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Abstract This paper considers a model of one-dimensional discrete time random
walk in which the position of the walker is controlled by varying transition prob-
abilities. These probabilities depend explicitly on the previous move of the walker
and implicitly on the entire walk history. Hence, transition probabilities evolve in
time making the walk a non-Markovian stochastic process. The paper follows on the
recent work of the authors. Two basic versions of the model are introduced, some of
their properties are recalled and new theoretical results derived. Then, more complex
variants of models are presented. Development of walks themselves as well as the
properties of connected sequences of transition probabilities are illustrated also with
the aid of simulations. Possible applications of the model in real life situations are
discussed and briefly described, too.

Keywords: Random walk, history dependent transition probabilities, success pun-
ishing /rewarding walk.

1 Introduction

Stochastic processes and the corresponding mathematical theory represent a
significant part of mathematics. One of the most prominent of such processes
is the random walk, introduced by Pearson over hundred years ago [6]. This
concept has been then further elaborated by many authors creating a number of
different versions of a random walk [7] and there are still new possibilities and
options how the classical random walk can be altered and adapted to specific
application field. The model discussed in this paper follows on the work of
Turban [8] and represents yet another version of a random walk, walk with
varying transition probabilities. The model falls within a rather broad class of
processes presented in recent work of Davis and Liu [1], but not all assumptions
from [1] are met.

The original inspiration for the model comes from one of its applications —
modeling of sports events. Many types of sport, such as tennis or volleyball,
are played in a strictly discrete manner with steps divided by individual poinis,
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games or sets. One sport match can be thus viewed as a random walk with
individual parts of the match representing the steps of the walk. Success, i.e.
scoring a point or winning a set, then significantly affects further development of
the entire walk by changing the transition probability. Other real life situations
with similar properties can be found everywhere in areas where both “successes”
or “failures” occur. In fact, also discrete time recurrent counts data occurrence
can be often modeled in a similar way, when the event probability is affected by
the recent history of the process. Such cases include the recurrence of diseases,
recidivism in crime or repeated defects and maintenance of a technical device.

The present contribution continues on the recent authors’ exploration of
the model of a random walk with varying probabilities. Selected properties of
the model are presented and possible real life implementations of the model
are discussed. The rest of the paper is organized as follows. Next section
introduces theoretical properties of the model and describes in detail the two
main variants of the model. Section 3 presents possible applications of the
model and the last section concludes this work.

2 Theoretical properties

As already mentioned, modeling sport events served as a motivation for the
presented model. The probability of a success (i.e. scoring a goal, achieving a
point etc.) is at the center of interest in such modeling. After each occurrence
of such success its probability either decreases or increases, and thus two basic
model alternatives exist — success punishing and success rewarding. The basic
version of the model operates with starting success probability pg and a memory
coefficient A affecting the severity of probability change after a success as input
parameters. Formally the walk is defined as follows:

Definition 1. Let py € (0,1), A € (0, 1) be constant parameters, {P,}
and {X,}, -, sequences of discrete random variables, X; € {—1,1} and P, €
(0,1) for each t, and Py = pg. For t > 1 let

P(X; =1|Pi1 =pi-1) =pi-1, P(Xy = -1|Proy =pi—1) =1—pi1,
and (success punishing)
1
Pt:/\Pt—1+§(1 - A1 - Xy) (1)
or (success rewarding)
1
P, =AP_4 +§(1—)\)(1+Xt). (2)
The sequence {S,}524, S, = So+ >y X; for n € N, with Sy € R some
given starting position, is called a random walk with varying probabilities, with
{X,}77, being the steps of the walker and {P,} 7, transition probabilities.

Depending on the chosen formula to calculate P; the walk type is either success
punishing (1) or success rewarding (2).
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The model was first introduced in [2] and a more thorough description was
provided in [4]. Selected properties were then presented in [5] and a practical
implementation of the model in modeling tennis matches was presented in [3].
The basic results are recalled in the following sections and then variance of S;
is derived and described in more detail.

2.1 Success punishing model

The basic properties of the success punishing version of the walk are presented
in this section. Previous results are presented as a set of expressions only, the
reader is kindly asked to see referred papers for full proves of those expressions.
Newly described properties are then provided with full proves and all necessary
details.

