
3D Multi-frequency Fully Correlated
Causal Random Field Texture Model

Michal Haindl1,2(B) and Vojtěch Havĺıček1
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http://www.utia.cz/

Abstract. We propose a fast novel multispectral texture model with
an analytical solution for both parameter estimation as well as unlim-
ited synthesis. This Gaussian random field type of model combines a
principal random field containing measured multispectral pixels with an
auxiliary random field resulting from a given function whose argument
is the principal field data. The model can serve as a stand-alone texture
model or a local model for more complex compound random field or
bidirectional texture function models. The model can be beneficial not
only for texture synthesis, enlargement, editing, or compression but also
for high accuracy texture recognition.

1 Introduction

The visual appearance of surface materials and object shapes are crucial for
visual scene understanding or interpretation. Visual aspects of surface materi-
als which manifest themselves as visual textures even if there is still missing a
rigorous definition of the texture [12]. Thus solid visual scene modeling or inter-
pretation cannot avoid a sound and physically correct texture model quality.
The correct material modeling is hindered by the considerable variability of a
physical appearance and thus its corresponding textural representation based on
changing observation conditions. Several texture modeling methods were pub-
lished, but most of them do not account for simultaneously variable illumination
and viewing conditions.

Real surface material visual appearance is a very complex physical phe-
nomenon which intricately depends on the incident and reflected spherical
angles, time, and light spectrum among other at least 16 physical quantities
[12]. Although, the general and physically correct material reflectance function
should be at least sixteen dimensional [12] which is recently unmeasurable, and
even if some simplifying assumptions have to be inevitably accepted, the essen-
tial dependencies have to be respected. Among them, these are spectral, illu-
mination, and viewing parameters. Its state-of-the-art approximation, which
allows expressing spectral, spatial, illumination angle, and observation angle
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visual dependencies of a measured material is the Bidirectional Texture Function
(BTF). BTF significantly improves the visual realism of a modeled object at the
expense of non-trivial measurements and mathematical modeling of these vast
BTF data spaces. Static random field-based BTF texture modeling demands
complex seven-dimensional models. It is far from being a straightforward gen-
eralization of any 3D model (required for customary static color textures) with
supplementing just four additional dimensions.

Compound Markov random field models (CMRF) consist of several sub-
models each having different characteristics along with an underlying structure
model which controls transitions between these submodels [18]. The exceptional
CMRF [7,14] models allow analytical synthesis at the cost of a slightly compro-
mised compression rate due to the non-parametric control field data. Methods
based on different Markov random fields [3–5,11,13,15] combine an estimated
range-map with synthetic multiscale smooth texture using Markov models. Any
of the above CMRF or BTF-CMRF model are build from a set of simpler two or
three dimensional random field models. Such a efficient novel three dimensional
model is presented in this contribution.

The ideal synthetic texture should be visually indiscernible for any observa-
tion or illumination directions from the given measured natural texture sample.
A qualitative analysis of modeling results requires a still non-existing reliable
mathematical criterion or very impractical and expensive visual psycho-physics.
Our results [8] illustrate that neither the standard image quality criteria (MSE
[23], VSNR [1], VIF [21], SSIM [22], CW-SSIM [24]) nor the STSIM [25] or ζ
[19] texture criteria can be reliably used for texture quality validation.
Our main contributions are the following:

– Introduction of a new efficient multispectral descriptive texture model which
can be applied for high-quality material appearance modeling or recognition.

– Analytical Bayesian solution for the model parameters.
– Fast recursive model synthesis.

2 3D Multi-spectral Multi-frequency CAR Texture
Model

The seven-dimensional bidirectional texture function (BTF) reflectance model is
currently the state-of-the-art general reflectance function model, approximation
which can be reliably measured [2,12]. However, to model such a function, we
need its factorization to a set of lower two or three-dimensional models because
they can be represented with significantly fewer amount of parameters to be esti-
mated. The proposed multispectral model represents such a three-dimensional
building factor for a high-quality BTF texture model.

