
4258 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Performance Bounds for Complex-Valued
Independent Vector Analysis

Václav Kautský , Student Member, IEEE, Petr Tichavský , Senior Member, IEEE,
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Abstract—Independent Vector Analysis (IVA) is a method for
joint Blind Source Separation of multiple datasets with wide area
of applications including audio source separation, biomedical data
analysis, etc. In this paper, identification conditions and Cramér-
Rao Lower Bound (CRLB) on the achievable accuracy are derived
for the complex-valued case involving circular and non-circular
signals and correlated and uncorrelated datasets. The identification
conditions describe when independent sources can be separated
from their linear mixture in the statistically consistent manner. The
CRLB shows how non-Gaussianty, non-circularity of sources and
statistical dependence between datasets influence the attainable
separation accuracy. Examples presented in the experimental part
confirm the validity of the CRLB. Also, they show certain gap be-
tween the attainable accuracy and performance of state-of-the-art
algorithms, especially, in case of highly non-circular signals. Hence,
there is a room for possible improvements.

Index Terms—Blind source separation, complex-valued
signal processing, Cramér-Rao lower bound, independent
component/vector analysis, non-circular sources.

I. INTRODUCTION

INDEPENDENT Vector Analysis (IVA) [1] is a blind source
separation (BSS) method of jointly separating multiple signal

data sets into independent components. It is a generalization
of Independent Component Analysis (ICA) where only one
mixture of scalar independent sources is separated [2]. The idea
behind IVA is that in a simultaneous decomposition of multiple
datasets, signals (components) in different data sets (mixtures)
are expected to be statistically dependent, which is the main idea
behind a joint multiset data analysis.
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Traditional methods of BSS rely on signal non-
Gaussianity, non-stationarity, and/or spectral diversity (sample
dependence) [3]. More recently, [4] considers complex-valued
sources and their non-circularity as another feature that helps to
separate the sources. Thanks to the assumed non-circularity, it
is possible to separate Gaussian-distributed sources that cannot
be separated otherwise. This paper generalizes results of [4] to
the IVA model without the sample dependence.

Multiple data sets with dependence among them need to be
jointly processed in many applications [5]. The most common
example is the separation of convolutive signal mixtures in the
frequency domain, where one frequency bin corresponds to
one data set [1], [6]–[8]. Also medical data, such as functional
magnetic resonance imaging (fMRI) and electroencephalogram
(EEG) data are typically collected from multiple subjects or un-
der different measurement conditions, and analysed jointly [5],
[9], [10]. Another example is processing of video sequences
in multiple bands [11] and use of IVA for EEG signal en-
hancement [12]. Complex-valued processing is natural in ap-
plications such as fMRI processing. Such data is natively com-
plex and there are advantages for processing it in the complex
domain [13], [14]. Also, frequency domain representation is
commonly used in the solution of the convolutive problem as
well as in processing of signals such as EEG. In addition, in
many cases, noncircularity needs to be accounted for, e.g., in the
processing of fMRI, radar, and certain communications data [5],
[15]. Another practical example showing how non-circularity
helps to separate sources is polarization sunglasses [16]. Direct
sun-light is represented by circularly polarized (non-polarized)
electro magnetic waves. After a reflection, the light becomes par-
tially polarized. The polarization sunglasses allow to filter out (at
least partially) the unwanted noncircular waves - the reflections.

Many methods for ICA and IVA have been proposed in
the literature; a review can be found in [5]. When evaluating
performances of the algorithms, a comparison with theoretical
and algorithm-independent performance bounds is very useful.
Cramér-Rao lower bound (CRLB), already studied for ICA and
IVA in [17]–[24], provides a lower bound on the separation accu-
racy. The CRLB for extraction of one Source Component Vector
(SCV) from IVA mixture where all but one SCVs are Gaussian
have been derived in [25]. Recently, the CRLB for complex-
valued ICA considering three types of signal diversities, that is,
non-Gaussianity, non-whiteness and non-circularity, has been
derived in [4]. For IVA, similar study has been provided in [21],
however, only for the real-valued case. It means that the bound
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has not been yet computed for the complex-valued IVA, which
is not a trivial extension of the problem in the real domain. One
goal of the paper is to show how non-circularity of the sources
can contribute to a better separation performance. Indeed, non-
circularity does not have a counterpart in the real domain.

Besides the lower bound on separation accuracy, there is a
question whether two (or more) sources are separable in the
sense of statistical consistency (no matter how accurately). This
poses the problem of finding the identifiability conditions, which
can be studied through the CRLB, because the CRLB exists only
if the identification conditions are met. This is influenced by
all types of signal diversities, including non-circularity in the
complex-valued problems. The identification conditions were
analyzed in [4] for ICA and in [21] for the real-valued IVA.

The contribution of this paper resides in the full analysis
of the complex-valued IVA problem. This includes the in-
duced Cramér-Rao Lower Bound (I-CRLB) for the achievable
interference-to-signal ratio (ISR) of the separated signals and
the identifibility conditions. The analysis embodies non-circular
signals as well as possible nonzero correlations between signals
from different data sets. We show how non-circularity and cor-
relatedness can influence the identifiability of signals mixtures
that would not be identifiable without these signal features.

The paper is organized as follows. The mixing model is
introduced in Section II. The Fisher Information Matrix (FIM)
and the CRLB are calculated in Section III. Section IV studies
the identification conditions. Section V deals with a special case
of uncorrelated mixtures. Numerical examples are presented in
Section VI, while the conclusions of Section VII summarize the
paper results.

