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Abstract—Blind source extraction (BSE) aims at recovering an
unknown source signal of interest from the observation of in-
stantaneous linear mixtures of the sources. This paper presents
Cramér-Rao lower bounds (CRLB) for the complex-valued BSE
problem based on the assumption that the target signal is inde-
pendent of the other signals. The target source is assumed to be
non-Gaussian or non-circular Gaussian while the other signals
(background) are circular Gaussian or non-Gaussian. The results
confirm some previous observations known for the real domain
and yield new results for the complex domain. Also, the CRLB
for independent component extraction (ICE) is shown to coincide
with that for independent component analysis (ICA) when the
non-Gaussianity of background is taken into account. Second, we
extend the CRLB analysis to piecewise determined mixing models,
where the observed signals are assumed to obey the determined
mixing model within short blocks where the mixing matrices can
be varying from block to block. This model has applications, for
instance, when separating dynamic mixtures. Either the mixing
vector or the separating vector corresponding to the target source
is assumed to be constant across the blocks. The CRLBs for the
parameters of these models bring new performance limits for the
BSE problem.

Index Terms—Blind source extraction, Cramér-Rao lower
bound, dynamic mixing models, independent componenet analysis,
independent component extraction.
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I. INTRODUCTION

B LIND source separation (BSS) aims at recovering a set
of unobservable signals, called sources, from a set of

observed mixtures of the sources [1]. This problem has drawn a
lot of attention from the signal processing and machine learning
communities over the last two decades, especially due to the
vast amount of application domains where it is pertinent and
has produced useful results. When the sources are statistically
independent, BSS can be solved through the statistical tool of
independent component analysis (ICA). Blind source extraction
(BSE) is a related problem where the goal is to estimate a
particular source of interest (SOI) in the set of unobservable
signals. BSE is motivated by the fact that, often, targeting the
SOI may be considerably more cost-effective than separating
the whole set of sources from the observed mixture.

A wide variety of signal processing methods for BSS and
BSE have been proposed in the literature; a thorough review
can be found in [1]. Because different methods may typically
provide different results, a fundamental question is the perfor-
mance limits that can be attained in a given scenario regardless
of the methods employed. Cramér-Rao lower bounds (CRLB)
are useful for this task, and have been therefore studied, e.g.,
in [2]–[5].

The present paper focuses on the BSE problem where the
SOI is assumed to be independent from the background, a
problem closely related to ICA. Our contribution is two-fold.
In the first place, the standard determined mixing scenario
is considered, where the BSE problem is formulated through
the recently proposed approach called independent component
extraction (ICE) [6], based on a particular parameterization
of the mixing system. In the second place, we focus on the
piecewise determined mixing model that is usually designed for
dynamic mixtures, e.g., the moving source in a static background
is studied in [7].

In the assumed model, the observed samples are partitioned
into several blocks where the samples in each block obey
the standard determined model. Piecewise models extend the
standard BSS/BSE problem, typically defined in the context of
instantaneous mixtures, to the more general case of convolutive
mixtures, as they naturally arise when transforming the obser-
vations into the frequency domain. We compute the CRLBs of
two piecewise determined mixing models used for BSE.
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The paper is organized as follows. The BSS and BSE problems
are recalled in Section II, together with the main results found in
the literature. Section III is devoted to the standard determined
mixing model and the above mentioned issues related to the
CRLBs. Section IV introduces the piecewise determined mixing
models, and derives the related CRLBs using the results of
Section III. The computed theoretical bounds are discussed and
compared in Section V by analyzing several special cases. An
experimental validation is presented in Section VI, while the
conclusions of Section VII bring the paper to the end.

II. PROBLEM STATEMENT

A. Mathematical Notation

Throughout the paper, plain, bold lowercase and bold cap-
ital letters denote, respectively, scalars, vectors and matrices.
Symbols (·)T , (·)H and (·)∗ denote, respectively, transposition,
conjugate transpose and complex conjugate. The Matlab con-
vention for matrix/vector concatenation and indexing will be
used, e.g., [1; g] = [1, gT ]T , and (A)j,: is the jth row of A.
Notation E[·] stands for the expectation operator. In this pa-
per, complex-valued signals and parameters will be considered.
A complex random vector x is called circular if its pseudo-
covariance, defined as pcov(x) = E

[
(x− E[x])(x− E[x])T

]
,

is null. Otherwise,x is non-circular. The second-order circularity
coefficient ρ of a complex-valued random variable x with zero
mean, see [8], is defined as in [9] ρ = |E[x2]|/E[|x|2]. Thus,
ρ ∈ [0, 1], and ρ = 0 for circular random variables.

B. Signal Models

Classical BSS considers the instantaneous linear mixing
model

x = Au (1)

where x is a d× 1 vector representing d observed signals, u is a
n× 1 vector of source signals, and A is a d× nmixing matrix.
Throughout the paper, we will consider the more general case
of complex-valued sources and mixing matrices; the real-valued
case will be addressed in Section IV.F.

The goal of BSS is to separateu fromxusing only information
provided by the observed samples [1]. BSE aims at separating
only one source, referred to as the SOI, from the remaining
sources in x, which are called background. The standard model
considers the so-called determined or square case, where the
number of sources is the same as that of the observed signals,
n = d andA is hence a square d× d non-singular matrix. ICA is
a popular BSS method based on the assumption that the source
signals are mutually independent. Under this assumption, the
estimation of A and of A−1 is equivalent to the separation of u,
which can be carried out by finding a square de-mixing matrix
W such that

û = Wx (2)

are as independent as possible. Identifiability and separability
conditions are analyzed in [8].

Another interesting model often arises when separating con-
volutive mixtures in the frequency domain [10], in the problem

of independent vector analysis (IVA) [11] or yet in joint BSS,
where several instantaneous mixtures are observed:

xk = Akuk, k = 1, . . . ,K. (3)

Here,k plays the role of the mixture or dataset index, e.g., the fre-
quency bin index when transforming a convolutive mixture into
the frequency domain. The source signals uk = [uk1 , . . . , u

k
d]

T

are assumed to be mutually independent while vector compo-
nents ui = [u1i , . . . , u

K
i ]T , i = 1, . . . , d, have elements that can

be mutually dependent. The latter property is exploited for joint
separation of the set of mixtures.

In piecewise determined mixing models, it is assumed that
the observed samples of mixed signals can be partitioned into
M blocks where the samples in each block obey the standard
determined model (1). The mth block is thus described by

xm = Amum, m = 1, . . . ,M, (4)

where the source signalsum = [um1 , . . . , u
m
d ]T are independent.

The mixing matrices A1, . . . ,AM as well as the source signals
(their distributions) may vary from block to block. The model
thus involves dynamic mixing as well as a special underdeter-
mined case (more sources than sensors) since there can be up to
Md sources. As we will see later in the paper, the fact that the
mixtures are determined within the blocks allows the analytic
computation of the CRLB.