For the expected value and variance of the step size for the ¢ > 1 iteration
of the walk X, it holds [5]

EX; = (2 - 1) 1(2po — 1), (3)

Var X; =1 — (2x — 1)2¢=D(2py — 1)2, (4)

For the expected value and variance of the transition probability for the
t > 1 iteration of the walk P; it holds |2, 5]

1—(2x — 1)t
EP, = (2\ — 1)'po + % 5)
t—1 .
Var P = (3X° =205 + ) K(i500, ) (37 = 20717 — k(t;p0, )%, (6)
=0
where t
1-(2x—1
k(t: po, N2 = EP, = (2X — 1)py + %
and

K(t;p0, \)? = k(t;po, \)? - (=3A2 4\ — 1) + (1 — V)%

Finally, the expected position of the walker S; after £ > 1 iterations can be
expressed as [2]
1—(2)— 1)

(7)

The last formula missing is the one expressing the variance of the posi-
tion of the walker Var S;. Before it is presented, let us first prove a support
proposition.

Proposition 1. For allt > 1

t—1
E(PS;) = (2X = 1)'poSo + Y _(2X = 1)"q(t — 1 — i po, So, A), (8)

=0
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where
q(7; 205 S0, A) = (1 = A)s(j;po, So, A) +2A7(5; 00, A) + (L = 2X)p(45po, A) + A — 1

(l’fldp(j;po,)\) = EF’] 18 given by (5)) S(j;p()aSOa)\) = ESJ by (7) andﬂ(j;po,)\) =
EP? is given as

1—(3X2 —2)\)¢ 1
EP? = (3X2-2)\)'p2+ (3 AT+

—(Po—%)(3A2—4>\+1)M(t—l; A),

3 +1 2
()
where
t—1
M(t;A) = (3% —20)"7 1 (2A — 1)".
1=0

Proof. The formula for EP? follows from the proof of Proposition 2.5 in [5]. To
prove (8) let us start with expressing the value of E(P.S;) from the knowledge
of past steps as

E(P;S;) = E[E(P,;S;|P;—1)] =

= BIB(AP-1 + 5(1 = A1 = X)) (St + X0)|Pey)] =

11—\ 1-\
5 Y1 T

1-A_ 1-2X
X7|Pr-1)]-

= E[E()\Pt_lSt_l + XtSt—1+

+)\XtPt—1 + Xt -

2 2

Using E(X¢|P;—1) =2P,_1 — 1 and EX? =1 we get

E(P;S;) = 2A—1)E(P;_1S;—1)+(1-N)ES;_1+2 \EP? | +(2A—1)EP;_ 1 +A—1.

(10)
Further we will continue using mathematical induction. For ¢t = 1 using the
definition of the walk it holds that

E(P1S1) = po(poA(So + 1)) + (1 — po)[(1 — (1 = po)A)(So — 1)] =
= 2\ — 1)poSo + (1 — N\)Sp + 2A\pg — (2A — )po + A — 1.

When substituting ¢ = 1 into (8) we obtain

0
E(P1S1) = (2X — 1)poSo + Y _(2X = 1)"q(0 — i3 po, So, A) =
=0
= 2\ — D)poSo + (1 — N)s(0; po, \)+
+2A7(0;p0, A) + (1 = 2X)p(0;po, A) + A — 1
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and finally using (5), (7) and (9)

E(P1S1) = (2X — D)poSo + (1 — A)Sp + 2Ap2 + (1 — 2\)po + A — 1.
Equation (8) thus holds for ¢ = 1. Now for the induction step t — ¢ + 1, after
substituting (8) into (10) we get E(Pi11St41) =

=2\ = 1)E(PS;) + (1 = N)ES; + 2\EP? + 2\ — 1)EP, + A — 1 =
(20— D[N~ 1)'poSo + SN~ 1)ig(t — 1~ )] + (1 - \)s(t)+
=0
+2A7(t) + (A — Dp(t) + A — 1=

= (2A = 1) poSo + D (2A = 1)'q(t — i).

