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Abstract. A transfer learning approach for multidimensional paramet-
ric mixture random field-based textural representation is introduced. The
proposed transfer learning approach allows alleviating the multidimen-
sional mixture models requirement for sufficiently large, but not always
available, learning data sets. These compound random field models con-
sist of an underlying structure model that controls transitions between
several sub-models, each of them has different characteristics. The struc-
ture model proposed is a two-dimensional probabilistic mixture model,
either of the Bernoulli or Gaussian mixture type. Local textures are mod-
eled using the fully multispectral three-dimensional Gaussian mixture
sub-models. Both presented compound random field models allow the
reproduction of, compresses, edits, and enlarges a given measured color,
multispectral, or bidirectional texture function (BTF) texture so that
ideally, both measured and synthetic textures are visually indiscernible.

Keywords: Texture · Texture modeling · Transfer learning ·
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1 Introduction

Realistic, visually convincing, and physically correct virtual models require pre-
cise object shapes and their surfaces covered with nature-like surface material
textures to present realism in virtual scenes. The principal objective of any mod-
eling texture approach is to reproduce and enlarge a given measured material
texture so that ideally, both measured natural and modeled synthetic texture
will be mutually visually indiscernible. This aim is not easy to reach due to the
enormous variability of the natural material’s appearance. The surface material
semblance dramatically changes with illumination and viewing variations, among
others, and we cannot even measure them in their full complexity. The most
advanced current texture representation is the seven-dimensional Bidirectional
Texture Function (BTF) [11]. Although BTF texture data can be measured,
this task is expensive and requires a very demanding measurement setup. Addi-
tionally, measured BTF data are nearly always too limited to estimate reliably
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complex seven-dimensional BTF models, inevitably leading to some simplifying
factorization [11], such as the presented compound random field models which
use a set of three-dimensional factor models for the estimation of the complex
overall BTF material model [11]. Very often not enough data is available such
that the multidimensional mixture model can be trained [4–6,16,17]. Transfer
learning (or domain adaptation) [21–24] partially alleviates the problem of lack
of learning data by transferring knowledge learned from other similar learning
tasks. Compound random field models (CRF) consist of several sub-models with
different characteristics along with an underlying structure model that controls
transitions between these sub-models [19]. Several image restoration [2,3,19,20],
segmentation [25], or modeling [8,9,12] applications already benefitted of the
compound Markov field models. However, these models always require demand-
ing numerical solutions with all their well-known drawbacks. Our exceptional
CMRF [8] model allows analytical synthesis at the cost of a slightly compromised
compression rate. The transfer learning is illustrated on the three-dimensional
Gaussian mixture model (3DGMM) but the same conclusion also holds for other
atypical multidimensional mixture models such as 3D Bernoulli distribution mix-
ture model [17] or 3D discrete distribution mixture model [17].

We propose two textural models - CRFBM−3DGMM , CRFGM−3DGMM , based
on complex spatial probabilistic mixture models. These models have both the
two-dimensional control field model and the three-dimensional local, regional
models, either Gaussian mixture or probabilistic Bernoulli models. They dif-
fer only in dimensionality. While the principal control field is a simpler two-
dimensional field, the local, regional models are much more demanding than
three-dimensional. The three-dimensional random fields require much larger
learning set to reliable estimate or their parameters, but unfortunately, their
learning sets are also much smaller than the learning control fields. Thus we
often face the situation when there are not enough data to use such models.

2 Compound Random Field Texture Models

Let us denote a multiindex r = (r1, r2), r ∈ I, where I is a discrete two-
dimensional rectangular lattice and r1 is the row and r2 the column index,
respectively. Xr ∈ K = {1, 2, . . . ,K} is a random variable with natural number
value (a positive integer), Yr is multispectral pixel at location r and Yr,j ∈ R
is its j-th spectral plane component. Both random fields (X,Y ) are indexed
on the same lattice I. Let us assume that each multispectral or BTF observed
texture Ỹ (composed of d spectral planes) can be modelled by a compound
random field model, where the principal random field X controls switching to
a regional local model Y =

