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ABSTRACT

Weighted canonical polyadic (CP) tensor decomposition ap-
pears in a wide range of applications. A typical situation
where the weighted decomposition is needed is when some
tensor elements are unknown, and the task is to fill in the
missing elements under the assumption that the tensor admits
a low-rank model. The traditional methods for large-scale de-
composition tasks are based on alternating least-squares meth-
ods or gradient methods. Second-order methods might have
significantly better convergence, but so far they were used
only on small tensors. The proposed Krylov-Levenberg-Mar-
quardt method enables to do second-order-based iterations
even in large-scale decomposition problems, with or without
weights. We show in simulations that the proposed technique
can outperform existing state-of-the-art algorithms in some
scenarios.

Index Terms— Tensor decomposition, tensor completion,
PARAFAC, CANDECOMP

1. INTRODUCTION

The workhorse algorithm for the Canonical Polyadic (CP)
tensor decomposition is the Alternating Least Squares (ALS),
see, e.g., [1, 2, 3, 4], often exhibits a slow convergence. A
significantly faster convergence is obtained by second-order
methods like Gauss-Newton or damped Gauss-Newton
(Levenberg-Marquardt, LM) [5, 6], or nonlinear least squares
(NLS) method [7, 8, 9].

If the tensors are huge in terms of their dimension, it is
possible to decompose them through sampling, either random
[11] or regular [10] or compression [12], and the problem is
converted to the CP decomposition of a lower size.

A more difficult problem is the one of tensor completion:
to fill missing entries of a partially known tensor under a low-
rank constraint. This is a special case of a situation of finding
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a low-rank approximation of a given tensor. It might be that
not all elements of the tensor are known or the tensor elements
have assigned weights. See, e.g., [13, 14, 15, 16] and the
references therein.

In some applications, some factor matrices in the CP de-
composition might be constrained as nonnegative or to lie in
some range. In that case, the Alternating Direction of Multi-
pliers Method (ADMM) can be advised [17].

In all these classes of the problem, it might be convenient
to replace the ALS-type or gradient-based algorithms by se–
cond-order-type methods to improve convergence and reduce
the number of iterations needed to achieve convergence. Until
recently, the second-order-type methods were considered as
impractical due to large demands on computer memory and
number of operations per iteration. These problems are al-
leviated in the Krylov-based methods [18], in particular, the
Krylov-Levenberg-Marquardt (KLM) method. The method is
based on the ability to quickly compute the product of the type
Hx, where H is the approximate Hessian of the CP decom-
position problem and x is an arbitrary vector of appropriate
dimension, without the need the Hessian to be computed ex-
plicitly. The size of the Hessian is N × N where N is the
number of parameters in the model, i.e., the number of ele-
ments of all factor matrices together. It can be several thou-
sand or even million. While the number of elements in H is
N2, the elements need not be accessed, and the number of
operations needed to compute the product Hx can be much
smaller, usually of the order O(N).

In [18], it was shown that the KLM algorithm allows achiev-
ing the CP decomposition with a lower sensitivity than tradi-
tional methods. The sensitivity is a quantity that character-
izes how small Gaussian-distributed perturbation in elements
of all the factor matrices translate in deviation of the tensor
built from these matrices. The paper does not contain enough
details about how the products Hx can be computed, in par-
ticular for the weighted CP decomposition. This paper aims
to fill this gap in literature and provides the missing piece of
information. Note that the KLM algorithm can be combined
with the error preserving correction method of [21].
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The rest of the paper is organized as follows. Section 2
introduces the problem, Section 3 explains the construction
of the Krylov subspace, and Section 4 presents the fast com-
putation of the product Hx for an arbitrary vector x. Section
5 contains numerical examples, and Section 6 concludes the
paper.

2. WEIGHTED CP DECOMPOSITION

For simplicity, we formulate the problem for order-3 tensor
only, adopting the [[·]] Kruskal tensor notation of Kolda and
Bader [3].

Assume that a given tensor T̂ is fitted by a rank−R tensor

T = T (θ) = [[A,B,C]] (1)

where the factor matrices, A,B,C, have R columns, and θ
is a vector which stacks their all elements as

θ = [vec(A); vec(B); vec(C)] . (2)

The separation by semicolons means stacking the vectors one
above the other (like in Matlab).