II. PROBLEM STATEMENT

A. Mathematical Notations

Throughout the paper, plain, bold lowercase and bold cap-
ital letters denote, respectively, scalars, vectors and matrices.
Symbols (·)T , (·)H and (·)∗ denote, respectively, transposition,
conjugate transpose and complex conjugate. The Matlab con-
vention for matrix/vector concatenation and indexing will be
used, e.g., [1; g] = [1, gT ]T , and (A)j,: is the jth row of A.

The notation x ⊥⊥ y means that the random vector variables x
and y are statistically independent. The symbol ı stands for the
imaginary unit. The Kronecker and Hadamard (element-wise)
product are denoted by ⊗ and �, respectively. The operator
of vectorization vec(A) denotes an MN × 1 vector stack-
ing the columns of A ∈ C

M×N . Let α = [α1. . . . , αMα
] be

a vector listing a subset of rows in A, where 0 < Mα < M ,
and Eα = [eα1

, . . . , eαMα
]T ∈ RMα×M , where ei is the ith

column of the identity matrix, be a corresponding indexing
matrix. Then, EαA selects the rows in A indicated by α.

Next, define vecα(A)
def
= vec(EαA). The symbol δm,n is the

Kronecker delta, i.e., δm,n = 0 for m �= n, and δm,n = 1 for
m = n. Letx be a complex-valued multivariate random variable
of zero mean. Its covariance matrix will be denoted by Rx =
E[xxH ] and pseudo-covariance matrix by Ωx = E[xxT ]. The
augmented covariance matrix of x is defined as Rx = E[xxH ],
where x = [x;x∗]. Let N (0,R) denotes a multivariate complex

Gaussian distribution with zero mean and augmented covariance
matrix R. This covers both circular and non-circular Gaussian
variables.

B. Mixing Model

Let the kth mixture (data set), k = 1, . . . ,K, where K is the
number of mixtures, be described by

xk = Aksk, (1)

where sk ∈ C
d is the vector of independent complex-valued

source signals (scalar random variables), Ak ∈ C
d×d is the

unknown non-singular mixing matrix, andxk ∈ C
d is the vector

of the observed signals. The sources sk are assumed to have zero
means.

LetN i.i.d. samples of the observed signals be available. The
data model for the nth sample is thus given by

xk(n) = Aksk(n), (2)

where k = 1, . . . ,K and n = 1, . . . , N . By defining the aug-
mented matrices X, A and S, we can describe the entire data
as ⎡

⎢⎣
X1

...
XK

⎤
⎥⎦ =

⎡
⎢⎣
A1 0 0

0
. . . 0

0 0 AK

⎤
⎥⎦
⎡
⎢⎣
S1

...
SK

⎤
⎥⎦ , (3)

where Sk ∈ C
d×N , k = 1, . . . ,K, is the matrix of origi-

nal sources with elements (Sk)i,j = ski (j), i = 1, . . . , d; j =
1 . . . , N . The data matrix Xk represents the mixtures. The joint
IVA mixing model can be written as X = AS.

We define the jth Source Component Vector (SCV) sj as
sj(n) = [s1j (n); . . . ; s

K
j (n)]T ∈ C

K , j = 1, . . . , d. The goal is
to estimate mutually independent SCVs. A special case of the
IVA problem where the elements of the vector components are
uncorrelated is studied in [26]. Separation of vector components
with internal correlations can be based on second-order statistics
only; see, e.g., [27]–[30]. In this paper, we admit correlated as
well as uncorrelated elements of the SCVs.

The problem to separate the original independent vector com-
ponents is equivalent with the problem of estimating the block
diagonal de-mixing matrix W such that its kth block, denoted
by Wk, satisfies WkAk = Gk = DkPk, where Dk and Pk is
a diagonal and a permutation matrix, respectively. The vector
involving the free parameters could be then defined as

θ =
[
vec(W1); . . . ; vec(WK)

]
. (4)

In general, the separation of each mixture is possible up to the
scale and order of the original signals. Since the identification
conditions and the I-CRLB do not depend on scale or permu-
tation, we can fix those ambiguities and treat them as known,
without any loss in generality. We can assume unpermuted SCVs
are scaled to unit variance. Deriving the CRLB with different
scaling and permutation would yield the same resulting I-CRLB.

III. LOWER BOUND FOR ISR

According to the scaling ambiguity of the ICA/IVA problem,
all signals of interest can be assumed to have unit variance with-
out any loss of generality. Consider an Interference-to-Signal
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Ratio (ISR) matrix of kth mixture with elements

ISRkm,n = E
[|Gk

m,n|2
]
, (5)

where Gk = ŴkAk, m,n,= 1, . . . d. The element ISRkm,n

represents the variance of the contribution of nth source to the
mth estimated source in the kth mixture (it is nonzero in general
due to imperfect separation).