⋃K
i=1

iY . Single K regional sub-models iY are
defined on their corresponding lattice subsets iI, iI ∩ jI = ∅ ∀i �= j and
they are of the same random field (RF) type. The sub-models differ only in their
contextual support sets iIr and the corresponding parameters sets iθ. The
CRF model has posterior probability P (X,Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ ) and
the corresponding optimal MAP solution is:
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(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX , ΩY are corresponding configuration spaces for random fields (X,Y ).
To avoid an iterative MCMC MAP solution, we propose the following two step
approximation [8]:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) , (1)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) . (2)

This simplifying approximation significantly reduces the BTF-CRFBM−3DGMM ,
BTF-CRFGM−3DGMM learning set requirements because it allows to estimate
the principal switching random field X (1) and regional sub-models iY (2)
independently.

3 Principal Switching Model

The principal part (X) of the BTF compound random models (BTF-CMRF)
is assumed to to be independent on illumination and observation angles, i.e.,
it is identical for all possible combinations φi, φv, θi, θv azimuthal and elevation
illumination/viewing angles, respectively. This assumption does not compromise
the resulting BTF space quality, because it influences only a material texture
macro-structure, which is independent of these angles for static BTF textures.

The control RF (P (X | Ỹ )) is supposed to be represented by a two-dimensio-
nal random filed model. Such model can be a non-parametric random field [8,14,
15] or some parametric random field hierarchical two-scale Potts model [9], Potts-
Voronoi Markov random field model [18], and Gaussian or Bernoulli distribution
mixture model [13], respectively. Mixture models are appropriate for regular
or near-regular textures such as textile materials presented in this article. The
mixture distribution P (X{r}) has the form:

P (X{r}) =
∑

m∈M
P (X{r} |m) p(m) =

∑

m∈M

∏

s∈Ir

ps(Xs |m) p(m) (3)

where X{r} ∈ Kη, M = {1, 2, . . . ,M}, Ir ⊂ I is an index set, η =
cardinality{Ir}, and p(m) are probability weights

∑
m∈M p(m) = 1 . The

maximum-likelihood parameter estimates p(m) (probability weights), μms, σms

(Gaussian mixture component means and standard deviation), θm,s (Bernoulli
mixture component parameters) are computed using the EM algorithm [1,5]
p
(t+1)
s (. |m) and

q(t)(m |X{r}) =
p(t)(m)P (t)(X{r} |m)

∑
j∈M p(t)(j)P (t)(X{r} | j) , (4)

p(t+1)(m) =
1

|S|
∑

X{r}∈S
q(t)(m | X{r}) . (5)
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3.1 Principal Field Synthesis

We can assume without loss of generality at a given position r of the contextual
neighborhood Ir to have some part of the pixel-wise synthesized control field
X{r} already specified. If X{ρ} is a sub-vector of all of X{r} pixels previously
specified within this window and Iρ ⊂ Ir the corresponding index subset,
then the statistical properties of the remaining unspecified variables are fully
described by the corresponding conditional distribution:

pn | ρ(Xn |X{ρ}) =
M∑

m=1

Wm(X{ρ}) pn(Xn |m) , (6)

where Wm(X{{ρ}) are the a posteriori component weights corresponding to the
given sub-vector X{ρ}:

Wm(X{ρ}) =
p(m)Pρ(X{ρ} |m)

∑M
j=1 p(j)Pρ(X{ρ} | j)

, (7)

Pρ(X{ρ} |m) =
∏

n∈ρ

pn(Xn |m) .

Xn can be randomly generated by the conditional distribution pn | ρ(Xn |X{ρ})
whereby Eq. (6) can be applied to all the unspecified variables n = η − card{ρ}
given a fixed position of the control field. Each newly generated Xn is used to
upgrade the conditional weights Wm(X{ρ}).

