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Abstract. The motivation for our research is the huge demand for registration of multimodal
datasets in restorers practice. With an increasing number of various screening modalities, each
analysis built on the acquired dataset starts with the registration of images acquired from
different scanners and with varying levels of mutual correspondence. There is currently no well-
suited state of the art method for this task. There are many existing approaches, i.e. based on
control points or mutual information, but they do not provide satisfying (subpixel) precision,
thus the registration is very often realized manually in Adobe PhotoshopTMor any similar tool.
Another popular option is to use scanners able to produce registered datasets by design. During
the last 10 years, datasets from these devices have extended available analytical techniques the
most.

In our research, we focus on solving the mentioned registration task. In [1] we concluded that
the work with misregistered modalities is possible but limited. Now we present results of our
experiments challenging these limits and conditions under which we can precisely register data
from different modalities. The achieved results are promising and allow usage of more complex
artificial neural networks (ANN) for dataset analysis e.g. [2]. We describe the construction
of registration layers for estimation of shift, rotation and scale and a useful strategy and
parametrization for ANN optimizer.

1. Introduction
The registration of artwork images is a crucial part of any higher level analysis. The usefulness
of the registered dataset was demonstrated e.g. in [3, 4, 5, 6] where spectral reflectance of each
pixel was used for pigment identification. Another demonstration, working with registered data,
is focused on layer identification e.g. in [7, 8, 9, 10]. There exist scanners producing already
registered datasets (macro X-ray fluorescence (MA-XRF) [11], visible (VIS) and near infrared
(NIR) [12], XRF + VIS - NIR [13]) however their set of acquired modalities is limited. Except
these few scanners input datasets from other devices must be registered using some software
based approach.

1.1. Modality
Registration of a multimodal dataset is more complex than photograph stitching because
the information content of the images from different modalities varies. Sometimes less (VIS
and NIR), sometimes more (ultraviolet fluorescence (UVF) and VIS) but in some cases, the
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information content is completely different (some MA-XRF channels and VIS). The current
state of the art uses either a manual registration in PhotoshopTM, approaches based on control
point selection [14] or information based similarity measures (like e.g. mutual information [15]),
which are especially useful when information content is similar.

As far as we know there is no publication quantifying the similarity level needed for
registration convergence as well as there is a lack of studies comparing the usefulness of particular
information measures for registration of XRF, UVF, VIS, NIR, terahertz imaging (THz), optical
coherent tomography (OCT) and other. The correlation [14] and the mutual information [16]
are the most common thanks to their available implementations in gradient descent methods.

In our approach where neural networks will be used for transformation estimation, we assume
that:

(i) The transformation parameters are limited (to prevent local optima convergence). This
means that images are roughly pre-registered.

(ii) Registered images have non-trivial pixel intensity gradients (to be able to use gradient
descent methods). An image pair should contain edges, corners, various noise distribution
in different parts.

(iii) The global minimum of square error function corresponds to the correct transformation
parameters.

The first two of our assumptions are achievable, the third we will discuss further.

1.2. Typical distortions
Before we start to build our model it is appropriate to restrict the space of possible
transformations according to the physical properties of acquisition devices. By this restriction
we reduce the number of optimized parameters and in this way we improve the convergence of
gradient descent methods. As well we should define the required precision of the registration
according to the following data application noise robustness. We establish two levels of necessary
precision i.e.:

• rough - for studying large areas - up to 1px misplacement.

• fine - for studying pixel spectral responses - less than 1px misplacement error.

The physical behavior of acquisition devices produces two types of transformations we are
interested in: perspective, caused by the positioning of acquisition device and spherical, caused
by lens distortion.

Perspective transformation is well described by 4 control points and we can describe it by 8
parameters [a, b, c, d, e, f, u, v]. Coordinates [x, y] are transformed to [xT , yT ] as follows [17]:

xT =
ax + by + c

ux + vy + 1
and yT =

dx + ey + f

ux + vy + 1
(1)

Very often we are also able to keep the orientation of the painting between two captures and
therefore rotation can be eliminated from the list of allowed transformations.

Radial distortion is present when a lens is used for capturing (the whole painting is captured
at once). This effect is nicely demonstrated on VIS+NIR screening made by the same camera
see Figure 1.

Radial distortion is not mathematically precisely defined and we approximate it by [18]:

xT = x +
x− cx

1 + k1r2 + k2r4 + . . .
and yT = y +

y − cy
1 + k1r2 + k2r4 + . . .