The ideas of the joint mixing and of the piecewise determined
mixing models can be yet combined together (dataset and block
indices are needed) [12]. Also, since the algebraic definitions
(3) and (4) are formally identical, IVA can be considered for
solving the latter problem; see, e.g., [13]. In this paper, we will
focus on the single-dataset mixing models (1) and (4); the other
variants exceed the scope of this paper. Before presenting our
contribution, we turn to a review of the existing literature.

C. Overview of Existing Results

1) Independence-Based BSS/BSE Methods: BSE methods
based on source non-Gaussianity had been studied even before
ICA was formulated [14], [15] in Comon’s pioneering pa-
per [16]. Then, the theory of ICA has been established since 90 s;
see, e.g., [1], [2], [17], [18]. The relation of the non-Gaussianity
based BSE methods has been described through information
theory and the properties of the Kullback-Leibler divergence
(mutual information) and entropy [19]. ICE is a recent revision
of this relation based on an algebraic mixing model, as will be
recalled in Section III, and maximum likelihood estimation [6].

ICA has been used for blind separation of convolutive mix-
tures in the frequency domain [10], where the mixture is trans-
formed into a set of complex-valued instantaneous mixtures,
with one mixture per frequency. The problem, called frequency-
domain ICA (FDICA), is formally described by (4), however,m
plays the role of the frequency bin index. When ICA is applied
separately to each mixture, the indeterminacy of the order of
separated component gives rise to the permutation problem [20],
and the separated frequency components must be reordered in
order to allow for the separation of signals in the time domain.

To avoid the permutation problem, IVA has been pro-
posed [11]. Here, the algebraic model given by (3) remains
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the same as in FDICA while the statistical model involves
the assumption that independent components belonging to the
same source are mutually dependent and form so-called vec-
tor components. The idea of IVA have become very popular
due to its wide applicability far beyond audio source separa-
tion [21]–[23]. Its variant for BSE appeared, e.g., in [24], and has
been recently formulated as independent vector extraction (IVE)
in [6].

Another recent advance in this line represents independent
low rank matrix analysis (ILRMA) where the statistical model
of a vector component (representing one source) assumes that
its spectrogram has a low-rank structure. For example, ILRMA
combines IVA and nonnegative matrix factorization (NMF)
in [25], [26].

In BSS/BSE, there is a wide class of methods based on
Gaussian statistical signal models, as compared to the non-
Gaussianity-based methods considered in this paper. Those
methods exploit only second order statistics (SOS) and their
algebraic properties. For example, the analogy of the standard
ICA problem based on SOS boils down to the problem of joint
approximate diagonalization (JAD) of covariance matrices; see,
e.g., [27]–[30] and references therein. Similarly to IVA, the
SOS-based methods were considered in [31], [32]; see also [33].

2) Locally Determined Models for Underdetermined BSS:
When the mixing model (1) involves more sources than ob-
servations (n > d), the source extraction/separation and the
mixing matrix identification problems are no longer equivalent.
Therefore, they are typically treated separately in two step
procedures. For example, the estimation of A can be done by
applying a decomposition to a tensor that is built from covariance
matrices [34] or higher-order based statistics [35], [36]. Then,
various array processing methods can be applied to extract the
sources [37], [38].

There are also BSS methods that treat the underdetermined
problem by assuming a certain local condition guaranteeing that
the every sample or time-frequency point involves maximally
d sources. Most typically, blind speech separation methods
exploit the time-frequency sparsity of speech signals [39], [40].
Other methods assume that there are single-source points or
regions and the separation mainly relies on a detection of these
regions [41], [42]. Locally determined mixing is considered,
e.g., in [43]. The ICA models presented in Section III could be
considered as members of the class of locally determined models
for BSE, where identification and extraction proceed jointly.

3) Performance Bounds: Performance limitations of ICA
based on the standard determined mixing model have been well
investigated in the literature. It is known that A in (1) can be
identified up to the order and scales of its columns if it holds that
at most one source signal has the complex Gaussian pdf or that no
two complex Gaussian source signals have the same circularity
coefficient [8]. Then, a de-mixing matrix W can be estimated as
such thatG = WA ≈ PΛ, whereP andΛ is a permutation and
diagonal matrix (with nonzero diagonal entries), respectively.
G reflects the separation accuracy as its ijth element, Gij ,
determines the presence of uj in the ith separated signal ûi, so
there is a clear correspondence between the elements of G and

the interference-to-signal ratio (ISR) of the separated signals.
For the real-valued (and similarly for the complex-valued) ICA
problem, it was derived using the CRLB that the ISR of the ith
separated source obeys

E[ISRi] ≥ 1

N

d∑
j=1,j �=i

κj
κiκj − 1

(5)

where N is the number of i.i.d. samples [3], [5]; κi = E[|ψi|2]
whereψi(x) = −∂/∂x log pi(x) is the score function related to
pi, and κi = κiσ

2
i where σ2

i is the variance of ui; κi corresponds
to κi when pi is normalized to unit variance. It holds that κi ≥ 1,
and κi = 1 if and only if the ith pdf is circular Gaussian. Hence,
the denominator in (5) approaches zero when both the ith and
the jth source signals are close to circular Gaussian.

This brings some issues into question regarding the BSE
problem. Without loss on generality, let (d− 1) source signals
in the mixture be circular Gaussian but not so the first source
(SOI). Then, A is no more identifiable, and the CRLB (5)
formally does not exist. However, BSE methods exploiting the
non-Gaussianity of the SOI are known for their ability to blindly
extract that source; see, e.g., [3]. Moreover, their asymptotic
performance analyses have shown that their accuracy is limited
by

E[ISR] ≥ 1

N

d− 1

κ− 1
, i = 2, . . . , d (6)

where κ = κ1; see, e.g., [3], [44], [45]. This asymptotic bound
coincides with the right-hand side of (5) when considering i = 1
and κj = 1 for j = 2, . . . , d.

A formal confirmation of this bound for the real-valued case
has been proven recently in [46] through computing the CRLB
for the ICE mixing model, that is, assuming that the mixing
matrix is structured as described by (8) and that the background
signals are Gaussian.

D. Summary of Our Contribution

In the first part of this paper (Section III), we generalize
the above result for the complex-valued case where the SOI
is assumed to be non-Gaussian or non-circular Gaussian. The
background is modeled as circular Gaussian or circular non-
Gaussian. We avoid the case with non-circular background, for
simplicity, as it is computationally less tractable and its analysis
goes beyond the scope of this paper. We show that the CRLB
of ICE coincides with the bound for ICA when the background
is circular Gaussian, as in the real-valued case. Moreover, we
also show that these bounds coincide when the background
modeling in ICE takes into account possible non-Gaussianity
of the background. In the second part of the paper (Section IV),
these results are generalized to the piecewise model (4) and to
its special variants by extending the ICE parameterization. The
results of the former part fill in the gaps currently existing in
the theory of ICA/ICE performance bounds. To the best of our
knowledge, the results of the latter part are completely original
as this is the first work that considers the performance bounds
of the piecewise determined mixtures.
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III. CRLB FOR DETERMINED MIXING