The texture region (not necessarily continuous) is represented by a multi-
frequency generalization (3DmfCAR) of the adaptive 3D causal auto-regressive
random (3DCAR) field model [6,10] which combines the principal random field
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Y with the auxiliary field Ỹ . This model can be analytically estimated as well
as easily synthesized. The 3DmfCAR model is defined:

Y̆r =
∑

s∈Ic
r

AsY̆r−s + ĕr ∀r ∈ I (1)

where Y̆r =
[

Yr

Ỹr

]
is a d̆ × 1 vector, d̆ = d + d̃, As =

⎡

⎢⎢⎣
As,1

... As,2

. . . . . . .

As,3

... As,4

⎤

⎥⎥⎦ are d̆ × d̆

parametric matrices, Yr (d × 1) is a pixel from image Y , I is a finite rectangular
lattice, r = [r1, r2, r3] is a multiindex r ∈ I where r1, r2, r3 are row, column and
spectral indices, and d is a number of spectral bands of the image Y . Ỹr (d̃ × 1)
is a pixel created by some processing of the measured image pixels

Ỹr = f(Ys ∀s ∈ Ic
r), (2)

where the only restriction we assume is that the argument of the function f( )
is limited to pixels from the causal contextual neighborhood Ic

r .
Such an example can be a convolution with some convolution filter kernel

h, i.e., Ỹr = h ∗ yr with zero padding for s /∈ Ic
r such as a low-pass filtered or

upsampled Gaussian pyramid rough level. In this paper, we will further assume
the function f( ) to be a median (3DmdCAR). The model (1) can be expressed
in the matrix form:

Y̆r = γX̆r + ĕr, (3)

where γ is the d̆ × d̆ ηA parameter matrix γ = [A1, . . . , AηA
], ηA = card(Ic

r), Ic
r

is a causal neighborhood, ĕr =
[

er

ẽr

]
is a Gaussian white noise vector with zero

mean and a constant but unknown Σ̆ covariance matrix.

X̆r = [Y̆ T
r−s : ∀s ∈ Ic

r ], (4)

measured 3DCAR 3DmdCAR-PF 3DmdCAR

Fig. 1. Measured bark texture and its 3DCAR and 3DmdCAR synthesis, respectively.
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2.1 Parameter Estimation

The model parameters γ, Σ̆ are estimated from measured texture Ysample and
its modified version Ỹsample using Bayesian estimations.

These Bayesian parameter estimates (conditional mean values)

γ̂T
r−1 = V −1

xx(r−1)Vxy(r−1) (5)

and

Σ̂r−1 =
λ(r−1)

β(r)
. (6)

can be accomplished using fast, numerically robust and recursive statistics [10],
given the known 3DmfCAR process history

Y̆ (t−1) =
{

Y̆t−1, Y̆t−2, . . . , Y̆1, X̆t, X̆t−1, . . . , X̆1

}
:

γ̂T
t−1 = V −1

xx(t−1)Vxy(t−1), (7)

Vt−1 = Ṽt−1 + V0, (8)

Ṽt−1 =
(∑t−1

u=1 Y̆uY̆ T
u

∑t−1
u=1 Y̆uX̆T

u∑t−1
u=1 X̆uY̆ T

u

∑t−1
u=1 X̆uX̆T

u

)
=

(
Ṽyy(t−1) Ṽ T

xy(t−1)

Ṽxy(t−1) Ṽxx(t−1)

)
, (9)

where t is the traversing order index of the sequence of multi-indices r and is
based on the selected model movement in the lattice I, V0 is a positive definite
initialization matrix (see [10]) which is in our experiment the identity matrix.

The optimal causal functional contextual neighborhood Ic
r can be solved

analytically by a straightforward generalization of the Bayesian estimate in [10].

2.2 Model Synthesis

The principal multispectral texture field synthesis can be computed using three
possible simple and fast alternatives. The auxiliary random field can be similarly
separately synthesized if there is a knowledge of the principal field. To simplify
our notation, we will not differentiate measured Yr (in Sect. 2.1) and synthesized
Yr from the model (this section) because their usage is clear from the context.

Complete Model Synthesis. The complete model Y̆ synthesis uses direct
application of the 3DmfCAR model Eq. (1)

Y̆r = γ̂X̆r + N (0, Σ̂), (10)

for simultaneous synthesis of the principal Y and auxiliary Ỹ random fields. Both
random fields are causal thus the required contextual neighbors Yr−s, Ỹr−s ∀s ∈
Ic
r are known from previous model synthesis steps.
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measured 3DCAR 3DmdCAR-PF 3DmdCAR

Fig. 2. Measured sweets texture and its unstable 3DCAR and 3DmdCAR-PF synthesis,
respectively.