i=0
Theorem 1. For allt > 1
t—1
Var S, =t + 420(i;p0, 0,\) —a(t;po, A),
i=0

with o(i; po, So, A) = E(P:St) given by Proposition 1 and

o) = a0 —1) 12 o= 0P
i=0

Proof. As clearly the value Sy does not affect the variance, let us from now
assume Sy = 0. From the definition of variance

Var S; = ES? — E2S, (11)
and (7) follows that to prove the proposition it is enough to prove that

=1 —1-(2A—1)
ES;=t+4) o(iipo,0,0) ~ @po— 1)) ——"5— (1)

i=0 1=0

First of all, let us express ES? from the knowledge of past walk development.
From the definition of the expected value and the definition of the walk it
follows

ES2 = E[E(S2|P,—1)] = E[E((Si—1 + X;)2|P_1)] =
— E(StQ—l =+ 2(2Pt_1 — 1)St—1 + 1) =

=FES} | +4E(P;1S; 1) —2ES; 1 + 1, (13)

where the fact that EX? = 1 for all t was used. The theorem will be proved
using mathematical induction again. For ¢ = 1 we get from the definition of
the walk

BEST =po(So +1)* + (1 = po)(Sp — 1)* = 1.
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Substituting ¢ = 1 into (12) we obtain

1—(2x—1)°
EST =1+ 40(0;p0,0,A) — (2po — 1)% =1
and (12) thus holds for ¢ = 1. Now for the induction step ¢ — ¢ + 1 we get by
substituting (12) into (13)
ES2,, = ES? + 4E(P,S;) — 2ES, + 1 =

1—(2)— 1)

t—1 t—1

=+ 4 0(ispo,0,0) — (2p0 — 1) Y — o+
i=0 =0
. -2 -1n*
40 (tip0,0,3) = 2A2po ~ D=5 +1=
t t .
. 1—(2x— 1)
(t+1)+4;o(z;po’0ﬂ) - (2po - 1);?’

which proves (12). Substituting (12) and (7) into (11) then proves the theorem.
Corollary 1. Fort — +oo
Var S, =400

and
lim (VarS: — (c1(po, A)t + c2(po, A)) =0,

t—+o00

where ¢;(po, A) are some t-independent constants.

Corollary 1 shows that with ¢ — +o0o Var S; behaves as a linear function
with respect to ¢. This can be seen also on Figure 1 together with a comparison
of observed and theoretical values of Var S;.

2.2 Success rewarding model

Similar formulas can be derived for the success rewarding model. Once again
for previous results only the formulas are presented with proofs in the referred
literature, new properties are derived with full complexity. For the sake of
clarity the set of expressions is presented in the same manner as in the previous
section.
For the expected value and variance of the step size for the t > 1 iteration
of the walk X; it holds [5]
EX, =2po — 1, (14)

Var X, = 4po(1 — po). (15)

For the expected value and variance of the transition probability for the
t > 1 iteration of the walk P, it holds [5]
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Figurel. Observed (dash-dotted) and theoretical (solid lines) values of VarS; —
success punishing model. The data were obtained from 1000 walks generated with
given parameters.

-1
Var Py = (2X — A3 + po(1 — N)? 2(2)\ —A%) 3. (17)
=0

As the sum in the formula equals %, it can be further simplified as
S @A-AY
(P
= po[(2A = A*)"(po — 1) + 1] — pp,
Var Py = po(1 —po)(1 — (2A =A%),

Var Py = (2X — A%)'p§ + po(1 — A)

Finally, the expected position of the walker S; after ¢ > 1 iterations can be
expressed as [5]

ESy = Sy +t(2po — 1). (18)

To prove a formula allowing to compute the variance of the position of the
walker, let us again start with a support proposition.

Proposition 2. For allt > 1

1—(2X—=)\?)t

e o W

E(PtSt) = poSo +p0t + 2)\])0(})0 — 1)
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Proof. We will once again start with expressing F(P;S;) from the knowledge
of the past step.