A. Equivariance Property

In the following, we exploit a transformation rule saying
that the FIM of ϕ, denoted as Jϕ, and the FIM of a linearly
transformed versionθ = Kϕ, whereK is a non-singular matrix,
are related through [31]

Jθ = K−1JϕK
−H . (6)

Let JI and ϕI = vec(I) stand for the FIM and the parameter
vector, respectively, derived for a case when A = I. Then, θ =
(WT ⊗ I)ϕI = vec(W) is a parameter vector of the true de-
mixing matrix. Thus, according to (6) with K = WT ⊗ I =
A−T ⊗ I, it holds that

Jθ = (AT ⊗ I)JI(A
∗ ⊗ I). (7)

When computing the lower bound for ISR, the Induced Cramér-
Rao Lower Bound (I-CRLB), the parameter vector is θG =
vec(G) = (AT ⊗ I)vec(W) = (AT ⊗ I)θ. (In some other
papers, the bound is called the Cramér-Rao-Induced Bound,
CRIB, [19].) Similarly, using (6), it also holds that

JG = (WT ⊗ I)Jθ(W
∗ ⊗ I), (8)

which, together with (7), results in

JG = JI. (9)

Due to the invariance of the I-CRLB with respect to G = WA,
the global demixing-mixing matrix, we need to only consider
A = I, i.e., the CRLB of G depends only on the statistics of the
sources [32].

From (9) it follows that the lower bound for ISR does not
depend on the mixing matrix. Hence, the I-CRLB can be calcu-
lated without any loss of generality by considering the special
case that A = I. This property is related to the equivariance of
the (J)BSS determined mixing model (1); see, e.g., [2], [32].

The I-CRLB thus provides an algorithm–independent lower
bound for achievable separation accuracy. A comparison of the
ISR achieved by a given algorithm with the bound shows us its
performance, and only statistically efficient algorithms attain the
bound.

B. Cramér-Rao Lower Bound

In the following, we will use the CRLB definition for
complex-valued parameters estimation problems from [4], [31],
[33]. Let θ defined in (4) be the parameter vector, and θ =
[θ;θ∗]. For any unbiased estimator of θ, it holds that

cov (θ) � J−1(θ) = CRLB(θ), (10)

where C � D means that C−D is positive semi-definite, and
J (θ) is the FIM defined, in a block structure, as

J (θ) =

(
F P

P∗ F∗

)
= E

[
∂L
∂θ

(
∂L
∂θ

)H
]
, (11)

where

F = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)H
]
, P = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)T
]
. (12)

L = L(θ|x) stands for the log-likelihood function derived from
a statistical model. The derivatives with respect to θ∗ are defined
according to the Wirtinger calculus; see, e.g., [20], [30].

C. Statistical Model

The fundamental assumption of IVA (as well as of ICA) is
that s1, s2, . . . , sd are mutually independent, so their joint pdf is
a product of the marginal pdfs, ps(s) =

∏d
i=1 psi(si). The pdf

of si is not further factorized into products of marginals, which
is the way how the dependence within the SCVs is taken into
account.

From the probability density transformation theorem,1 it fol-
lows that the joint pdf of one sample of the observation vector
x is [4], [20]

p(x|θ) = |det(W)|2
d∏

i=1

psi(si), (13)

where si = [s1i ; . . . ; s
K
i ], i = 1, . . . , d, denotes the ith separated

SCV. Since det(W) =
∏K

k=1 det(W
k), the log-likelihood

function is given by

L(θ|x) =
K∑

k=1

log | det(Wk)|2 +
d∑

i=1

log psi(si). (14)

Now, the derivatives in (11) and (12) with respect to the
elements of Wk corresponding to the mth row and the nth
column are, after some computations shown in Appendix A,
equal to

∂L
∂(Wk

m,n)
∗ =

∂ log | det(Wk)|2
∂(Wk

m,n)
∗ +

d∑
i=1

∂ log psi(si)

∂(Wk
m,n)

∗

=
(
(Wk

m,n)
−1
)∗ − xk

n

∗
ψk
m, (15)

where

ψk
i = ψk

i (si) = −∂ log psi(si)
∂ski

∗ (16)

is the score function of the ith SCV. Now, by considering the
special case A = I, the derivative simplifies to

∂L
∂(Wk

m,n)
∗ = δm,n − skn

∗
ψk
m. (17)

1It is worth pointing out to the square of the determinant in (13) due to the fact
that the complex-valued problem is considered; this is a frequently overlooked
fact in the signal processing literature.
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Dependencies between elements of SCVs are described by
the following expressions, where k, l are indices of the mixture
and m is the index of the SCV,

κk,lm = E[ψk
mψ

l
m

∗
], (18)

ξk,lm = E[ψk
mψ

l
m], (19)

σk,l
m = E[skmslm

∗
], (20)

ωk,l
m = E[skmslm], (21)

ηk,lm = E[ψk
mskm

∗
ψl
m

∗
slm], (22)

βk,l
m = E[ψk

mskm
∗
ψl
mslm

∗
]. (23)

In addition, the following notation is used for brevity

υk,km = υkm, for υ ∈ {κ, ξ, ω, η, β}, (24)

σk,k
m = σk

m. (25)

D. Fisher Information Matrix

To compute the FIM, we substitute (17) into the definition
(12). The details of the derivation are in Appendix B. There
exists a permutation of parameters such that the corresponding
F and P are block diagonal. The ordering of the parameters is

θ =
[
W1

1,1, . . . ,W
K
1,1,W

1
2,2, . . . ,W

K
2,2, . . .

W1
d,d, . . .W

K
d,d,W

1
1,2, . . . ,W

K
1,2,W

1
2,1, . . . ,W

K
2,1, . . . ,

W1
d−1,d, . . . ,W

K
d−1,d,W

1
d,d−1, . . . ,W

K
d,d−1

]
.