A. Algebraic Model

We begin our development by briefly explaining the ICE
parameterization recently proposed in [6]. It is assumed, without
loss of generality, that the separation system is designed to
extract the first source u1, which plays the role of the SOI in
(1). Then the mixing matrix can be partitioned as A = [a, A2]
and the observations x can be written as

x = Au = as+ y (7)

where s = u1, y = A2u2 and u2 = [u2, . . . , ud]
T . Since nei-

ther u2 nor A2 need to be estimated in order to extract s,
we can consider any auxiliary background signals z such that
y = A2u2 = Qz, where the columns of Q span the same sub-
space as that of the columns ofA2. Compared tou2, the elements
of z need not be independent, soQ can be arbitrary in this sense.
Now, according to the ICE model, the mixing matrix and its
inverse (de-mixing) matrix can be parameterized, respectively,
as

AICE =
(
a Q

)
=

(
γ hH

g 1
γ

(
ghH − Id−1

)) (8)

WICE = A−1
ICE =

(
wH

B

)
=

(
β∗ hH

g −γId−1

)
(9)

whereadenotes the first column ofA, which is the mixing vector
related to u1 partitioned as a = [γ;g], and w is the separating
vector such that wHx = u1, partitioned as w = [β;h]. Symbol
Id denotes the d× d identity matrix, and β and γ are linked
through

β∗γ = 1− hHg. (10)

To understand the structure of parameterizations (8) and (9),
one just needs to take into account that a satisfactory source
extraction fulfills the following three conditions

Ba = 0 (11)

wHQ = 0T (12)

WICEAICE = Id. (13)

The first two conditions are, in fact, included in the third one.
These conditions ensure that wHx = s and Bx = z, in other
words, that WICE is de-mixing, i.e., it extracts s from x and
separates it from z. The ICE algebraic model can thus be written
as

x = AICEv (14)

where v = [s; z].
Remark that this parameterization does not impose any re-

striction in the sense that the mixing matrix A in (1) must obey
the structure given by (8) in order to extract u1. In fact, the
extraction of the background subspace is ambiguous because any
transformation of that subspace does not affect the independence
of the background from the SOI, and (8), resp. (9), is just a partic-
ular choice guaranteeing Ba = 0. The ICE formulation enables

us to compute the CRLB as we did in [46] for the real-valued case
and Gaussian background. As compared to [46], the contribution
here is that the bound is derived for the complex-valued case and
it involves also the non-Gaussian background.

B. Statistical Model

The fundamental assumption of ICA/ICE states that s and
z are independent, which means that their joint pdf can be
factorized as the product of marginal pdfs. Let the pdfs of s
and z be denoted ps(s) and pz(z), respectively. Using (14), the
pdf of x is

px(x) = ps(w
Hx)pz(Bx)| det(WICE)|2 (15)

where det(WICE) = (−1)d−1γd−2.

C. Indeterminacies

ICE involves that same indeterminacies as ICA as the problem
is solved through finding vector parameters w and a such
that s and z are independent. It follows that any independent
component of x could play the role of s, because of the order
indeterminacy of the original components in (1). In this work,
this problem can be overlooked as the CRLB analysis is local. In
practice, any estimating algorithm must be properly initialized
in order to extract the desired source.

The scales of s and of a are ambiguous in the sense that s
and a can be substituted, respectively, by αs and α−1a with
any α �= 0. This is know as the scaling ambiguity problem.
Since the ISR is invariant to scaling, we can later cope with this
ambiguity by fixing some scalar parameter in the mixing model.
In this section, we put γ = 1. According to (15), this choice
guarantees | det(WICE)| = 1, thus ensuring the non-singularity
of the separating matrix.

D. Interference-to-Signal Ratio

Let ŵ be an estimated separating vector w. Using (7),
the extracted signal is equal to ŝ = ŵHx = ŵHas+ ŵHy =
ŵHas+ ŵHQz. The ISR of the signal is

ISR =
E[|ŵHy|2]
E[|ŵHas|2] =

qH
2 Czq2

|q1|2σ2
s

≈ 1

σ2
s

qH
2 Czq2 (16)

where qH = [q1, q
H
2 ] = [ŵHa, ŵHQ], and Cz stands for the

covariance matrix ofz. The last approximation in (16) is valid for
sufficiently small estimation error in ŵ, which is of the stochastic
order ofOp(N

−1/2), having covariance of the order ofO(1/N).
Here, Op(·) represents the stochastic order symbol [47]. Note
that the ISR has the same asymptotic variance, of the order of
O(1/N), as the corresponding CRLB. In the approximation
(16), we ignore a term of the stochastic order of Op(N

−3/2),
because q ≈ e1 +Op(N

−1/2), where e1 is the unit vector.
Then, the mean ISR value reads

E [ISR] ≈ 1

σ2
s

E
[
qH
2 Czq2

]
=

1

σ2
s

tr
(
CzE

[
q2q

H
2

])
. (17)
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Hence, (17) can be written as

E [ISR] ≈ 1

σ2
s

tr (Czcov (q2)) (18)

where we can see that the covariance matrix of q2, denoted
as cov(q2), characterizes the accuracy of ŵ. By replacing
cov(q2) by the corresponding CRLB, we obtain the algorithm-
independent Cramér-Rao-induced bound (CRIB) for ISR [4].

E. Cramér-Rao-Induced Bound

Let the parameter vector be θ = [a;w]. In the following, we
exploit a transformation rule saying that the Fisher information
matrix (FIM) of θ, denoted as Fθ , and the FIM of a linearly
transformed versionϕ = Kθ, whereK is a non-singular matrix,
are related through [48]

Fϕ = K−1FθK
−H . (19)

This property will be used to show that we can derive the CRIB
for (18) by considering CRLB when the mixing parameters are
h = 0. This property is related to the equivariance of the BSS
mixing model (1), see, e.g., [1], [49].

Now, consider the special case when h = g = 0, for which
the parameter vector is equal to θI = [e1; e1]. The transform
between θ and θI is given by

θ =

(
AICE 0

0 WH
ICE

)
︸ ︷︷ ︸

K

θI = KθI (20)

where AICE and WICE are, respectively, given by (8) and (9).
According to (19), it holds that

Fθ = KFθI
KH . (21)

Similarly, we can consider a transformed parameter vector

θq =

(
WICE 0

0 AH
ICE

)
︸ ︷︷ ︸

K−1

(
a

w

)
= K−1θ (22)

and it holds thatFθq
= K−1FθK

−H , which, together with (21),
results in

Fθq
= FθI

. (23)

Hence, from (23) it follows that the CRIB for (18) can be
obtained by replacing cov(q2) by the corresponding CRLB,
which is equal to the CRLB for the unbiased estimation of h
when its true value is h = 0. Finally,

E [ISR] ≈ 1

σ2
s

tr(Czcov(ĥ)) ≥ 1

σ2
s

tr (CzCRLB (h) |h=0)

(24)
where CRLB(h)|h=0 denotes the diagonal block of the inverse
matrix of the FIM corresponding to the parameter vector h
when h = 0. The inequality between the mean ISR and the
corresponding lower bound is approximate, but its leading term
is the same on both sides. Ignoring higher-order terms is common
in the literature.