Assume that we are given a weight tensorW of the same
size as T , having nonnegative elements. We wish to minimize
the cost function

εW(θ) = ‖W1/2 ? (T̂ − T (θ))‖2F . (3)

where ‖ · ‖ is the Frobenius norm, W1/2 is the elementwise
square root of W , and “?” is the Hadamard (elementwise)
product.

In the following, we denote a Jacobi matrix J, an error
gradient g, and an approximate Hessian H,

J =
∂vec(T )

∂θ
(4)

g = JTWvec(T − T̂ ) (5)
H = JTWJ (6)

where W = diag(vec(W)). Note that some other authors call
H Gramian [7]. In the Levenberg-Marquardt algorithm, one
needs to compute products of the type (H+ µI)−1g where µ
is a parameter of regularization.

3. KRYLOV SUBSPACE TECHNIQUE

Assume that we can quickly compute the product y = Hx
for an arbitrary vector x of appropriate dimension, without
the need of having the matrix H available directly.

The main idea of this work is to consider a low-rank ap-
proximation of the Hessian H of size N ×N ,

H ≈ UZUT (7)

where U is a tall matrix of the size N ×M , M � N , and Z
would be a symmetric M ×M matrix. Then, the integer M

can be called rank of the approximation. Once we know the
matrices U and Z in the approximation, we can compute the
product (H + µI)−1g through the matrix inversion lemma,

(H + µI)−1g ≈ 1

µ
g − 1

µ
U(µZ−1 + UTU)−1(UTg) (8)

This computation requires inversion of two matrices of the
size M ×M , which is not computationally demanding, if M
is not too big. The complexity isO(NM+M3) = O(IRM+
M3) operations. The approximation in (8) comes from (7),
not from the matrix inversion lemma.

The Krylov method [19, 20] takes U as the orthogonal
basis of the linear hull of

[g,Hg,H2g, . . . ,HM−1g] .

The basis U can proceed through the Gram-Schmidt orthog-
onalization process, see [18] for details. Then, Z is estimated
as

Z = UTHU . (9)

Note that Z can be computed as a side product of the Gram-
Schmidt orthogonalization.

In the next section, we show that the product y = Hx can
be computed with O(IR2) and O(IAIBICR) operations in
the case without and with weighting, respectively, where I =
IA + IB + IC . One iteration of KLM executes this computa-
tion M times. The Gram-Schmidt orthogonalization requires
additional O(IMR2) operations. Computing the error gradi-
ent g requiresO(IAIBICR) operations. The total complexity
per iteration of KLM is then O(IAIBICR + IM2R + M3)
and O(IAIBICMR + IM2R + M3) operations for the un-
weighted and weighted algorithms, respectively.

4. FAST COMPUTING OF y = Hx

We start with the unweighted CP decomposition, whereW is
a tensor of ones and W is the identity matrix. This part is
well explained in [7, 8], we include it here for completeness.

Let XA be an arbitrary matrix of the same size as A, and
similarly XB and XC be arbitrary matrices of the same size
as B and C, respectively, and let

x = [vec(XA); vec(XB); vec(XC)] .

Then, it can be shown that product of the approximate Hessian
with a vector x, i.e., y = JTJx, can be expressed as

y = JTJx = [vec(YA); vec(YB); vec(YC)] (10)

where

YA = XA((CTC) ? (BTB))

+A((XT
BB) ? (CTC) + (XT

CC) ? (BTB))

YB = XB((ATA) ? (CTC))

+B((XT
CC) ? (ATA) + (XT

AA) ? (CTC))

YC = XC((ATA) ? (BTB))

+C((XT
BB) ? (ATA) + (XT

AA) ? (BTB)) .
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We can see that this computation of y involves only “small”
matrices like A,B,C,XA,XB and XC and requires neither
the Jacobian J nor the approximate Hessian JTJ.