3.2 Bernoulli Distribution Mixture Model

We assume that the control field distinguishes between K sub-models and the
distribution P (X{r}) to be a multivariable Bernoulli mixture (BM), The control
field is further decomposed into separate binary bit planes of binary variables
ξ ∈ B, B = {0, 1} and these planes are separately modeled and can be estimated
from a much smaller learning texture than a multi-level discrete mixture model.
We further suppose that a bit factor of a control field can be fully characterised
by a marginal probability distribution of binary levels on pixels within the scope
of a window centered around the location r and specified by the index set
Ir ⊂ I, i. e., X{r} ∈ Bη and P (X{r}) is the corresponding marginal distribu-
tion of P (X | Ỹ ). The component distributions P (· |m) are factorisable, and
multivariable Bernoulli:

P (X{r} |m) =
∏

s∈Ir

θXs
m,s(1 − θm,s)1−Xs Xs ∈ X{r} . (8)

The mixture model parameters (8) include component weights p(m) and the
univariate discrete distributions of binary levels. They are defined by one param-
eter θm,s as a vector of probabilities:

ps(· |m) = (θm,s, 1 − θm,s) . (9)
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The EM solution is (4), (5) and

p(t+1)
s (ξ |m) =

1
|S| p(t+1)(m)

∑

X{r}∈S
δ(ξ,Xs) q(t)(m |X{r}), ξ ∈ B . (10)

The total number of mixture (3), (9) parameters is thus M(1 + η) – con-
fined to the appropriate norming conditions. The advantage of the multivariable
Bernoulli model (9) is a simple switch-over to any marginal distribution by delet-
ing superfluous terms in the products P (X{r} |m).

3.3 Gaussian Mixture Model

The principal (control) random field is discrete, but a continuous RF can alter-
natively model it if we map single indices into continuous random variables with
uniformly separated mean values and small variance. The continuous synthetic
results are subsequently inversely mapped back into a corresponding synthetic
discrete control field. We assume the joint probability distribution P (X{r}),
X{r} ∈ Kη in the form of a two-dimensional normal mixture and the mixture
components are defined as products of univariate Gaussian densities

P (X{r} |μm, σm) =
∏

s∈I{r}

ps(Xs |μms, σms) , (11)

ps(Xs |μms, σms) =
1√

2πσms

exp
{

− (Xs − μms)2

2σ2
ms

}

,

i. e., the components are multivariate Gaussian densities with diagonal covariance
matrices. The maximum-likelihood estimates of the parameters p(m), μms, σms

can be computed by EM algorithm [1,5]. Anew we use a data set S obtained
by pixel-wise shifting the observation window within the original texture image
S = {X

(1)
{r}, . . . , X

(K)
{r} }, X

(k)
{r} ⊂ X. The corresponding log-likelihood function is

maximized by the EM algorithm (m ∈ M, n ∈ N ,X{r} ∈ S) and the iterations
are (4), (5) and

μ(t+1)
m,n =

1
∑

X{r}∈S q(t)(m |X{r})

∑

X{r}∈S
Xn q(m |X{r}) , (12)

(σ(t+1)
m,n )2 = −(μ(t+1)

m,n )2 +

∑
X{r}∈S X2

n q(t)(m |X{r})
∑

X{r}∈S q(m|X{r})
. (13)

Details and examples about both principal random field models are illus-
trated in [13]. These BTF principal models usually do not suffer from lack of
learning data, because there is one common principal field for thousands of mea-
sured combinations of illumination and observation angles. However, in the rare
case of insufficient data, the transfer learning from the subsequent section can
be applied without any change.
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3.4 Constant Principal Model

The simplest principal model is a constant field which contains only one model
BTF-CMRFc... P (X | Ỹ ) = 1. Then there is no need to use the MAP approxi-
mation (1), (2), and the compound Markov model simplifies into a single random
field BTF-MRF model, and this model can be any of the local MRF or mixture
models. To simplify further exposition and better illustrate the achieved results
(Fig. 2) on larger images, we will further assume the constant principal field.

4 Local Spatial 3D Gaussian Mixture Model

A homogeneous static texture image Y is assumed to be defined on a finite
rectangular N1×N2×d lattice I, r = (r1, r2, r3) ∈ I denotes a pixel multiindex
with the row, columns and spectral indices, respectively. Let us suppose that
Y represents a realization of a random vector with a probability distribution
P (Y ). The statistical properties of interior pixels of the moving window on Y
are translation invariant due to assumed textural homogeneity. They can be
represented by a joint probability distribution and the properties of the texture
can be fully characterized by statistical dependencies on a sub-field, i. e., by a
marginal probability distribution of spectral levels on pixels within the scope of
a window centered around the location r and specified by the index set:

Ir = {r + s : |r1 − s1| ≤ α ∧ |r2 − s2| ≤ β} ⊂ I .