F. Fisher Information Matrix

To compute the CRLB, we use the approach for the complex-
valued parameters described in [48]. By putting γ = 1, as jus-
tified in Section III-C, the only free parameters of the mixing
model (14) areh andg, so let the parameter vector beθ = [h;g].
According to [48], for any unbiased estimator of θ, it holds that

cov (θ) � J−1 (θ) = CRLB (θ) , (25)

where J (θ) is the FIM, and C � D means that C−D is a
positive semi-definite matrix. J (θ) can be partitioned as

J (θ) =

(
F P

P∗ F∗

)
, (26)

where

F = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)H
]
, P = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)T
]

(27)

and where the derivatives in (27) are defined according to
Wirtinger calculus. L(·) denotes the log-likelihood function of
(15), namely,

L(h,g|x) = log ps(w
Hx) + log pz(Bx). (28)

The derivatives of the log-likelihood function (28) are as
follows:

∂L(x|θ)
∂g∗

∣∣∣
h=0

= −ψz(z)s
∗ (29)

∂L(x|θ)
∂h∗

∣∣∣
h=0

= ψ∗
s(s)z (30)

where ψs(s) = −∂ lnps(s,s
∗)

∂s∗ andψz(z) = −∂ lnpz(z,z
∗)

∂z∗ are the
score functions. Using (29),(30), F in (27) is calculated as

F =

(
σ2
sκz −Id−1

−Id−1 κsCz

)
, (31)

where

κs = E[|ψ(s)|2], (32)

σ2
s = E[|s|2], (33)

κz = E
[
ψz(z)ψ

H
z (z)

]
. (34)

Now, we describe the computation of P in (26). Let P be
partitioned as

P =

(
Pg,g Pg,h

PT
g,h Ph,h

)
. (35)

Then,

Pg,g = E
[
ψz(z)ψ

T
z (z)

]
E
[
s∗2
]

(36)

Ph,h = E
[
ψ∗
s(s)

2
]
E
[
zzT

]
(37)

Pg,h = 0. (38)
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G. Circular Sources

In general, the analytic computation of the inverse matrix of
(26) is not tractable. Therefore, we investigate two special cases
in the following subsections.

Here, we assume that s and z have general circular pdf.
Under this assumption, the FIM (26) obtains the block-diagonal
structure, because Ph,h = Pg,h = 0 due to the circularity of z
and Pg,g = 0 due to the circularity of s, and, then,

J (θ) =

⎛⎝σ2
sκ

−1
z −Id−1 O

−Id−1 κsCz O
O O F∗

⎞⎠ . (39)

CRLB(h)|h=0 is obtained as the upper right diagonal block of
the inverse matrix of (39), which reads

CRLB(h)|h=0 =

(
κsCz − 1

σ2
s

κ−1
z

)−1

. (40)

Applying the transformation theorem in (34), it can be shown
that, for z̃ = Tz, it holds that

κz = Tκz̃T
H (41)

whereT is a non-singular transformation matrix. By takingT =

C
− 1

2
z , which is a matrix satisfying that C

− 1
2

z C
− 1

2
z = C−1

z , then
κz̃ corresponds to the statistic of uncorrelated and unit-scaled
z. Hence, (40) can be written as

CRLB(h)|h=0 = C
− 1

2
z

(
κsId−1 − 1

σ2
s

κ−1
z̃

)−1

C
− 1

2
z . (42)

By putting (42) into (24), the CRIB for ISR, when considering
N observations, is

E [ISR] ≥ 1

N

1

σ2
s

tr

[(
κsId−1 − 1

σ2
s

κ−1
z̃

)−1
]
. (43)

Next, we can use the identity (41) again by consideringT such
that elements of Tz̃ are statistically independent random vari-
ables. Since elements of z̃ are uncorrelated and normalized, such
Tmust be unitary, i.e.,TTH = Id−1. Also, provided that all but
one components in the original model (1) are non-Gaussian, the
entire mixture is separable, soTz̃must be equal tou2 up to their
order and scales. Without any loss of generality, we can assume
thatT is such thatTz̃ = u2 and thatu2 have unit variance. Then,
κTz̃ is diagonal having diagonal elements equal to κ2, . . . , κd,
and (43) simplifies to

E [ISR] ≥ 1

N

d∑
j=2

κj
σ2
sκsκj − 1

. (44)

This bound corresponds with (5) for i = 1 since σ2
sκs = κs =

κ1, which means that the same extraction accuracy can be
achieved by ICE as by ICA. It should be, however, noted that the
multivariate score function ψz(·) must be known for maximum
likelihood estimation to be carried out [50].

In our considerations, we can go also slightly beyond the
standard ICA. Let the observed signals obey the model (14) but
not (1), that is, there need not exist T such that Tz̃ are inde-
pendent (no independent components u2, . . . , ud are assumed,

only the independence between s and z). Since κz̃ is positive
definite, we can consider its decomposition

κz̃ = UDUH (45)

where UH is the unitary matrix of eigenvectors of κz̃, and D is
diagonal with diagonal entries denoted as ω2, . . . , ωd. Then, the
CRIB presents a form similar to (44):

E [ISR] ≥ 1

N

d∑
j=2

ωj

σ2
sκsωj − 1

. (46)

H. Circular Gaussian Background

Here, we assume that s can be arbitrary non-circular and non-
Gaussian while z is circular Gaussian. Under this assumption,
Ph,h = 0, and since κz = C−1

z , also Pg,g = 0 thanks to the
circularity of z. The FIM thus shows a structure similar to (39),
namely,

J (θ) =

⎛⎝σ2
sC

−1
z −Id−1 O

−Id−1 κsCz O
O O F∗

⎞⎠ . (47)

Hence,

CRLB(h)|h=0 =

(
κsCz − 1

σ2
s

Cz

)−1

=
σ2
s

κsσ2
s − 1

C−1
z .

(48)
Therefore, for N observations, the CRIB for ISR says that

E [ISR] ≥ 1

N

d− 1

κs − 1
. (49)

This result confirms the asymptotic bound given by (6) for
complex-valued non-circular SOI.

IV. CRLB FOR PIECEWISE DETERMINED MIXING

We now turn to the piecewise determined mixtures, in general,
described by (4). To deal with this model, we begin by proposing
a generalization of the ICE concept as follows.

A. Algebraic Model

Without any further assumption, (4) corresponds to a se-
quential application of the standard mixing model, which is
straightforward for on-line signal processing but does not bring
any advantage. Therefore, we propose special parameterizations
useful for the BSE problem assuming that the SOI is active in
all blocks and some mixing parameters related to the SOI are
joint to all the blocks. Specifically, we parametrizeA1, . . . ,AM

similarly to (8) and consider two special variants:

Am
CMV =

(
γ (hm)H

g 1
γ

(
g(hm)H − Id−1

)) (50)

Am
CSV =

(
γm hH

gm 1
γ

(
gmhH − Id−1

)
.