Similarly, for order–4 tensors, where T = [[A,B,C,D]],
x = [vec(XA); vec(XB); vec(XC); vec(XD)], and
y = [vec(YA); vec(YB); vec(YC); vec(YD)], we have

YA = XA(BB ?CC ?DD) + A((XT
BB) ?CC ?DD

+(XT
CC) ?BB ?DD + (XT

DD) ?BB ?CC)

YB = XB(AA ?CC ?DD) + B((XT
CC) ?AA ?DD

+(XT
AA) ?CC ?DD + (XT

DD) ?AA ?CC)

YC = XC(AA ?BB ?DD) + C((XT
BB) ?AA ?DD

+(XT
AA) ?BB ?DD + (XT

DD) ?AA ?BB)

YD = XD(AA ?BB ?CC) + D((XT
BB) ?AA ?CC

(XT
AA) ?BB ?CC + (XT

CC) ?AA ?BB)

where AA = ATA, BB = BTB, CC = CTC, and DD =
DTD.

In the case of weighted CP decomposition, we need to
compute the product y = Hx where H = JTWJ. The
computation is more complex, but still, we do not need larger
data structures than T andW .

In the case of order–3 tensors, the product can be written
in terms of a tensor F defined as

F =W ? ([[XA,B,C]] + [[A,XB ,C]] + [[A,B,XC ]])

as

YA = F(1)(C�B)

YB = F(2)(C�A) (11)
YC = F(3)(B�A) .

where F(1), F(2), F(3) are the matricizations of F along the
first, second, and third modes, respectively. Indeed, the defi-
nitions of YA, YB and YC in (10) and (11) are equivalent, if
W is composed of 1′s only.

Similarly, for order–4 tensors we define

F = W ? ([[XA,B,C,D]] + [[A,XB ,C,D]]

+[[A,B,XC ,D]] + [[A,B,C,XD]])

and the matrices YA, YB , YC , and YD are expressed as

YA = F(1)(D�C�B)

YB = F(2)(D�C�A) (12)
YC = F(3)(D�B�A)

YD = F(4)(C�B�A) .

5. SIMULATIONS

Example 1. We consider an artificial tensor T = [[A,B,C]]
of size 50× 80× 90 and rank R = 10. The factor matrices of

the tensor are defined in Matlab notation as

A = 0.9 ∗A0(:, 1) ∗ ones(1, R) + 0.1 ∗A0

B = 0.9 ∗B0(:, 1) ∗ ones(1, R) + 0.1 ∗B0

C = 0.9 ∗C0(:, 1) ∗ ones(1, R) + 0.1 ∗C0

where A0,B0,C0 are random matrices with orthogonal co–
lumns generated as A0 = orth(randn(50, R)),
B0 = orth(randn(80, R)), and C0 = orth(randn(90, R),
respectively. Thanks to this construction, all the three factor
matrices have moderately collinear columns, which makes the
decomposition harder.

Finally, we add a small noise to the tensor by putting T̂ =
T +0.01N whereN is generated asN = randn(50, 80, 90).
Among elements of T̂ we select 10% which will be available
to the estimators, and the remaining 90% will be hidden but
used for evaluation purposes. In Matlab notation, the weight
tensor is given asW = double(rand(50, 80, 90) < 0.1).

We test five algorithms in our simulation study: the weighted
KLM with parameters M = 10, 20 and 50, NLS algorithm of
Tensorlab (in the input tensor, the unavailable elements are
changed to NaN), and the PARAFAC-ALS algorithm of Ras-
mus Bro [2]. We admit that Tensorlab and PARAFAC-ALS
are not fully relevant for this test, because they do not use any
constraint to prevent overfitting. We wished to compare with
the recent algorithm TREL-1 [14] as well, but its code was
not available. In Figure 1, we plot the typical learning curves
of KLM and NLS. PARAFAC-ALS was not shown, because
it does not have the learning curve as standard output. We
can see how the sum of squared fitting errors converges to the
final value, as a function of time. The number of iterations
of PARAFAC-ALS is set to 1000 and its computational time
is 75s. Usually, in less difficult scenarios, NLS is the fastest
algorithm of all.