The index set Ir depends on modeled visual data and can have any other than
this rectangular shape. Y{r} denotes the corresponding matrix containing all Ys

in some fixed order arrangement such that s ∈ Ir, Y{r} = [Ys ∀ s ∈ Ir], Y{r} ⊂
Y , η = cardinality{Ir} and P (Y{r}) is the corresponding marginal distribution
of P (Y ). If we assume the joint probability distribution P (Y{r}), in the form of
a normal mixture

P (Y{r}) =
∑

m∈M
p(m)P (Y{r} |μm,Σm) Y{r} ⊂ Y ,

=
∑

m∈M
p(m)

∏

s∈Ir

ps(Ys |μm,s,Σm,s) (14)

where Y{r} ∈ �d×η is d × η matrix, μm is d × η mean matrix, Σm is d × d × η a
covariance tensor, and p(m) are probability weights and the mixture components
are defined as products of multivariate Gaussian densities

P (Y{r} |μm,Σm) =
∏

s∈I{r}

ps(Ys |μms,Σms) , (15)

ps(Ys |μms,Σms) =
|Σm,s|− 1

2

(2π)
d
2

exp
{

−1
2
(Yr − μm,s)T Σ−1

m,s(Yr − μm,s)
}

,(16)

i. e., the components are multivariate Gaussian densities with covariance matri-
ces (23). The underlying structural model of conditional independence is esti-
mated from a data set S obtained by the step-wise shifting of the contextual
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window Ir within the original texture image, i. e., for each location r one
realization of Y{r}.

S = {Y{r} ∀ r ∈ I, Ir ⊂ I} Y{r} ∈ �d×η . (17)

4.1 Parameter Estimation Using Transfer Learning

Local i-th texture region (not necessarily continuous) is represented by the 3D
Gaussian mixture random (3DGMM) field model [7,10]. This model can be ana-
lytically estimated as well as synthetically enlarged to any required size if there
is enough learning data, what is its typical application problem. The unknown
parameters of the approximating the mixture can be estimated using the itera-
tive EM algorithm [1]. To obtain robust parameter estimates for the unusually
large 3DGMM models, we need an extensive learning set. The lower frequencies
are in the BTF texture the larger cardinality η of Y{r} ∈ Kη, is needed. The
lack of learning data is bypassed other similar texture 1Y with approximately
similar frequencies as the target texture 2Y . We assume the same GMM model
structure for both textures, i.e., 1m = 2m. However, both textures can differ
in their spectral information. The similar first texture 1Y is used to learn the
initial estimates for the target texture 2Y with the exception of the component
mean vectors:

2p
(0)

(m) = 1p
(t+1)

(m) ∀m , (18)
2Σ

(0)
m,s = 1Σ

(t+1)
m,s ∀m, s . (19)

The parameter transfer learning algorithm can be summarized:

1. EM estimation (20)–(23) of GMM parameters from 1Y ,
2. EM estimation (20)–(23) of GMM parameters from 2Y using the EM initial-

ization (18),(19).

In order to estimate the unknown distributions ps(· |m) and the component
weights p(m) we maximize the likelihood function corresponding to the training
set (17):

L =
1

|S|
∑

iY{r}∈S
log

[
∑

m∈M
P (iY{r} |μm,Σm) p(m)

]

.

The likelihood is maximized using the iterative EM algorithm (with non-diagonal
covariance matrices):
E:

q(t)(m| iY{r}) =
P (t)(iY{r} |μm,Σm) p(t)(m)

∑
j∈M P (t)(iY{r} |μj ,Σj) p(t)(j)

, (20)
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M:

p(t+1)(m) =
1

|S|
∑

iY{r}∈S
q(t)(m | iY{r}) , (21)

μ(t+1)
m,s =

1
∑

iY{r}∈S q(t)(m | iY {r})

∑

iY {r}∈S

iY s q(t)(m | iY{r}) . (22)

The Mη covariance matrices are:

Σ(t+1)
m,s =

∑
iY{r}∈S,IYs∈IY{r} q(t)(m | iY{r})

∑
iYr∈S q(t)(m | iY{r})

