∑
r

(Yr − γ̂Zr)T λ−1
r (Yr − γ̂Zr) , (6)

α3 =

√∑
r

(Yr − µ)
T
λ−1
r (Yr − µ) , (7)

where µ is the mean value of vector Yr and

λt−1 = Vyy(t−1) − V Tzy(t−1)V
−1
zz(t−1) . (8)

The inversion data gathering matrix V −1
zz(t−1) is updated in its

square-root Cholesky factor to guarantee numerical stability
for computed model statistics [5]. Additional used texture
features are also the estimated trace of γ parameters, the
posterior probability density [5]
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β(r) = r+η−2, and the absolute error of the one-step-ahead
prediction

Abs(GE) =
∣∣∣E {Yr |Y (r−1)

}
− Yr

∣∣∣ = |Yr − γ̂r−1Xr| .
(10)

III. NEEDLES CLASSIFIER

The algorithm starts with image subsampling to the height
of 600px (for larger images), while keeping aspect ratio, to
speed up the feature extraction part. This subsampling ratio
depends on application data; it is a compromise between the
algorithm efficiency and its recognition rate. Every pixel has
extracted features, as described in Sec. II. The resulting feature
space indexed on the lattice I is assumed to be govern by
the multivariate Gaussian distribution. The estimated Gaussian
parameters then represent every training image sample:

N (θ|µ,Σ) =
1√

(2π)N |Σ|
e(−

1
2 (θ−µ)TΣ−1(θ−µ)) . (11)

In the classification step, the Gaussian distribution param-
eters are estimated for the classified image in the same way.
The classified image parameters are then compared with all the
distributions from the training samples set using the Kullback-
Leibler (KL) divergence. The KL divergence is a probability
distribution non-symmetric similarity measure between two
distributions; it is defined as:

D(f(x)||g(x))
def
=

∫
f(x) log

f(x)

g(x)
dx . (12)

The KL divergence for the Gaussian distribution data model
can be solved analytically:
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We use the Jeffreys divergence which the symmetrized
variant of the Kullback-Leibler divergence:

Ds(f(x)||g(x)) =
D(f(x)||g(x)) +D(g(x)||f(x))

2
. (14)

The selected class is the class of a training image with the
lowest Jeffreys divergence from the tested image. The primary
benefit of our method is the significant compression of the
training database into the Gaussian distribution parameters

(as we extract only about 40 features, depending on the
chosen neighborhood, we need to store 40 real numbers for
the mean and 40 × 40 numbers for the covariance matrix).
The subsequent comparison with the training database is thus
extremely fast, enabling us to compare hundreds of thousands
of image feature distributions per second on an ordinary
computer.

IV. EXPERIMENTAL AFF NEEDLES DATA

The proposed method is verified on the only publicly
available needles database AFF [1]. The AFF bark and needles
datasets provided by Österreichische Bundesforste, Austrian
Federal Forests (AFF) [1], is a collection of the most common
Austrian trees. The larger bark dataset contains 1182 bark
samples (960 × 1325) belonging to 11 classes, the size of
each class varying between 7 and 213 images. The separate
AFF needles database contains 716 needles samples from six
Austrian conifer trees, and each class is divided into two
subclasses. The first subclass is trees on which one needle
grows separately on the branch, and the second subclass is the
trees on which the needles grow on clusters at the branch. The
needles joint database contains 647 images of needles from
six tree classes. AFF sample dataset is further complicated
due to images captured at different scales and under different
illumination conditions.

Examples of images of the datasets can be seen in Fig. 4.
We have used the leave-one-out approach for the classification
rate estimation. Thus the number of training images for the
AFF database varies between 8 for fir or Scots pine and 135
for the largest spruce class. V0 is initialized to be the identity
matrix. All needles pictures in our experiments are resized to
1 : 5 (600 × 400) for single scale experiments and the other
scale was resized to 1 : 10 (300× 200).

V. RESULTS

The first experiment is the classification of all separate
eleven classes. Tab.I using single resolution level. We have
reached 96.1% accuracy on the AFF separate dataset (Tab. I).
The sensitivity for all needles classes is between 89−100 [%]
with median value 97% and precision 88 − 100 [%] with
median value 96%.

The second experiment is the single resolution classification
on the joint needles dataset (Tab.II). Its accuracy is 96 % which
is 0.1 % lower than in the first experiment. The sensitivity for
all classes is between 93−98 [%] with median value 96% and
precision 91− 99 [%] with median value 95%.

The third experiment is the classification of all separate
eleven classes. Tab.III using double-resolution levels. We have
reached 91.1% accuracy on the AFF separate dataset, what is
1 % lower than in the single scale experiment(Tab. I). The
sensitivity for all classes is between 56−100 [%] with median
value 95% and precision 72−100 [%] with median value 96%.

Finally, the last experiment is the double-resolution clas-
sification on the joint needles dataset (Tab.IV). Its accuracy
is 95.4 %, what is 0.6 % lower than in the single resolution
alternative (Tab.II). The sensitivity for all classes is between
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Fig. 3. Examples of the selected 2DSCAR features for fir 108 texture.

Fir Fir2 Larch Larch2

Scots pine Scots pine2 Spruce Spruce2

Swiss stone pine Swiss stone pine2 Black pine

Fig. 4. Examples of needles images from the AFF dataset.

89−100 [%] with median value 95% and precision 92−98 [%]
with median value 96%.

In all the four tables, the name of the row indicates the
actual tree type, whereas the column indicates the predicted



TABLE I
AFF NEEDLES DATASET RESULTS OF THE 2DSCAR METHOD.