Table 2 presents the normalized fitting errors of the al-
gorithms (cost function) Ei and the normalized error of the
unobserved entries,

Ei = ‖T̂ (W)− Ti(W)‖2F /‖T̂ (W)‖2F (13)
Ēi = ‖T (W̄)− Ti(W̄)‖2F /‖T (W̄)‖2F (14)

where T̂ and T is the noisy and noiseless tensors, Ti stands
for the estimators,W denotes the tensor elements available to
the estimators, and W̄ is its complement. The last row shows
sensitivity of the estimates provided by the algorithms (after
balancing norms of the factors),

Si =

R∑
r=1

‖a(i)r ‖2(‖b(i)
r ‖2 + ‖c(i)r ‖2) + ‖b(i)

r ‖2‖c(i)r ‖2 (15)

where {a(i)r }, {b(i)
r },{c(i)r } are columns of the estimated fac-

tor matrices. If the task is to estimate the missing tensor ele-
ments through the low-rank assumption, the most successful
algorithm was KLM-20. The worst estimate is provided by
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alg. KLM-10 KLM-20 KLM-50 NLS Bro
Ei 0.8675 0.3620 0.3448 0.3614 0.3237
Ēi 1.2661 0.0421 0.0683 196.2157 0.1175
Si 48.89 48.19 52.17 2931.0 65.48

Table 1: Fitting errors of the algorithms and sensitivity of the
decomposition.

NLS. The last line shows the reason. NLS produces the esti-
mate with the highest sensitivity. Indeed, the sensitivity of the
NLS can be reduced by considering an option with L1 or L2
regularization, which is not included in the current software.
L1 regularization is used in TREL1 [14].

Fig. 1: Typical learning curves of KLM with M = 10, 20, 50
and NLS (Tensorlab) for Example 1.

Fig. 2: Relative prediction errors Ēi of KLM-20 and NLS
(Tensorlab) versus the iteration number.

A natural explanation of the observed behavior of the al-
gorithm would be a hypothesis of over-fitting. One may think
the algorithm NLS was let run too long. To investigate this
issue, we repeat the experiment, but stop the algorithms (here
NLS and KLM-20) every 10 iterations, and measure the rel-
ative squared prediction error of the hidden tensor elements

alg. KLM-10 KLM-20 KLM-50 NLS Bro
Ei 0.0356 0.0355 0.0355 5.1487 0.0314
Ēi 0.0002 0.0002 0.0002 0.8889 0.0009
Si 37.4 38.9 38.6 1689.0 47.41

Table 2: Fitting errors of the algorithms and sums of sensitiv-
ity of the decomposition for the example with a lower noise
level.

as a function of iteration number. The results are shown in
Figure 2. We can see that KLM-20 achieves its minimum
prediction error at approximately 150 iterations. Then, the
error tends slightly to increase: there is some over-fitting if
the iteration number is too high, but it is not very crude. On
the other hand, NLS does not exhibit any over-fitting, and the
results are constantly bad.

Example 2. We repeat the previous experiment but the
additive noise has 10× lower amplitude, i.e., T̂ = T +0.001N .
In this case, we can see that NLS of Tensorlab fails to con-
verge properly, see Figure 3. The three variants of KLM
work almost equally well. They outperform PARAFAC-ALS
in prediction error, also.

Fig. 3: Typical learning curves of KLM with M = 10, 20, 50
and NLS (Tensorlab) for Example 2.

6. CONCLUSIONS

The recent KLM algorithm was extended to the weighted CP
tensor decomposition. The algorithm appears to produce good
results even in situations where other methods fail. In general,
it appears to produce decomposition with lower sensitivity.
The high sensitivity of the decomposition may indicate over-
fitting. Matlab code of the respective algorithms, KLM and
weighted KLM (WKLM) has been posted at
https://github.com/Tichavsky/tensor-decomposition.
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[18] P. Tichavský, A.H. Phan, and A. Cichocki, “Sensitivity
in Tensor Decomposition” IEEE Signal Processing Let-
ters, vol.26, no.11, pp. 1653–1657, November 2019.

[19] A.N. Krylov, “On the Numerical Solution of Equation
by Which are Determined in Technical Problems the
Frequencies of Small Vibrations of Material Systems”.
Izvestija AN SSSR (News of Academy of Sciences of
the USSR), Otdel. mat. i estest. nauk, 1931, VII, Nr.4,
491–539 (in Russian).

[20] J. Liesen and Z. Strakos, Krylov Subspace Methods:
Principles and Analysis, Oxford Science Publications,
2012.
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