Then,

F =

(
N 0

0 H

)
, and P =

(
B 0

0 G

)
, (26)

where N is a block diagonal matrix with d blocks Ni, i =
1, . . . , d, of size K ×K, with elements given by (Ni)k,l =

ηk,li − 1, for k, l = 1, . . . ,K. H can be handled as a block
diagonal matrix withd(d− 1)/2blocks,Hi,j , of size2K × 2 K
each of which read

Hi,j =

(
Γi �Rj 0

0 Γj �Ri

)
, (27)

for i = 1, . . . d, j = i+ 1, . . . , d. The elements of Γi are given
by (Γi)k,l = κk,li , and the elements of the covariance matrix Rj

are (Rj)k,l = σk,l
j , k, l = 1, . . . ,K. Next,B is a block diagonal

matrix with d blocks Bi, i = 1, . . . , d, of size K ×K, with
elements given by (Bi)k,l = βk,l

i − 1, for k, l = 1, . . . ,K. G
is as a block matrix with d(d− 1)/2 blocks, Gi,j , of size 2K ×
2 K that are given by

Gi,j =

(
Ei �Ωj IK

IK Ej �Ωi

)
, (28)

for i = 1, . . . d, j = i+ 1, . . . , d, where the elements of Ωj are
given by (Ωj)k,l = ωk,l

j , the elements of Ei are (Ei)k,l = ξk,li ,
k, l = 1, . . . ,K.

E. I-CRLB

According to the CRLB (10), defined as J −1, and using
the equivariance property in (9), the I-CRLB, i.e., the lower
bound for the ISR, is determined through the sub-block of J −1

corresponding to F in (11). The permuted matrices F and P
can be used for the computation with similar results up to the
permutation of rows and columns, thus,

CRLB(θ) = (F−P(F∗)−1P∗)−1. (29)

Since F and P are block diagonal having two blocks on the
main diagonal, (29) has the same structure. The first block of
the CRLB(θ), corresponding to N and B, is given by d blocks
Di of size K ×K, i = 1, . . . , d, such that

Di =
(
Ni −Bi(N

∗
i )

−1B∗
i

)−1
. (30)

The second block of the CRLB(θ), corresponding to H and G in
(26), follows the block structures (27) and (28), and, therefore,
it is block diagonal having d(d− 1)/2 blocks, denoted Mi,j , of
size 2K × 2 K that are given by

Mi,j =
(
Hi,j −Gi,j(Hi,j

∗)−1Gi,j
∗)−1

, (31)

where i = 1, . . . d, j = i+ 1, . . . , d. Mi,j has similar block
structure as Hi,j and of Gi,j , that is, it consists of four blocks of
size K ×K, however, it is not possible to compute the inverse
matrix in (31) analytically. In general, the lower bound for ISR
(5) is given by

ISRi,j =

K∑
k=1

ISRki,j ≥ tr (Mi,j)1,1 , (32)

for i, j = 1, . . . d, i �= j, where (Mi,j)1,1 denotes the upper left-
corner block of Mi,j of size K ×K.

IV. IDENTIFICATION CONDITIONS

Whenever the FIM is rank deficient, the inverse of the FIM, the
CRLB, does not exist, which points to the fact that the achievable
variance of the estimation of the model parameters is infinite.
Therefore, in this case, the IVA model as a whole cannot be iden-
tified, however subspaces that correspond to the non-singular
portion can still be identified, see Section VI in [31]. These
are identified as α-SCV components, subset of rows in an SCV
independent of the other rows in the same SCV [5]. We use
this fact in order to determine the identification conditions, that
is, conditions under which the CRLB exists and is finite [4]. It
has been already known that the determined mixtures of i.i.d.
sources (1) are blindly separable when none two of them are
Gaussian with proportional covariance matrices. This condition
holds both for ICA [2] as well as for IVA [21].

The identification conditions for the complex-valued ICA
were derived in [4], which also consider signals that may not
be i.i.d. In the case of i.i.d signals, as we have in this paper, the
result of [4] can be formulated as follows.

Lemma 1: Sources sm and sn cannot be identified if and only
if they are both Gaussian with

ωm = exp(ıθ)ωn, (33)
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where ωm = E[s2m], θ ∈ R, m �= n.
From the Lemma 1, it follows that two Gaussian sources

with |ωm| = |ωn| cannot be identified which translates to the
requirement that the circularity coefficients of all Gaussian
sources must be distinct to satisfy the identification conditions
in the complex-valued ICA problem [30], [33]–[35].

To start discussing the identification conditions for the
complex-valued IVA, we need to introduce notation similar to
the one used in [21], which allows us to denote a particular subset
of elements in an SCV: Let α = {α1, . . . , αKα

} be a set ofKα

indices where 0 < Kα < K. Let the complementing subset of
α in {1, . . . ,K} be denoted by αc.

Definition 1: A given SCV sn is said to have an α-
Gaussian component if and only if vecα(sn)⊥⊥vecαc(sn), and
vecα(sn) ∼ N (0,Rn;α), where Rn;α denotes the augmented
covariance matrix of vecα(sn) (or the covariance matrix in the
real valued case).

In other words, according to Definition 1, the nth SCV has
an α-Gaussian component iff there exists a subset of α rows in
the SCV that is independent of all other rows in the same SCV
and that the given subset has a multivariate Gaussian distribution
with the augmented covariance matrix Rn;α.

For comparison, in the case of real-valued IVA, there is
Lemma 2, proved in [21], that gives the identification conditions.

Lemma 2: The real-valued IVA model cannot be identified
if ∃ α �= ∅ and ∃m �= n such that sm and sn have α-Gaussian
components and Rm;α = DRn;αD, where D is a square diag-
onal matrix with positive elements on its diagonal.