)
. (51)

The models will be referred to as constant mixing vector (CMV)
and constant separating vector (CSV), respectively, because
in CMV the mixing vectors a1, . . . ,aM are constant over
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blocks and are equal to a while in CSV the separating vectors
w1, . . . ,wM are all equal to w. CMV is useful for situations
where the SOI is a static source while the background is varying.
CSV involves a moving SOI (varying mixing vector) under the
assumption that a constant separating vector such that extracts
the signal from all blocks exists. These models have been consid-
ered for the first time in [12], where they were applied to blind
audio source extraction. This paper provides their theoretical
analysis through the CRLB theory.

B. Interference-to-Signal Ratio

For simplicity, let the number of available samples in each
of M blocks be the same, equal to Nb. It holds that M ·Nb =
N . The variance of the SOI and the covariance matrix of the
background signals in the mth block will be denoted by σ2

sm

and Czm , respectively.
Let ŵm be an estimated separating vector for the mth block,

m = 1, . . . ,M . The ISR of the extracted signal evaluated over
the entire data is equal to

ISR =

∑M
m=1 E[|(ŵm)Hym|2]∑M

m=1 E[|(ŵm)Hamsm|2]

=

∑M
m=1(q

m
2 )HCzmqm

2∑M
m=1 |qm1 |2σ2

sm

=

∑M
m=1 tr

(
Czmqm

2 (qm
2 )H

)
∑M

m=1 |qm1 |2σ2
sm

,

(52)

where (qm)H = [qm1 , (q
m
2 )H ] = [(ŵm)Ham, (ŵm)HQm].

Assuming “small” estimation errors, i.e., qm ≈ e1, similar
approximation to that in (16) gives

ISR ≈ 1∑M
m=1 σ

2
sm

M∑
m=1

tr
(
Czmqm

2 (qm
2 )H

)
. (53)

Using the equivariance property described in Section III-E, the
CRIB is, in general, obtained through

E [ISR] ≥ 1∑M
m=1 σ

2
sm

tr

(
M∑

m=1

CzmCRLB (hm) |hm=0
gm=0

)
.

(54)

C. Blockwise ICE

To extract the SOI from each block of data (4), the ICE
approach can be used. Then, the mixing and separating vectors
are estimated as parameters that are independent of the other
blocks. We will refer to this approach as block ICE (BICE).

Assuming that the background is circular Gaussian, the CRIB
for BICE follows from the results of Section III-H. By putting
(48) into (54) and using the fact all data are independently
distributed, the CRIB is given by

E[ISR] ≥ 1

Nb

d− 1∑M
m=1 σ

2
sm

M∑
m=1

σ2
sm

κsmσ
2
sm − 1

. (55)

It is worth comparing this bound with CRIBs derived for the
CMV and CSV models given by (50) and (51), respectively,
which is the subject of the following subsections.

D. Constant Mixing Vector

In the CMV model, a is constant over M blocks while the
separating vector can be varying from block to block. Therefore,
there areM(d− 1) + d free parameters. The scaling ambiguity
can be resolved by putting γ = 1, which is the first element of a,
so there are finally (M + 1)(d− 1) free (complex-valued) pa-
rameters in the mixing model represented by parameter vectors
g and h = [h1; . . . ;hM ].

From (28), it follows that the log-likelihood function for one
sample data of the mth block is given by

Lm(xm|g,h) = log psm
(
(wm)Hxm

)
+ log pzm(Bxm).

(56)
Since the data are i.i.d. inside each block and independently
distributed among the blocks, the log-likelihood function of the
entire batch of data is equal to Nb

∑M
m=1 Lm(xm|g,h).

The derivatives of (56) are computed similarly to (29) and
(30), that is,

∇m
g

def.
=

∂Lm(xm|g,h)
∂g∗

∣∣∣
h=0

= −ψzmsm∗, (57)

∇m,n
h

def.
=

∂Lm(xm|g,h)
∂hn∗

∣∣∣
h=0

= δn,mψ
∗
smzm, (58)

whereψzm = −∂ lnpzm

∂z∗ , ψsm = −∂ lnpsm

∂s∗ , and δn,m stands for
the Kronecker delta.

Now, the FIM of data from all blocks is a square matrix
of dimension 2(m+ 1)(d− 1) consisting of (m+ 1)× (m+
1) blocks each of dimension (d− 1)× (d− 1). Let ∇m =

[∇m
g ;∇m,1

h ; . . . ;∇m,M
h ]. The FIM has the structure

J (g,h) = Nb

M∑
m=1

Jm(g,h) = Nb

(
F P

P∗ F∗

)
, (59)

where

Jm(g,h) =

(
Fm Pm

Pm∗ Fm∗

)
(60)

is the FIM for one sample of the mth block, and

Fm = E
[∇m(∇m)H

]
, Pm = E

[∇m(∇m)T
]
. (61)

Then the blocks of (59) are, respectively, equal to

F =

⎛⎜⎜⎜⎜⎝
∑M

m=1 κzmσ2
sm −Id−1 . . . −Id−1

−Id−1 κ1sCz1 0
... 0 . . .

−Id−1 κMs CzM

⎞⎟⎟⎟⎟⎠ , (62)

and P is the diagonal matrix

P = diag

(
M∑

m=1

E[ψ2
zm ]E[(sm∗)2],E[(ψ∗

s1)
2]E[(z1)2], . . . ,

E[(ψ∗
sM )2]E[(zM )2]

)
(63)

Authorized licensed use limited to: UTIA. Downloaded on October 05,2020 at 07:47:51 UTC from IEEE Xplore.  Restrictions apply. 



KAUTSKÝ et al.: CRAMÉR-RAO BOUNDS FOR COMPLEX-VALUED ICE: DETERMINED AND PIECEWISE DETERMINED MIXING MODELS 5237

where κsm = E[|ψsm |2], κzm = E[ψzmψH
zm ], σ2

sm =
E[|sm|2], Czm = E[zm(zm)H ].

For the sake of simplicity, we will consider only the special
case when the background is circular Gaussian. Then, similar
simplifications to those in Section III-H hold, P = 0, κzm =
C−1

zm , and the block of J −1 corresponding to hm is

CRLB(hm)|h=0 =
1

Nb

{
1

κsm
C−1

zm

+
1

κsm
C−1

zm

(
M∑
i=1

σ2
siκsi − 1

κsi
C−1

zi

)−1

1

κsm
C−1

zm

}
. (64)

By combining (54) and (64), the CRIB says that

E [ISR] ≥ 1

Nb

∑M
m=1 σ

2
sm

M∑
m=1

1

κsm

× tr

⎛⎝Id−1 +

(
M∑
i=1

κsi − 1

κsi
C−1

zi

)−1

1

κsm
C−1

zm

⎞⎠ . (65)

E. Constant Separating Vector

In the CSV mixing model (51), w is constant over the blocks
while the mixing vector can be varying. Therefore, the scaling
ambiguity can be resolved by putting β = 1 while considering
γ1, . . . , γM as dependent variables, where by (10) it follows that
γm = 1− hHgm. The free parameter vectors of the model are
g = [g1; . . . ;gM ] and h.

Using (15), the log-likelihood function for one sample of the
mth block is

Lm(xm|g,h) = log psm
(
wHxm

)
+ log pmz (Bmxm)

+ 2(d− 2) log
∣∣1− hHgm

∣∣ , (66)

where we use the identity det(WICE) = (−1)d−1(1−
hHgm)d−2.