E(P,Sy) = E(E(Pr—1Ss—1|Pr_y) =

= E[E((AP_y + %(1 — N1+ X)) (Se—1+ X4)|Pr1)] =

1—-A 1—A
5 Si—1+ 5
=X 1-2A

5 Xt+TXt2|Pt—1)]

= E[E()\Pt_lSt_l + XtSt—1+

+AX P+

and using E(X;|P,_1) = 2P, 1 — 1 and EX? = 1 finally
E(P;S;) = E(P,_1S;_1) + 2A\EP? | — (2A — 1)EP;_;. (20)

Further we will continue using mathematical induction. For ¢t = 1 using the
definition of the walk it holds that

E(P151) = po(1 = (1 = po)A)(So + 1) + (1 — po)Apo(So — 1) =
= poSo + 2Ap3 — (2X — 1)po.

When substituting ¢ = 1 into (19) we obtain

1—(2x—22)0
-2z

= poSo + po + 2Apo(po — 1)

E(P1S1) = poSo + po + 2Apo(po — 1)

and finally
E(P1S1) = poSo + 2\pg — (2X — 1)po.

Equation (19) thus holds for ¢ = 1. Now for the induction step t — ¢t + 1 we
get by substituting (19) into (20)

E(Py1Si11) = E(PiS;) + 2\EP? — (2\ — 1)EP,
and further using
EP? =po((2X = 2" (po — 1) + 1),
which follows from the proof of Proposition 3.7 in [5], and (16)

1—(2X=)\?)t
E(Py+1St+1) = poSo + pot + 2Apo(po — 1)W
+2Apo((2A — AH)(po — 1) + 1) — (2X — D)pp =
1— (21 =A%)
1—(2x =A%)t
= ])OSO +p0(f + 1) + 2)\])0(])0 - 1)%
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Theorem 2. For allt > 1 holds

1—(2X =A%)
Var St = 4p0(1 — po)t2 + (l(po, )\)t — Cb(p(), )\)W,
where Spo(1 )
_ 6poll — Po
a(pOa)‘) - (1 _ )\)2

Proof. As clearly the value Sy does not affect the variance, let us from now
assume Sy = 0. From the definition of variance and (18) follows that to prove
the theorem it is enough to prove that

1—(2) — \2)t
(1=2)?
First of all let us recall that formula (13) holds for the success rewarding type of
the model as well. The theorem will be once again proved using mathematical
induction. For ¢ = 1 the definition of the walk yields the same result as in the

proof of Theorem 1. By substituting ¢ = 1 into (21) we obtain
ES% =1+ a’(p()»)\) - Cl(p()’)\) =1
and (21) thus holds for t = 1. Now for the induction step t — ¢ + 1 we get by
substituting (21), (19) and (18) into (13)
ES} | = ES; +4BE(P,S;) —2ES; +1 =
1—(2) — %)
(1=

Estz = t2 + a(pOa )\)t - a(p(): )‘) (21)

= t2 + a(p07 A)t - a(p07 )‘) +

1—(2) = )\?)t

)= 2t(2po — 1)+ 1=

=(t+1)*+a(po, \)(t+ 1) — “(vaA)%

Substituting (21) and (18) into the definition of variance then proves the the-
orem.

Corollary 2. Fort — 400
lim VarS; =400

t——+oco

and

. _ _ 2 _ a(po, M) _
tilgloo <Var Sy <4p0(1 Po)t* + a(po, M)t —(1 mpYE =0,
with a(pg, A) as in Theorem 2.

Corollary 2 shows that with ¢t = +oco Var S; behaves as a quadratic function
with respect to t. Similarly as with the success punishing model, such behavior
is illustrated on Figure 2, which also shows the comparision of the theoretical
value of position variance and an empirical one obtained using simulated data.
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Figure2. Observed (dash-dotted) and theoretical (solid lines) values of VarS; —
success rewarding model. The data were obtained from 1000 walks generated with
given parameters.

2.3 Two-parameter models

The presented model can be further extended by adding additional levels of
complexity. The first option is to use two separate A\ parameters for each di-
rection of the walk. Maintaining the two basic options — success punishing and
success rewarding models — this level of complexity can defined as follows [5].

o0

Definition 2. Let py, Ao, A1 € (0, 1) be constant parameters, {P,}, -, and
{Xn 1}~ sequences of discrete random variables, X; € {—1,1} and P, € (0,1)
for each t, and Py = pg. For t > 1 let

P(X; =1|Pi—1 =pi—1) =pe—1, P(Xe = —-1|Pmi =pio1) =1 —p1,

and (success punishing)

Po= I+ X)NPo+ (1= X)A =M= P (22)
or (success rewarding)

Py = %[(1 = Xt)AoPi—1 + (14 X¢) (1 = Ar(1 — Biq))]- (23)

The sequence {5,}524, S, = So+ >y X; for n € N, with Sy € R some
given starting position, is called a random walk with varying probabilities -
two-parameter model, with {X,,},7 | being the steps of the walker and {P,} 7,
transition probabilities. Depending on the chosen formula to calculate P; the
walk type is either success punishing (22) or success rewarding (23).