Complete Model Combined Synthesis. The alternative complete model
Y̆ synthesis (3DmfCAR-PF) combines the principal field Y synthesis using the
model equation:

Yr =
∑

s∈Ic
r

(As,1Yr−s + As,2Ỹr−s) + er ∀r ∈ I (11)

while the auxiliary field Ỹ is separately computed from (2) using just estimated
neighbors Ys ∈ Ic

r as arguments for the corresponding function f( ) for computing
Ỹr pixels.

Principal Model Synthesis. In most applications the auxiliary field Ỹ is not
needed, and the model (11) is sufficient for the principal field Y synthesis.

Auxiliary Model Synthesis. If there is a need to synthesize the auxiliary field
to a known principal field, it can be easily done using the corresponding part of
the 3DmfCAR model equation:

Ỹr =
∑

s∈Ic
r

(As,3Yr−s + As,4Ỹr−s) + ẽr ∀r ∈ I. (12)

The auxiliary random field can be alternatively synthesized directly from the
measured data (Ymeasured) if there are used in (12) instead of estimated principal
pixels Yr, but then this field cannot be enlarged.

3 Texture Measurement Database

We verified the model on color textures cutouts from our large (more than 2000
high-resolution 7.9 MB (4288×2848) color textures categorized into 14 thematic
classes and 20 subclasses) Prague color texture database [9,16]. All these textures
are natural textures or man-made material textures. Some tested color textures
are also from the VisTex database [20] where all textures have 512 × 512 size.
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measured 3DCAR 3DmdCAR-PF 3DmdCAR

Fig. 3. Measured textile, flowers, and wood textures (first column), their unstable
3DCAR synthesis (second column) and the stabilizing effect of the additional auxiliary
field in the 3DmdCAR model application.

4 Results

All our experiments were provided on color texture sets. Some textures were
modeled using a single 3DmdCAR model, while others more complicated tex-
tures used a combination of several such models using the concept of the random
compound field. Figure 1 illustrates the difference between simple 3DCAR model
synthesis of a bark texture and both versions of the 3DmdCAR synthesis with all
model using the same contextual neighborhood Ic

r . The 3DmdCAR model tends
to stabilize some unstable 3DCAR model as is illustrated in three examples in
Fig. 3 where all models in each row share the same contextual neighborhood Ic

r

with the corresponding unstable 3DCAR models. Figure 2 suggests the stronger
stabilizing effect of the complete model synthesis (3DmdCAR) over its combined
synthesis (3DmdCAR-PF) alternative. Although the possible instability problem
can be easily solved by just increasing the model order, this stabilizing tendency
is the advantage of this otherwise more complex proposed model. Figure 4 shows
visual quality improvement of the proposed 3DmdCAR model over our previ-
ously published 3DCAR model on the plant’s texture example. The influence of
the median window size on the visual synthetic texture appearance in a range of
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Table 1. Spectral modeling per pixel error ζ (13) compared to the measured original.

3DCAR 3DmdCAR-PF 3DmdCAR

Figure 1 bark 6.49 7.36 7.97

Figure 2 sweets 41.88 64.29 29.07

Figure 3 textile 23.54 8.30 8.89

Figure 3 flowers 16.62 10.91 10.80

Figure 3 wood 51.30 5.81 7.60

Figure 4 plants 16.96 8.93 8.61

median windows 2 × 2–11 × 11 is illustrated on the lichen texture in Fig. 5. The
larger is the median estimation window; the more enhanced is the low frequencies
in the model.

Fig. 4. Measured plants texture (left), its synthesis using 3DCAR (upper right) and
3DmdCAR (lower right) models.

The application of the presented 3DmdCAR model in the more complex com-
pound model is illustrated in Fig. 6. The compound Markov random field mod-
els (CMRF) consist of several sub-models each was having different characteris-
tics along with an underlying structure model which controls transitions between
these sub-models. The non-parametric control field is estimated using the iterative
method [15], and six local Markovian models are the presented 3DmdCAR model.
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Table 2. Spectral modeling per pixel error ζ (13) compared to the measured original.