The structure of the FIM is the same as for the CMV model,
described by (59)–(61). The blocks of (59) are given by

F =

⎛⎜⎜⎜⎜⎝
κz1σ2

s1 0 −Id−1

0 .. .
...

κzMσ2
sM −Id−1

−Id−1 . . . −Id−1

∑M
m=1 κ

m
s Czm

⎞⎟⎟⎟⎟⎠ , (67)

and P is diagonal

P = diag
(
E[(ψz1)2]E[(s1

∗
)2], . . . ,E[(ψzM )2]E[(sM

∗
)2],

M∑
m=1

E[(ψ∗
sm)2]E[(zm)2]

)
. (68)

Here, we also consider only the special case that the back-
ground is circular Gaussian, for which P = 0, κzm = C−1

zm .
Then, CRLB(h)|h=g=0 is obtained as the block of the inverse
matrix of FIM corresponding to the lower right-corner block of

F, which gives

CRLB(h)|h=g=0 =
1

Nb

(
M∑

m=1

κms Czm − 1

σ2
sm

Czm

)−1

.

(69)
By putting this result in (54), the CRIB says that

E [ISR] ≥ 1

Nb

∑M
m=1 σ

2
sm

× tr

⎛⎝( M∑
m=1

κsm − 1

σ2
sm

Czm

)−1 M∑
m=1

Czm

⎞⎠ . (70)

F. Real-Valued Signals and Mixing Model

In this subsection, we show that the CRIB expressions for the
ISR in the CSV and CMV models (65) and (70) remain valid
also in the simpler scenario composed of real-valued signals and
mixing parameters. In this case, the pdf of mixed signals in (15)
becomes

px(x) = ps(w
Tx)pz(Bx)| det(WICE)|. (71)

Next, the fact that the Gaussian pdf of background is real-valued
has to be taken into account. Then, the FIM in (59) reduces to

J (g,h) = NbF. (72)

Matrix F can be shown to have exactly the same form as (62)
for the CMV model and as (67) for the CSV model. Therefore,
formally the same CRLBs are finally obtained in the real-valued
scenario.

V. DISCUSSION

The expressions in brackets in (65) and (70) subject to the ma-
trix inverse operation are non-negative combinations of positive
definite matrices (C−1

zm
orCzm

). It follows that the sums are also
positive definite unless all coefficients of the linear combinations
are zero. The latter case appears only ifκsm = 1 for allm, that is,
when the SOI is Gaussian on all blocks. Otherwise, the obtained
CRIBs are all finite.

In the following, we discuss several special cases in order to
compare the derived bounds.

1) Only one Block: WhenM = 1, the piecewise determined
models coincide with the standard ICE model. The reader can
easily verify that, for this particular case, the bounds given by
(49), (55), (65) and (70) coincide as well.

In further discussions, we will assume the piecewise model
with M > 1.

2) An i.i.d. SOI: When the SOI has the same pdf (and also
variance) in all blocks, we can denote κms = κs and σ2

sm = σ2
s

since these statistics become independent ofm. Then, the CRIBs
(55), (65) and (70) can be, respectively, written in the form

BICE: E[ISR] ≥ M

N

d− 1

κs − 1
(73)

CMV: E[ISR] ≥ d− 1

N

(
1

κs − 1
+
M − 1

κs

)
(74)

CSV: E[ISR] ≥ 1

N

d− 1

κs − 1
(75)
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A necessary condition for the identifiability of these models is
that κs > 1, which means that the SOI must have non-Gaussian
pdf. The CRIB for BICE is always higher than those for CSV
and CMV, which is caused by the higher complexity of BICE.
CSV and CMV take advantage of the joint parameters.

3) SOI With Varying Variance: Let the variance of the SOI
be changing from block to block while the normalized pdf of
the SOI be constant. It means that σ2

sm depends on m while
κsmσ

2
sm = κs is constant over the blocks. Then, the CRIBs can

be written as

BICE: E[ISR] ≥ M

N

d− 1

κs − 1
, (76)

CMV: E[ISR] ≥ M(d− 1)

Nκs
+

M

Nκs(κs − 1)
TCMV, (77)

CSV: E[ISR] ≥ M

N(κs − 1)
TCSV, (78)

where

TCMV = tr

⎛⎝ M∑
m=1

σ2
sm∑M

j=1 σ
2
sj

(
M∑
i=1

Si

)−1

Sm

⎞⎠ , (79)

TCSV = tr

⎛⎝ 1∑M
j=1 σ

2
sj

(
M∑
i=1

1

σ2
si
Czm

)−1 M∑
m=1

Czm

⎞⎠ ,

(80)

where Sm = σ2
smC−1

zm .
The bound given by (76) coincides with (73), which means

that the dynamic envelop of the SOI does not have any influence
on the achievable performance when ICE is independently ap-
plied to each block. By comparing (77) with (74) and (78) with
(75), we obtain more interesting results.

It can be easily shown that

TCMV ≤ d− 1, (81)

TCSV ≤ d− 1

M
. (82)

It follows that the bound (78) is always lower than the one
given by (75), moreover, the equality of the bounds holds if
and only if σ2

sm is constant. It means that the non-stationarity
of the SOI improves the blind extraction under the CSV model.
This is not that surprising because similar conclusions follow
from Cramér-Rao analyses for the standard BSS models that
involve signals’ non-stationarity. There, more dynamical signals
improve the achievable separation accuracy; see, e.g., [27],
[30], [51].

For the upper limit in (81), the bound coincides with (76). It
means that the achievable ISR by CMV is never worse than that
by BICE. Next, it is easily seen that TCMV = d−1

M when σ2
sm

is constant, for which case the bound obviously coincides with
(74). It means that the nonstationarity of the SOI can improve
as well as worsen the extraction accuracy under the CMV
model! A deeper analysis can show that the latter case is more
typical, because, for the improved accuracy, background must
be vanishing or badly conditioned in some block. When Czm

is constant over blocks, then TCMV = d−1
M is the lower bound,

and the SOI’s nonstationarity can only worsen the achievable
accuracy under the CMV model.

4) All but one Blocks of SOI are Circular Gaussian: When
the SOI has the circular Gaussian pdf on the kth block, then
κsk = 1. Hence, the CRIB (55) is infinite when there is a block
where the SOI is circular Gaussian. By contrast, CRIBs (65)
and (70) are finite provided that the SOI is non-Gaussian or
non-circular at least on one block. In the special case when all
blocks of the SOI but the kth block have circular Gaussian pdf,
the CRIBs (65) and (70) say that

CMV: E[ISR] ≥ 1

Nb

1∑M
m=1 σ

2
sm

× tr

(
M∑

m=1

1

κsm
Id−1+

κsk

κsk−1
Czk

M∑
m=1

1

κsm
C−1

zm

)
,

(83)

CSV: E[ISR] ≥ 1

Nb

1∑M
m=1 σ

2
sm

σ2
sk

κsk − 1

× tr

(
C−1

zk

M∑
m=1

Czm

)
. (84)

Consequently, for the identifiability of the CVM and CSV mod-
els, it is sufficient that the SOI is not circular Gaussian on at least
one block, which is a significant advantage compared to BICE.