(iYs − μ(t+1)
m,s )(iYs − μ(t+1)

m,s )T

=

∑
iY{r}∈S,iYs∈iY{r} q(t)(m | iY{r}) iY i

s Y T
s

∑
iYr∈S q(t)(m | iY{r})

−
p(t+1)(m) |S| μ(t+1)

m,s

(
μ
(t+1)
m,s

)T

∑
iYr∈S q(t)(m | iY{r})

. (23)

The iteration process is stopped when the criterion increments are sufficiently
small. The EM algorithm iteration scheme has the monotonic property: L(t+1) ≥
L(t), t = 0, 1, 2, . . . which implies the convergence of the sequence {L(t)}∞

0 to a
stationary point of the EM algorithm (local maximum or a saddle point of L).

4.2 Texture Synthesis

The advantage of a mixture model is its simple synthesis based on the marginals:

pn | ρ(Yn |Y{ρ}) =
M∑

m=1

Wm(Y{ρ}) pn(Yn |m) , (24)

where Wm(Y{{ρ}) are the a posteriori component weights corresponding to the
given submatrix Y{ρ} ⊂ Y{r}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} |m)

∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (25)

Pρ(Y{ρ} |m) =
∏

n∈ρ

pn(Yn |m) . (26)

The unknown multivariate vector-levels Yn can be synthesized by random sam-
pling from the conditional density (24) or the mixture RF can be approximated
using the GMM mixture prediction [17].
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5 Experiments

The proposed compound random field models (BTF −CRFBM−3GMM , BTF −
CRFGM−3GMM ) are well convenient for near-regular textures such as textile
materials. Textures with the near-regular structure are difficult for Markov ran-
dom field type of textural models [8,11], which are better suited for the random
type of materials. The dimension of the estimated control field model distribu-
tion is not too high (η ≈ 101 − 102) and the number of the training data vectors
is relatively large (|S| ≈ 104 − 105). However, the window size should always be
kept reasonably small and the sample size as large as possible. We have used a
regular left-to-right and top-to-down shifting of the generating window in our
experiments. Figure 1 illustrates the synthesis of Cloth35 texture control field
using the two-dimensional Bernoulli mixture model (BTF −CRFBM−3DGMM ).
Figure 2 shows four textile BTF material measurements (only one measure-
ment with perpendicular viewing and illumination angle from the whole sets
of 6561 measurements per material). These samples were synthesized using the
BTF − CRF c−3DGMM models either with the transfer learning from similar
textile textures or without. If we are comparing both synthesis variants, the
usefulness of the additional information obtained from the transfer learning is
pronounced. The transfer learning cost doubles the learning time because, in
our experiments, we double (2 × 5122) the overall learning set. Experiments
with a chain of two similar textures suggest no further noticeable improvement.
Significantly different textures might even decrease the performance (negative
transfer).

Cloth35 BM X Fabric024

Fig. 1. Cloth measurements (left), its synthesized control field using the BM model
with K = 4 (middle), and Fabric024 texture used in the transfer learning (Fig. 2 first
row).
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420cirbaFmorfLT820cirbaF

021cirbaFmorfLT911cirbaF

Fabric120 TL from Fabric119

Fabric122 TL from Fabric120

Fig. 2. Fabric measurements (left column), synthesis without transfer learning (TL,
middle column), and with the transfer learning (right column) using the 3DGMM
model.
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6 Conclusion

Both presented BTF-CRF (BTF − CRFGM−3DGMM , CRFBM−3DGMM meth-
ods with the local random field models learned using the supported informa-
tion from similar textures through transfer learning suggest improved visual
achievement on selected real-world measured textile materials. The models do
not compromise spectral correlation; thus, they reliably model and enlarge mot-
ley textures. Both methods can be smoothly generalized for color, hyperspectral
or BTF texture editing by learning some local models from alternative target
materials. The proposed transfer learning approach allows alleviating typical
multidimensional mixture models drawback - their requirement of sufficiently
large learning data that are not always available.

Acknowledgements. The Czech Science Foundation project GAČR 19-12340S sup-
ported this research.
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8. Haindl, M., Havĺıček, V.: A compound MRF texture model. In: Proceedings of
the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–
1795. IEEE Computer Society CPS, Los Alamitos (2010).https://doi.org/10.1109/
ICPR.2010.442, http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442
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