Median 3DCAR 3DmdCAR

2 × 2 3 × 3 4 × 4 5 × 5 7 × 7 9 × 9 11 × 11

Figure 5 lichen 16.46 10.87 10.87 11.19 17.20 10.90 10.75 11.03

measured

3DCAR 3DmdCAR 2× 2 3DmdCAR 3× 3 3DmdCAR 4× 4

3DmdCAR 5× 5 3DmdCAR 7× 7 3DmdCAR 9× 9 3DmdCAR 11× 11

Fig. 5. Measured lichen texture, its 3DCAR synthesis, and several 3DmdCAR synthe-
ses with gradually growing median filter windows.

The 3DmdCAR model can also be beneficially used in texture recognition
(supervised or unsupervised) applications. Some preliminary results on the unsu-
pervised bidirectional texture function segmentation can be checked on the
Prague texture segmentation data-generator and benchmark [9]. The 3Dmd-
CAR model with 7 × 7 median there achieves the best average rank over 21
benchmark criteria while the comparable 3DCAR model won only three individ-
ual segmentation criteria. Detailed results in these applications will be published
elsewhere.
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measured CMRF 3DmdCAR

Fig. 6. Measured lichen and stone textures (left), and their enlarged synthesis (lichen
upper, stone bottom) using a compound model with several 3DmdCAR submodels.
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4.1 Texture Spectral Similarity

Although there is not any reliable texture similarity criterion, we can quantita-
tively measure spectral texture similarity. We have recently proposed [17] new
reliable criterion for image spectral composition comparison. This ζ criterion
simultaneously considers texture spectral similarity as well as the mutual ratios
of similar pixels based on the mean exhaustive minimum distance:

↓ ζ(A,B) =
1
M

∑

(r1,r2)∈〈A〉
min

(s1,s2)∈U

{
ρ

(
Y A

r1,r2,•, Y
B
s1,s2,•

)} ≥ 0, (13)

where Y A
r1,r2,• represents the pixel at location (r1, r2) in the image A, • denotes

all the corresponding spectral indices, and similarly for Y B
s1,s2,•. Further, ρ is

the maximum vector metric. U is the set of unprocessed pixel indices of B,
M = min { 	{A}, 	{B}}, 	{A} is the number of pixels in A, and similarly for
	{B}. We define min {∅} = 0.

Table 1 illustrates color modeling quality presented in 3DmdCAR model
examples. While the bark synthesis from the simpler 3DCAR model has compa-
rable quality, their 3DmdCAR counterparts, textile, flowers, wood, and plants
achieved much better appearance from the novel model. This can be expected for
the unstable 3DCAR models (Fig. 3 - textile, wood) or unstable 3DmdCAR-PF
(Fig. 2 sweets) model, but in the case of stable plants texture (Fig. 4) it is a less
obvious conclusion. The ζ criterion value shows that the best spectral modeling
quality was achieved for the 3DmdCAR-PF wood texture synthesis (Table 1)
moreover, bark, textile, and plants results are slightly worse. The sweets tex-
ture, on the contrary, is the most complicated for this model. Similarly, Table 2
indicates the 9 × 9 median size to be optimal for the lichen texture although
faster and smaller 2 × 2, 3 × 3 medians can be used with slight compromise as
well.

5 Conclusions

The presented 3DmfCAR model in its median version 3DmdCAR exhibits out-
standing modeling capability on a wide range of natural or artificial color tex-
tures representing visual properties of surface materials. The model is inherently
multispectral, and thus it can be used to model any number of spectral or hyper-
spectral bands. The major advantage of the model is that it can be analytically
estimated as well as easily synthesized and used for seamless texture enlarge-
ment to fill any required size. The model tends to stabilize the simpler 3DCAR
model of the same order. Visual properties of the model can be easily changed
using a modification of the auxiliary field properties. The drawback of the pro-
posed model is more parameters that have to be estimated, and thus also a large
learning set required. However, even this more extensive learning set is negligible
with the learning set required for convolutional neural networks.

The proposed model can be used either in its stand-alone version or as a
primary factor for a more complex BTF or compound BTF models.
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13. Haindl, M., Havĺıček, M.: Bidirectional texture function simultaneous autoregres-
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