5) Gaussian SOI and Vanishing Background: When the SOI
is circular Gaussian on all blocks, all the CRIBs discussed in the
section are infinite, and the SOI cannot be extracted. However,
we can consider a special situation where, in some block (the
kth one), the SOI is close to be Gaussian and, simultaneously,
the background covariance is getting close to zero. The previous
special case says that the CRIBs for CMV and CSV are still finite
until κsk > 1.

Let us consider κsm = 1 for m �= k, and

Czk = ε(κsk − 1)T, (85)

where T is a positive definite matrix, and ε > 0 is a constant.
Now, consider κsk → 1 while σ2

k = 1, which means that the
SOI is becoming circular Gaussian on the kth block while its
variance is constant. Eq. (85) says that the background is van-
ishing proportionally to the “gaussianity” of the SOI (expressed
through the proximity of κsk to one).

The reader can verify, that, in that special case, the CRIB
of CSV (70) is becoming infinite while that for CMV (65)
approaches a finite value. This can be explained through the
fact that the SOI, in the kth block, is observed without noise
when Czk = 0. Therefore, its corresponding mixing vector can
be identified through finding the principal component in that
block, which is sufficient for the identifiability of the CMV
model although the SOI is (almost) circular Gaussian in all
blocks.
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VI. EXPERIMENTAL VALIDATION

In the following numerical simulations, we compare the the-
oretical bounds with empirical mean ISR achieved by selected
ICA/ICE algorithms. Here, we have to cope with the permutation
ambiguity causing that a given algorithm need not converge to
the desired SOI. In case of BSE/ICE algorithms, the convergence
is arranged through their proper initialization. For ICA methods,
the SOI is identified as the separated signal with the lowest ISR.
Since the algorithms do not converge to the right SOI in some
runs, the trimmed mean of ISR is computed instead of the mean,
by discarding 10% of the lowest and greatest values. Therefore,
the reader should keep in mind that the empirical results can be
slightly biased.

A. Determined Mixing Model

1) Gaussian Background: Here, the CRIB given by (49)
assuming circular Gaussian background is compared with the
empirical ISR achieved by four methods. First, non-circular
FastICA (NC-FastICA) from [52], is an ICA algorithm de-
signed particularly for signals belonging to the complex Gener-
alized Gaussian Distribution (GGD) family [9], which involves
also non-circular signals. Second, OGICE (Orthogonally Con-
strained ICE) from [53] is an ICE algorithm derived based on
maximum likelihood principle. Third, Natural Gradient (NG) is
a basic ICA algorithm from [54]. In OGICE, the background
is modeled as circular Gaussian, therefore, this method can
asymptotically attain the CRIB in this experiment provided
that the true score function of the SOI is used as the internal
nonlinear function. Fourth, the RobustICA algorithm from [55]
is a BSE method based on the optimization of the kurtosis
contrast function. It is valid for real as well as complex-valued
sources, with circular and non-circular distributions.

In a trial, d = 5 independent complex-valued signals are gen-
erated. The target signal is drawn from the complex-valued GGD
with zero mean, unit variance, shape parameter α ∈ (0,+∞),
and a circularity coefficient γ ∈ [0, 1]. The pdf is given by [5]

p(s, s∗) =
αρ exp

(
−
[

ρ/2
γ2−1

(
γs2 + γ(s∗)2 − 2ss∗

)]α)
πΓ(1/α)(1− γ2)

1
2

,

(86)
where ρ = Γ(2/α)

Γ(1/α) , and Γ(·) is the Gamma function. The other
(background) signals are circular Gaussian, which corresponds
to α = 1 and γ = 0 in (86). All signals are mixed by a random
mixing matrix A with elements drawn from CN (0, 1).

OGICE is initialized by a randomly perturbed first column of
A, Natural Gradient is initialized by the randomly perturbed
mixing matrix A, RobustICA is initialized by the randomly
perturbed demixing matrix W, while the initialization of NC-
FastICA is random in full. In OGICE and NG, the nonlinearity
is the same as the true score function corresponding to (86), that
is,

ψ(s, s∗) =
2α(ρ/2)α

(γ2 − 1)α
(
γs2 + γ(s∗)2 − 2ss∗

)α−1
(γs− s∗) .

(87)

Fig. 1. Average ISR for d = 5, α = 2, and varying N .

Fig. 2. Average ISR for d = 5, N = 2500 and varying α.

Fig. 3. Average ISR ford = 5,N = 2500,α = 1 (Gaussian SOI) and varying
circularity coefficient γ.

It is worth noting that the true score function is not known in
a fully blind situation, where ψ must be replaced by a suitable
nonlinearity; see, e.g., [56], [57]. It can be shown that [5]

κ = E
[
|ψ(s)|2

]
=

α2Γ(2/α)

(1− γ2)Γ2(1/α)
. (88)

Finally, note that NC-FastICA is endowed by the nonlinearity
proposed in [52], the accuracy seems to be closest to the CRIB
for α = 0.8. RobustICA is using kurtosis [55] and seems to be
efficient for sub-gaussian sources α > 1.

Figs. 1–3 show average ISR achieved by the algorithms in 100
trials, respectively, for varying N , α, and γ. The average ISRs
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achieved by OGICE are very close to the bound (49), which is
in a good agreement with the theory. Also RobustICA attains
the bound for greater number of samples N . The performance
of NC-FastICA appears to be limited, which can be explained
by the nonlinearity used. The performance of NG is also limited
due to convergence issues, especially, in cases of sub-gaussian
(α > 1) SOI.

In Fig. 2, the ISR for sub-gaussian (α > 1) and super-
Gaussian (α < 1) SOI is shown. Forα = 1, all signals, including
the SOI, are circular Gaussian, in which case the mixing coeffi-
cients are not identifiable. Here, the algorithm’s empirical ISRs
drop down to 0 dB (a highly biased value as ISR higher than
0 dB is evaluated as convergence to a different source), which
should be interpreted as failings in finding the SOI.

In Fig. 3, the non-circular Gaussian SOI with varying circu-
larity is considered. The ISR achieved by OGICE approaches
the CRIB, which confirms the fact that a non-circular Gaussian
signal can be extracted from the other Gaussian signals when
their circularity coefficient is different. This condition becomes
violated as γ approaches 0, which corresponds with the decaying
ISR. NC-FastICA and RobustICA are designed to be robust to
circularity changes, however, for Gaussian sources they do not
benefit from non-circularity. Therefore, their performance does
not show any dependence on γ and is the same as for the circular
Gaussian SOI [52].

2) Non-Gaussian Background: As shown in Section III-G,
there is a coincidence between the CRIBs for ICA and ICE when,
in ICE, the non-Gaussianity of background is taken into account.
In this section, we simulate the case mentioned at the end of
that section, that is, when background signals are dependent (a
transformation decomposing them into independent components
as assumed in ICA need not to exist). The theoretical CRIB for
this simulation is given by (46).