To determine the identification conditions for the complex-
valued IVA, we use the block structure of the FIM (11). The
FIM is regular (model is identifiable) if and only if all blocks of
the FIM are regular. The FIM for the (i, j)th block is given as

Ji,j =

(
Hi,j Gi,j

G∗
i,j H∗

i,j

)
(34)

where Hi,j and Gi,j are defined in (27) and (28), respectively.
When all elements in the ith and jth SCVs are dependent,

then (34) is not block diagonal. However, if the elements can be
partitioned in two groups such that the elements in one group
are independent of the other group, then (34) is a block matrix
with one block per group. The following theorem gives the
identification conditions for complex-valued IVA.

Theorem 1: The sources cannot be identified if ∃α �= ∅ and
∃m �= n such that sm and sn have α-Gaussian components and

Ri;α = DRj;αD
H , (35)

Ωi;α = DΩj;αD, (36)

where D is a complex-valued diagonal matrix with nonzero
entries on the diagonal, and Ri;α,Ωi;α are blocks of the aug-
mented covariance matrix given by

Ri;α =

(
Ri;α Ωi;α

Ω∗
i;α R∗

i;α

)
. (37)

Remark 1: Following Theorem 1, any non-Gaussian SCVs
can always be identified.

Proof: Let SCVs sm and sn have α-Gaussian components,
and there is an α �= ∅. The selected block of the FIM is given
by

Ji,j;α = cov
(
[∇i,j;α;∇∗

i,j;α;∇j,i;α;∇∗
j,i;α]

)
, (38)

where ∇i,j;α and ∇∗
i,j;α are 2Kα × 1 vectors given by

∇i,j;α =

(
∂L(x;W)

∂s∗i;α

)T
∂s∗i;α
∂w∗

i,j

, (39)

∇∗
i,j;α =

(
∂L(x;W)

∂s∗i;α

)T
∂s∗i;α
∂wi,j

, (40)

where wi,j = [w1
i,j , . . . , w

K
i,j], i, j = 1, . . . , d, is the estimated

parameter vector, i.e., the vector stacking (i, j)th elements
of the de-mixing matrices Wk, k = 1, . . . ,K. When the α-
component si;α has complex Gaussian pdfs with an augmented
covariance matrix

Ri;α =

(
Ri;α Ωi;α

Ω∗
i;α R∗

i;α

)
, (41)

then, using the equivariance property, see Appendix C, we get

∇i,j;α = sTi;αR
−T
i;α

(
diag(s∗j;α) 0

0 0

)
, (42)

∇∗
i,j;α = sTi;αR

−T
i;α

(
0 0

0 diag(sj;α),

)
. (43)

The FIM (38) is singular ⇐⇒ (∃λ1,λ2 �= 0) s.t.

∇i,j;αλ1 +∇∗
i,j;αλ

∗
1 +∇j,i;αλ2 +∇∗

j,i;αλ2
∗ = 0, (44)

which after using (42) and (43) translates to

sTi;αR
−T
i;αdiag(λ1)s

∗
j;α + sTj;αR

−T
j;αdiag(λ2)s

∗
i;α = 0, (45)

sHi;αR
−1
i;αdiag(λ

∗
1)sj;α + sHi;αdiag(λ2)R

−1
j;αsj;α = 0, (46)

sHi;α

(
R−1

i;αdiag(λ
∗
1) + diag(λ2)R

−1
j;α

)
sj;α = 0, (47)

which holds for ∀ si;α, sj;α, i, j = 1, . . . , d. Therefore, the
middle term in (47) is zero. Consequently,

Rj;α = −diag(λ∗
1)

−1Ri;αdiag(λ2). (48)

Thus, the blocks of Rj;α in (41) read

Ri;α = − diag(λ∗
1)

−1Rj;αdiag(λ2), (49)

R∗
i;α = − diag(λ1)

−1R∗
j;αdiag(λ

∗
2), (50)

Ωi;α = − diag(λ∗
1)

−1Ωj;αdiag(λ2
∗), (51)

Ω∗
i;α = − diag(λ1)

−1Ω∗
j;αdiag(λ2). (52)

If there areλ1 andλ2 such that (49)–(52) hold, the identification
conditions are violated.

Let ηkm and ζkm denote absolute value and phase of λm, m =
1, 2, respectively, i.e., λkm = ηkm exp (ıζkm), m = 1, 2. Since the
diagonal elements of Ri;α, ∀i = 1, . . . , d, are positive and

real-valued, (49) holds only when −ηk
2

ηk
1
> 0 and ζk1 = ζk2 , for
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k = 1, . . . ,K. In addition, the covariance matrix Ri;α has to be
Hermitian, i.e., 1

λk1
= λk2 , thus, 1

ηk
1
= ηk2 , k ∈ α. Inserting into

(49) and (51), respectively, leads to

Ri;α = DRj;αD
H , (53)

Ωi;α = DΩj;αD, (54)

where D is a diagonal matrix with a diagonal elements equal to
dk = ηk exp(ıζk), ηk, ζk ∈ R. The proof is done. �

The identification conditions in Theorem 1 show how the
three diversities non-Gaussianity, non-circularity, and depen-
dence influence the separability of data. In contrast to the
real-valued IVA, the complex-valued SCVs with proportional
covariance matrices (35) can still be separable provided that
their pseudo-covariance matrices are not proportional each to
the other. This can happen only for non-circular SCVs, because
circular SCVs have zero pseudo-covariance matrices (which are
trivially proportional).