The derivation of exact model properties is not so straightforward as in
the case with single lambda. The properties were thus studied with the help of
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simulations. Figures 3 and 4 present again the variance of S;. It seems that the
position variance of the success punishing model goes to infinity linearly and
of the success rewarding model quadratically, similarly as in the corresponding

smgle parameter scernarios.
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Figure3. The observed position variance of the two-parameter success punishing
model. The data were gathered from 10000 simulations with given parameters.
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2.4 Other model alternatives

There are many possibilities how to further enhance the model. The model
can be combined with a varying step size model from [8], the A parameter can
be handled as a function of time and position, or a combination of varying
probability model with regression part (e.g. logistic) can be considered, which
seems especially promising from the application point of view. These variations
of the model will be subject of further study.

3 Model application

The model is especially well suited for simulation of random processes where a
single or just a few events significantly affect the process’s future development.
An example such a process can be found in sports modeling. In such appli-
cations rather short walks occur, but they can be observed repetitively. For
example in modeling tennis sets, the longest walk has only 5 steps (occurring in
men Grand Slam or Davis Cup matches), but there are many matches played
each year, which can be (under some assumptions) considered as multiple ob-
servations of the same walk. The authors recently presented a study where the
model was used for modeling the men tennis Grand Slam matches with results
suggesting the model might provide precious insights when modeling tennis.
Here is a brief summary of the modeling approach.

The success rewarding version of the model was selected as the historical
results show that the development of a tennis match follows such pattern. The
po parameter was obtained using input bookmaker odds from Pinnacle Sports,
an industry leading bookmaker. The appropriate A parameter was then found
from historical data using the maximal likelihood estimate. The model was
tested on a database consisting of 4255 tennis matches that took place between
2009 and 2018 and the results suggest that such a model could be used for
in-play odds prediction. For full details of the model derivation and testing,
see the original paper [3].

The quality of such in-play predictions was tested on a small study in real
life setting with active betting against a bookmaker. The model from [3] was
implemented into an automatic odds scraping and betting tool. Whenever the
odds provided by bookmaker a; were higher than the model implied odds, i.e.
a; > 1, a bet was made. This test was carried over the 2019 men tennis
US Open and resulted in 128 placed bets with the total amount 59.85 units
bet. As the bets were not placed simultaneously, but rather consecutively,
the theoretical total bankroll needed for the betting was only 0.52 units — the
minimal actual account balance over the entire US Open. The actual number
of wins was 57, slightly below the number of expected wins, but thanks to
the average winning odds of 2.3 the final balance was plus 2.24 units, creating
a theoretical win %‘ = 4.3 times the investment, which is an outstanding
performance.

This study just briefly shows the possibilities of the presented model and
presents rather encouraging results. The testing dataset, consisting of only 128
bets, is however too small to provide a strong evidence favoring the model over
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bookmaker’s odds. A more conclusive test on a bigger dataset will be subject
of further study.

4 Conclusion

The present paper continues in the research on one specific set of models of
Bernoulli-like random walks, the models where the transition probabilities de-
pend on the walk history. After reviewing basic models types and the results
of previous studies, new properties of the model characterizing the variability
of the walk were proved. These properties were explored additionally with the
aid of simulations in order to compare derived theoretical results with empir-
ical ones based on simulated data. The problem of parameter estimation was
not addressed here, the properties of the maximum likelihood estimate of both
A and po were studied in depth in [5] and utilized in [3], a study devoted to
one of possible model applications, namely the modeling of tennis matches de-
velopment. This kind of application was briefly recalled also in the present
contribution and aggregated results of model testing on a new small dataset
were reported.
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