In a trial, d = 4 real-valued signals are generated. The back-
ground is drawn according to the joint pdf given by

p(z1, . . . , zd−1) ∝ exp

(
−
(

λ

d−1∑
i=1

|zi|2
)α)

(89)

where λ > 0, and α �= 1 (for α = 1, the pdf is Gaussian). To
scale the marginal pdfs of background signals to the unit vari-

ance, we put λ =
Γ( 5

2α )

3Γ( 3
2α )

. Then, it holds that

(κz)kk =
4

3
λα2Γ(2 +

1
2α )

Γ( 3
2α )

. (90)

The SOI is drawn from the real-valued GGD family [58] with
zero mean, unit variance and a shape parameter α̃, where α̃ =
α+ 1. Note that for the real-valued GGD, the SOI is Gaussian
when α = 1; see Appendix B in [58].

We compare three algorithms with the CRIB given by (46):
OGICE [53], EFICA [58], and NG-OGICE [50]. OGICE is
designed for ICE with Gaussian background, where the CRIB
is given by (49) (which we show as well for the sake of
completeness). EFICA is an asymptotically efficient ICA al-
gorithm provided that all original signals are drawn from the
real-valued GGD. NG-OGICE is an ICE method considering the

Fig. 4. Average ISR for non-Gaussian background when pdfs of all signals
are varying with respect to α.

non-Gaussianity of background, in which the true multivariate
score function of background must be known to achieve the
optimum performance.

In Fig. 4, the ISRs averaged over 100 trials achieved by
OGICE, EFICA and NG-OGICE are compared. The bound
(46) is denoted by CRIBNG−ICE and the one for the Gaussian
background (49) is denoted by CRIBICE. The results show that
the mean ISRs by OGICE are close to the bound given by (49)
(which is in a good agreement with the results of asymptotic
performance analyses (6) [45]). The results by EFICA and
NG-OGICE are closer to (46). NG-OGICE is even slightly
more accurate than EFICA, which is caused by a more accurate
modeling of the background’s pdf.

Forα = 1, all signals are Gaussian, which means that the SOI
cannot be separated from the background. With increasing non-
Gaussianity of the mixture, which means increasing distance
from α = 1, the separation accuracy gets better.

B. Piecewise Determined Mixtures With Circular
Gaussian Background

To validate the bounds for CMV and CSV, both are com-
pared with empirical results achieved by block-wise versions
of OGICE introduced in [12]. The methods will be jointly
referred to as BOGICE (in [12], BOGICEa is the variant for
CMV while BOGICEw is for CSV). It should be noted that no
other methods for CMV/CSV currently exist in the literature
to our best knowledge. For completeness, the BICE method is
compared to BOGICE in both cases.

In experiments here, we consider two statistical models of
signals: The SOI is either i.i.d. non-Gaussian over all blocks or
i.i.d. within blocks with the same distribution but varying vari-
ance over blocks. The background is assumed circular Gaussian
i.i.d. with unit variance in all blocks in both cases.

In trials, d = 5 independent complex-valued signals are gen-
erated. The SOI is drawn from a circular complex GGD with
zero mean, unit variance, α = 2. The other signals are circular
Gaussian, which corresponds toα = 1. The nonlinearity is given
by the true score function. M blocks of the same length are
considered. Each block is mixed by a random mixing matrix.
The mixing matrices obey the mixing models CMV or CSV,
respectively.
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Fig. 5. Average ISR for CMV mixing model when d = 5, N = 5040, and
varying number of blocks M .

Fig. 6. Average ISR for CSV mixing model when d = 5, N = 5040, and
varying number of blocks M .

The empirical ISRs achieved by BOGICE and BICE are
compared with the CRIB corresponding to the mixing model
used in the given simulation and with that of BICE. For com-
pleteness, we also show the hypothetical CRIB of the alternative
piecewise mixing model that would be valid when the mixing
matrix obeyed the model and the SOI had the same statistical
properties. Nevertheless, it should be kept in mind that CMV and
CSV are incompatible unless all the mixing parameters related
to the SOI are constant over the blocks (which is not the case of
the experiments here). The comparison of the models thus has
to be done after considerable deliberation.

1) An i.i.d. SOI: Fig. 5 corresponds to the simulation con-
sidering the CMV model for varying number of blocks, that is,
M = 1, 2, 5, 10. It shows the mean ISR achieved by BOGICE
averaged over 500 trials and the CRIB given by (74) (CMV) and,
for comparison, also the CRIBs (73) (BICE) and (75) (CSV).
Similar simulation was done with the CSV model; the results
are shown in Fig. 6. As can be seen from (73), (74) and (75),
bounds for BICE and CMV depend on the number of blocks,
but the CRIB for CSV does not. Hence, the CSV curve is flat as
predicted by our theoretical analysis.

Figs. 5 and 6 show the coincidence between the empirical
results by the variants of BOGICE and the CRIBs corresponding
to the mixing model of the given simulation. The performances
of the methods follow the same dependence on the number of
blocks M as these CRIBs. The results also show that BOGICE
takes the advantage of the special mixing model CMV/CSV
compared to BICE, as its mean ISR is lower that the CRIB (73),
unless M = 1 where all mixing models coincide.

Fig. 7. Average ISR for CMV mixing model when d = 5, N = 5000, and
varying σsm over blocks.

Fig. 8. Average ISR for CSV mixing model when d = 5, N = 5000, and
varying σsm over blocks.

2) SOI With Varying Variance: In this special case, the SOI
with the same pdf but varying variance over blocks is assumed.
In a trial, M = 5 blocks and four different settings of SOI’s
variances are considered: Specifically, type A is σ2

sm = 1 for
m = 1, . . . , 5, type B corresponds to σ2

s1 = σ2
s2 = 1, σ2

s3 = 2,
σ2
s4 = σ2

s5 = 3, type C corresponds to σ2
sm = m, and type D is

for σ2
sm = m2, m = 1, . . . , 5.

We have analyzed in Section V-A3 that the nonstationarity of
the SOI improves the separation accuracy under the CSV mixing
model but typically worsens the accuracy under the CMV model.
The results in Figs. 7 and 8 confirm this property, although the
drop in performance in case of the CMV model due to the SOI’s
nonstationarity is not that substantial, in this experiment.

VII. CONCLUSION

The present contribution has computed the CRLB-induced
bounds for the ISR in the ICE model, i.e., in BSE under statisti-
cally independent sources. The developed CRLBs are valid for
both circular and non-circular sources, and include the scenarios
of determined mixing and piecewise (block) determined mixing.
The derived bounds depend on the target signal distribution
and on the length of data, and they coincide with that for ICA
when all but the target signals are circular Gaussian (shown for
the standard mixing model). A variety of experimental results
confirm the validity of the derived CRIBs. In particular, the CRIB
was shown to be attainable by the OGICE algorithm when the
target signal is non-Gaussian or non-circular Gaussian, under the
assumption that the true nonlinearities (score functions) defining
the pdf of the SOI are known in advance. Similarly, the variants
of BOGICE can attain the CRIBs valid for the CMV and CSV
mixing models.
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