Fir Fir2 Larch Larch2 Scots Scots Spruce Spruce2 Swiss Swiss Black Sensitivity
pine pine2 stone pine stone pine2 pine [%]

Fir 9 0 0 0 0 0 1 0 0 0 0 100
Fir2 0 121 1 1 0 0 0 0 0 0 0 98,4

Larch 0 0 16 0 0 0 0 0 0 0 1 88,9
Larch2 0 0 0 106 0 0 0 0 0 2 0 93,0

Scots pine 0 0 0 0 9 0 0 0 0 1 0 100
Scots pine2 0 0 0 0 0 111 0 2 0 0 3 96,5

Spruce 0 0 0 0 0 0 12 0 0 0 0 92,3
Spruce2 0 0 1 1 0 0 0 134 0 0 2 98,5

Swiss stone pine 0 0 0 0 0 0 0 0 20 0 0 100
Swiss stone pine2 0 2 0 5 0 0 0 0 0 50 0 94,3

Black pine 0 0 0 1 0 4 0 0 0 0 100 94,3
Precision Accuracy

[%] 90,0 98,4 94,1 98,2 99,0 95,7 100 97,1 100 87,7 95,2 96,1

class. The classification results for separate or joined databases
are nearly identical. This is in sharp contrast with the reported
results in [1] where the authors were not able to classify the
trees on which the needles grow on clusters at the branch (the
AFF second subclass). The double-resolution results have 1 %
worse accuracy than their single resolution counterparts. This
accuracy decrease can be explained with too high subsampling
rate for such fine grain texture as the needles. We are not
aware of any alternative result on needles classification even
authors in [1] do not provide any numerical results. Hence
we cannot compare our results with any alternative method.
However, we compared the presented textural features with
several alternative methods on the bark databases (BarkTex,
Trunk12, AFF, BarkNet 1.0) in [6]. On these data our approach
vastly outperformed all compared methods, including methods
using deep convolution neural networks.

The conclusion, as mentioned above, can be expected be-
cause our features are derived from the generative random field
type of model, and as such, it accumulates more information
than the general discriminative textural features. Further com-
parative details of our generative features with their standard
counterparts can be checked in our papers (Outex data [7],
bidirectional texture function [8], wood mobile data [9] and
some others).

VI. CONCLUSION

We present the method for coniferous tree taxon catego-
rization based on needles classification. The classifier uses ro-
tationally invariant monospectral Markovian textural features
from all three spectral classes. Our features are analytically
derived from the underlying descriptive textural model and
can be efficiently, recursively, and adaptively learned. Our
2DSCAR features are rotationally invariant, exploits informa-
tion from all spectral bands, and can be easily parallelized or
made fully illumination invariant if the non-illumination in-
variant features are excluded (the posterior probability density
and the absolute error of the one-step-ahead prediction). The
classifier does not need extensive learning data contrary to the
convolutional neural nets.
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TABLE II
AFF JOINED NEEDLES DATASET RESULTS OF THE 2DSCAR METHOD.

Fir Larch Scots Spruce Swiss Black Sensitivity
pine stone pine pine [%]

Fir 121 1 0 0 0 0 98,4
Larch 0 106 0 0 1 0 93,0

Scots pine 1 0 112 2 1 4 97,4
Spruce 0 2 0 133 0 3 97,8

Swiss stone pine 1 4 0 0 50 0 94,3
Black pine 0 1 3 1 1 99 93,3
Precision Accuracy

[%] 98,2 99,1 93,3 96,4 90,9 94,3 96,0

TABLE III
AFF NEEDLES DATASET RESULTS OF THE 2DSCAR METHOD AND TWO RESOLUTION LEVELS.

Fir Fir2 Larch Larch2 Scots Scots Spruce Spruce2 Swiss Swiss Black Sensitivity
pine pine2 stone pine stone pine2 pine [%]

Fir 5 0 0 0 0 0 1 0 0 0 0 55,6
Fir2 0 121 0 2 0 2 0 0 0 1 0 98,4

Larch 0 0 17 0 0 0 0 0 0 0 0 94,4
Larch2 0 1 0 108 0 1 0 0 0 3 0 94,7

Scots pine 2 0 0 0 6 0 0 0 0 1 0 66,7
Scots pine2 0 1 0 0 0 111 0 2 0 0 8 96,5

Spruce 2 0 0 0 3 0 13 0 0 0 0 100
Spruce2 0 0 1 0 0 0 0 136 0 0 2 100

Swiss stone pine 0 0 0 0 0 0 0 0 20 0 0 100
Swiss stone pine2 0 0 0 3 0 0 0 0 0 48 0 90,6

Black pine 0 0 0 1 0 1 0 0 0 1 96 90,6
Precision Accuracy

[%] 100 96,0 100 95,6 75,0 92,5 72,2 97,8 100 94,1 97,0 95,1

TABLE IV
AFF JOINED NEEDLES DATASET RESULTS OF THE 2DSCAR METHOD AND TWO RESOLUTION LEVELS.

Fir Larch Scots Spruce Swiss Black Sensitivity
pine stone pine pine [%]

Fir 121 3 1 0 1 0 98,4
Larch 1 107 2 0 1 1 93,9

Scots pine 1 0 108 0 0 9 93,9
Spruce 0 1 0 136 0 2 100

Swiss stone pine 0 3 0 0 51 0 96,2
Black pine 0 0 4 0 0 94 88,7
Precision Accuracy

[%] 96,0 95,5 91,5 97,8 94,4 95,9 95,4