Note that the condition given by (53) is obviously satisfied
in ICA, since the covariance matrices in (53) are replaced by
variances. If two sources have the same circularity, then also (54)
is satisfied and such sources cannot be identified. By contrast,
in IVA only sources with proportional covariance and pseudo-
covariance matrices do not meet the identification conditions.

V. UNCORRELATED ELEMENTS OF THE SCV

A special case of IVA is when the elements in SCVs are
dependent but uncorrelated, so only higher-order dependencies
among them may exist; this was the original statistical model
considered in [26] where IVA is deployed for the frequency-
domain separation of convolutive mixtures of audio signals. The
signals from different frequency bins tend to be uncorrelated, so
the signal model is useful here.

For this special case, the computation of the CRLB is sig-
nificantly simplified, because now the uncorrelatedness means
that

σk,l
m = σk

mδk,l, (55)

ωk,l
m = ωk

mδk,l. (56)

The sub-blocks of F in (26) are then as follows: N is a block
diagonal matrix with d blocks Ni, i = 1, . . . , d, of sizeK ×K,
with elements given by (Ni)k,l = ηk,li − 1, for k, l = 1 . . .K;
H is a block diagonal matrix with K(d− 1)d/2 blocks of size
2× 2 that read

Hk
i,j =

(
κki σ

k
j 0

0 κkjσ
k
i

)
, (57)

for k = 1, . . . ,K and i = 1, . . . d, j = i+ 1, . . . , d. The sub-
blocks of P in (26) are as follows: B is a block diagonal matrix
with d blocks Bi, i = 1, . . . , d, of size K ×K, with elements
given by (Bi)k,l = βk,l

i − 1, for k, l = 1 . . .K; G is a block
diagonal matrix with K(d− 1)d/2 blocks of size 2× 2 that
read

Gk
i,j =

(
ξki ω

k
j
∗

1

1 ξkj ω
k
i
∗

)
, (58)

k = 1, . . . ,K and i = 1, . . . , d, j = i+ 1, . . . , d. Hence, both
matrices, H and G, are block diagonal with 2× 2 blocks when
the elements in SCVs are uncorrelated.

A. I-CRLB for Uncorrelated Elements

Now, sinceF andP are block diagonal matrices with a similar
structure, (29) is a block diagonal matrix. Its first d blocks Di

of size K ×K, i = 1, . . . , d, are given by

Di =
(
Ni −Bi(N

∗
i )

−1B∗
i

)−1
, (59)

where the elements of Ni and Bi are (Ni)k,l = ηk,li − 1 and
(Bi)k,l = βk,l

i − 1. The other Kd(d− 1)/2 blocks are given
by

Mk
i,j =

(
Hk

i,j −Gk
i,j(H

k
i,j

∗
)−1Gk

i,j

∗)−1

=

⎛
⎝κki − |ξki |2|ωk

j |2
κk
i

− 1
κk
j

− ξki (ω
k
j )

∗

κk
i

− (ξkj )
∗ωk

i

κk
j

− ξki
∗
ωk

j

κk
i

− ξkj ω
k
i
∗

κk
j

κkj − |ξkj |2|ωk
i |2

κk
j

− 1
κk
i

⎞
⎠

−1

, (60)

for k = 1, . . . ,K and i = 1, . . . d, j = i+ 1, . . . , d.
The lower bound for ISR corresponds to

ISRki,j = E
[
(Gk

i,j)
2
] ≥ (Mk

i,j)
−1
1,1. (61)

Thus, after calculation of the inverse in (60) and some further
simplifications, the I-CRLB for the kth mixture says that

ISRki,j ≥
κki (κ

k
i κ

k
j − 1)− κkj |ξki |2|ωk

j |2
uki,j − 1

, (62)

where

uki,j = (κki κ
k
j − 1)2 − (κki )

2|ξkj |2|ωk
i |2 − (κkj )

2|ξki |2|ωk
j |2

+ |ξki ξkj ωk
i

∗
ωk
j

∗ − 1|2.
(63)

It can be easily verified that when the SCV elements are
independent, the bound (62) is equal to that one in [20] ((30)
on page 4) for the complex-valued ICA. Following inequalities
hold for κki , ηki , σk

i and ωk
i :

κki ≥ |ξki |, κki ≥ 1, (64)

|ξki | ≥ |ωk
i |, σk

i ≥ |ωk
i |. (65)

In the special case where the jth signal is circular, which
implies that ωj = ξj = 0, (62) simplifies to

ISRki,j ≥
κki

κki κ
k
j − 1

. (66)

It is worth noting that the noncircularity of the ith signal did not
vanish in this case; it influences the value of κki .

The following Lemma 3 provides an insight how the depen-
dence between the elements of SCVs affects the bound.

Lemma 3: Letp(s1, s1∗, . . . , sK , sK∗
) = p(s, s∗)denote the

joint pdf of s1, . . . , sK , and pk(s
k, sk

∗
) be the marginal pdf

of sk, k = 1, . . . ,K. Let κkIVA = E[|∂ log ps(s)/∂sk∗|2] and
κkICA = E[|∂ log pk(sk)/∂sk∗|2]. Then, κkIVA ≥ κkICA, and the
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equality holds when sk is independent of the other random
variables, or, equivalently, when

p(s, s∗) = pk(s
k, sk

∗
)p(s1, s1

∗
, . . . , sk−1∗, sk+1, . . . , sK

∗
).

(67)
Proof: See Appendix D.
The bound (66) is a monotonously decreasing function of κki ,

since κkj ≥ 1. The Lemma 3 implies that the lower bound for
IVA is lower or equal to that one for ICA.

In the special case of Gaussian uncorrelated sources, our
analysis confirms an expected result that the sources cannot be
separated unless they have different circularity [4].

VI. NUMERICAL SIMULATIONS

The examples in this section illustrate how dependence and
non-circularity affect the separation accuracy. Let K = 2 mix-
tures consist of d = 2 SCVs.

A. Gaussian SCVs

In first example, both SCVs are drawn from a Gaussian
distribution with density

p(x) =
1

Z
exp

⎧⎨
⎩−1

2
xH

(
R Ω

Ω∗ R∗

)−1

x

⎫⎬
⎭ . (68)

The SCVs are scaled to unit variance, which means that diagonal
elements of R and R∗ are set to one. The first SCV is assumed
to be circular, which is provided by Ω = Ω∗ = 0. Elements of
this SCV are uncorrelated (thus, also independent in this case).
The other SCV is generated with varying circularity and mutual
dependence of elements. The circularity is varied through

Ω = γR = γ

(
1 c

c 1

)
, (69)

where γ ∈ [0, 1) (γ = 0 implies circularity). The dependence is
controlled by c ∈ [0, 1), where c is an off-diagonal element of
R (c = 0 implies uncorrelatedness). Owing to the circularity of
one SCV, the bound (32) simplifies to

ISR ≥ (I� Γ− (I�R)−1
)−1

1,1
, (70)

where Γ is defined in (27). Since it holds that

I� Γ =

(
κ 0

0 κ

)
, (I�R)−1 = I, (71)

where

κ =
1

(1− c2)(1− γ2)
, (72)

the resulting bound reads

ISR ≥ (1− c2)(1− γ2)

1− (1− c2)(1− γ2)
. (73)

Fig. 1 shows the comparison of CRLBs with ISR achieved
by the second-order (Gaussian) Independent Vector Analysis
(IVA-G) algorithm [36]. The average ISR is computed over
1000 trials for varying values of circularity coefficient γ and

Fig. 1. Achieved ISR and CRLBs for K = 2 mixtures, d = 2 SCVs, N =
5000 i.i.d. samples and varying circularity.

correlation parameter c. The CRLB is given by the right-hand
side of (73) for selected values of c as the function of γ. The
bound goes to infinity if and only if both c and γ approach zero.
This means that Gaussian sources can be separated when other
diversities (noncircularity and correlatedness) are taken into
account. These results corroborate the identification conditions
derived in Sec. IV saying that SCVs cannot be identified if they
have proportional covariance and pseudo-covariance matrices,
which holds only if γ = 0 and c = 0. As observed in the figure,
the performance of IVA-G follows the bound closely providing
support for its efficient nature [27] except in the region where the
signals are maximally improper/noncircular. As noted in [30],
for this case, which is also called “rectilinear,” many algorithms
developed for noncircular signals are known to fail and hence
might require special attention. We note that this is also the case
for IVA-G.

B. Generalized Gaussian SCVs

In the second example, also the non-Gaussianity is taken into
account. The elements of the first SCV are independent circular
Gaussian. The second SCV is generated as

(
x̃

ỹ

)
= H

(
x

y

)
=

(
1 c

c 1

)(
x

y

)
, (74)

where x, y are drawn from the complex Generalized Gaussian
Distribution (GGD) with a shape parameterα. The pdf of a GGD
variable is [37]

p(x, x∗) =
1

Z
exp
(
−
[
λ (γx2 + γx∗2 − 2xx∗)

]α)
, (75)

where γ is the circularity coefficient and

λ =
1

2

1

γ2 − 1

Γ(2/α)

Γ(1/α)
(76)
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Fig. 2. Achieved ISR and CRLBs for K = 2 mixtures, d = 2 SCVs, N =
5000 i.i.d. samples and varying shape parameter α.

is selected to scale x to unit variance. As shown in [20], it holds
that

κGGD = E[|ψ(x)|2] = α2Γ(2/α)

(1− γ2)Γ2(1/α)
. (77)

Thus, after some computations, the resulting bound (70) is given
by

ISR ≥ 1

(h21,1 + h21,2)κGGD − 1
, (78)

where h1,j = (H−1)1,j , j = 1, 2.
Fig. 2 shows the comparison of CRLBs with empirical ISR

achieved by the IVA by Complex Multivariate GGD (IVA-
CMGGD) algorithm proposed in [38], [39]. The average ISR is
computed over 100 trials for varying values of the circularity co-
efficient γ, the correlation parameter c, and the shape parameter
α. The CRLB is given by the right-hand side of (78) for selected
values of c and γ as a function of α. The results show how all
types of diversity are used to increase the separation accuracy.
The gap between the achieved ISR and related CRLB indicates
limitations of the algorithm, especially for greater values of c
and α. Sources cannot be separated if α = 1 and γ = c = 0,
which corresponds to the case of independent mixtures of cir-
cular Gaussian sources. This is in accord with identifications
conditions derived in Sec. IV.

VII. CONCLUSION

Different types of diversity discussed in this paper have been
shown to affect the separation accuracy and identification con-
ditions related to IVA. In particular, we have proved that, in
contrast to ICA, complex-valued IVA can benefit from statistical
dependence across mixtures and, in contrast to real-valued IVA,
it can benefit from the noncircularity of SCVs. We have deter-
mined the most general results of identifiability, which includes
the influence of noncircularity, non-Gaussianity (higher-order
statistics), and dependence across datasets in one model. In the
real-valued IVA, it was known that non-Gaussian SCVs can be
always separated while Gaussian SCVs cannot be separated if
their covariance matrices are proportional. Now, we have shown

that, in the complex-valued IVA, Gaussian SCVs are separable
if their pseudo-covariance matrices are not proportional. The
numerical simulations support the theory and confirm that the
derived bound is a lower bound on achievable accuracy. A
possible extension is to also consider sample dependence as an
additional type of diversity, which brings the spectral diversity
of signals into the equation. This will be an exciting future
direction.

APPENDIX A

It holds in

∂ log | det(Wk)|2
∂(Wk

m,n)
∗

=
1

| det(Wk)|2
∂ det(Wk)

(
det(Wk)∗

)
∂(Wk

m,n)
∗

=
1

det(Wk)∗
∂ det(Wk)∗

∂(Wk
m,n)

∗

= tr

(
(Wk)−1 ∂Wk∗

(Wk
m,n)

∗

)
= (Ak

m,n)
∗, (79)

where the last equality holds when the permutation and scaling
ambiguity is avoided, since then (Wk)−1 = Ak. The scaling
and permutation ambiguity do not affect the identification condi-
tions and the I-CRLB, thus, we can avoid them by assuming unit
variances and unpermuted separated signals. Then, the inverse
of the de-mixing matrix equals the mixing matrix.

APPENDIX B

The elements of matrices F and P in (12) are given by

Fk,l
(m,n),(i,j) = E[ψk

m(yk
n)

∗(ψl
i)

∗yl
j ]− δm,nδi,j , (80)

Pk,l
(m,n),(i,j) = E[ψk

m(yk
n)

∗ψl
i(y

l
j)

∗]− δm,nδi,j . (81)

Hence, there are only following possible cases of nonzero values
of (80) and (81):
� m = n = i = j

Fk,l
(m,m),(m,m) = E[ψk

m(yk
m)∗(ψl

m)∗yl
m]− 1 = ηk,lm − 1,

(82)

Pk,l
(m,m),(m,m) = E[ψk

m(yk
m)∗ψl

m(yl
m)∗]− 1 = βk,l

m − 1,

(83)

� m = i & n = j &m �= n

Fk,l
(m,n),(m,n) = κk,lm σn

k,l, (84)

Pk,l
(m,n),(m,n) = ξk,lm ωk,l

n

∗
, (85)

where κk,lm = E[ψk
mψ

l
m

∗
], σnk,l = E[yk

ny
l
n
∗
] and ξk,lm =

E[ψk
mψ

l
m], ωk,l

n = E[yk
ny

l
n],

� m = j & n = i &m �= n

Fk,l
(m,n),(n,m) = 0, (86)

Pk,l
(m,n),(n,m) = δk,l. (87)
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If uncorrelated elements of the SCV are assumed, then (84)
and (85) are both zeros when k �= l.

APPENDIX C

The equation (39)

∇i,j;α =

(
∂L(x;W)

∂s∗i;α

)T
∂s∗i;α
∂w∗

i,j

, (88)

simplifies for Gaussian SCVs as follows:

∂L(x;W)

∂s∗i;α
= R−1

i;αsi;α, (89)

∂s∗i;α
∂w∗

i,j

=
∂

∂w∗
i,j

(
W∗x∗

Wx

)
. (90)

It holds that

∂

∂w∗
i,j

Wx = 0 (91)

and

∂

∂w∗
i,j

W∗x∗ =
∂

∂w∗
i,j

⎛
⎜⎜⎝

W1∗x1∗

...

WK∗
xK∗

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x1

∗
. . . 0

0
. . . 0

0 . . . xK
∗

⎞
⎟⎟⎠ .

(92)
Thanks to the equivariance we can write x := s.

APPENDIX D

Lemma 3: It holds that κkIVA ≥ κkICA.
Proof: We start by computing the following auxiliary

quantity:

κkMI = E

⎡
⎣
∣∣∣∣∣ ∂∂sk

(
log

p(s, s∗)∏K
i=1 pi(s

i, si∗)

)∣∣∣∣∣
2
⎤
⎦

= E

[∣∣∣∣∂ log p(s, s∗)∂sk

∣∣∣∣
2
]
+ E

⎡
⎢⎣
∣∣∣∣∣∣
∂ log

(∏K
i=1 pi(s

i, si
∗
)
)

∂sk

∣∣∣∣∣∣
2
⎤
⎥⎦

− 2Re

⎛
⎝E

⎡
⎣∂ log p(s, s∗)

∂sk

∂ log
(∏K

i=1 pi(s
i, si

∗
)
)

∂sk
∗

⎤
⎦
⎞
⎠

= κkIVA + κkICA − 2Re

(
E

[
∂ log p(s, s∗)

∂sk
∂ log pk(s

k, sk
∗
)

∂sk
∗

])
.

By unfolding the last term, we obtain∫
C2 K

1

p(s, s∗)
∂p(s, s∗)
∂sk

1

pk(sk, sk
∗
)

∂pk(s
k, sk

∗
)

∂sk
∗ p(s, s∗)dsds∗

=

∫
C2

1

pk(sk, sk
∗
)

∂pk(s
k, sk

∗
)

∂sk
∗

∫
C2K−2

∂p(s, s∗)
∂sk

dsds∗

=

∫
C2

1

pk(sk, s∗)

∣∣∣∣∂pk(sk, s∗)∂sk

∣∣∣∣
2

dskdsk
∗
= κkICA.

The proof is completed as 0 ≤ κkMI = κkIVA − κkICA. �
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