, (2)
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(a) Origin of cuts (original size was
3156 × 4752px). Green rectangle
indicates zoomed areas.

(b) Left top part. Misplacement of
NIR and VIS contour is approx. 6
pixels to the right

(c) Mid right part. Misplacement
of NIR and VIS contour is approx.
6 pixels to the top.

Figure 1: Misplacement of VIS and NIR images. Comparison of two images which were
taken by a Canon EOS 500D from the same position. Blue (VIS) was taken with UV/NIR
blocking filter, red (NIR) with NIR > 850nm passing filter. Images were reduced by edge
detector and alpha blended.

where [cx, cy] denotes center of radial distortion coordinates, ∀i ∈ N, ki are estimated parameters
and

r =
√

(x− cx)2 + (y − cy)2. (3)

Expected parameters are then [cx, cy] and ki (∀i ∈ N). Higher number of kis (bigger i) provides
higher precision of the approximation.

2. Method
Our target algorithm for registration has to take into account both types of transformations (see
Equations (1),(2)) but it should be modular as well. Modularity is useful in the cases when one
can eliminate some of the transformations (e.g. rotation, scale, sheer) which leads to a lower
number of parameters to be optimized and therefore better convergence. We try to construct
such a modular system and test how it performs with real data.

2.1. Multilayer ANN with backpropagation algorithm
The core of our construction is a multilayer ANN (see Figure 2). This ANN has two types of
inputs. First, a pixel coordinates [x, y] which are transformed by very first layers to [xT , yT ].
And secondly, an image from source modality which is used for transformation of [xT , yT ] to
pixel intensity IV IS(xT , yT ). The following ANN layers are pretty much the same as in [2] section
3.3. which transform source modality to target modality by minimizing:

min
fT

∑
xT ,yT

INIR(x, y)− fT (IV IS(xT , yT )) (4)

This construction allows requested modularity as well as universality because we can setup
layers according to expected transformation. We can establish trained parameters corresponding
with:

• Rotation angle [rang]

• Scale [sx, sy]

• Shift [tx, ty]

• (Radial distortion parameters [cx, cy, k1, k2, . . . ])
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Figure 2: ANN schema. Left part (black) symbolically describes registration layer of ANN.
Here we have four layers with various transformations. Transformed pixel coordinates are then
used for pixel intensity interpolation from source modality which is then (gray) transformed,
according to [2], to target modality. As an error is used mean square error (MSE) of target
intensity with the predicted.

2.1.1. Shear Adding shear is more complicated and it will be part of further research. The
problem is caused by the fact that to get an affine transformation, we have to apply shear twice
(for x and y-axis). Alternatively, we can achieve shear with two rotations and an anisotropic
scale. However, in both cases, we have to apply the same parameter in two different layers of
ANN. In this way, we lose the transparency and interpretability of ANN layers.

2.1.2. Normalization and optimization Because shift, rotation, and scale all attaining different
values (tens of pixels for the shift, tenths of radians for the rotation) they have a different impact
on error function. This impact also depends on the dataset and level of pre-registration. For
this reason, we suggest normalization of parameters as well as recommend the usage of the
ADAM optimizer. For tx, ty, rang, sx, sy we estimate reasonable ranges. Then, the parameters
are scaled i.e. estimated ranges were stretched to [−1, 1] interval. In this way, all parameters
have approximately the same effect on the error function. Finally, the ADAM optimizer changes
the learning rate for each parameter separately and thus compensates for the variances in the
input data.

During testing, we encountered a problem with ADAM’s convergence to the subpixel level.
Near the true transformation parameters, ADAM fails to converge and oscillates around the
exact solution. This could happen as it was described in [19]. To solve this we used the
scaled gradient descent (SGD) optimizer to refine the ADAM’s solution. Without the SDG’s
refinement, we obtain the error in the order of pixels while with SDG refining step we achieved
sub-pixel precision (2nd decimal place).

3. Implementation and testing
For the implementation, we have used Python library TensorFlow where custom layers were
written. Hyperparameters were then found in large scale testing in Metacentrum - the Czech
national computation grid. Our code can be found at https://github.com/gimlidc/igre

3.1. Tensorflow
From the TensorFlow custom layers we have derived 4 custom layers (see Figure 2) which
estimate shift [tx, ty], rotation rang and scale [sx, sy]. The fourth layer does bilinear interpolation
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and converts [xT , yT ] to IV IS(xT , yT ). Layers for radial distortion estimation are in progress.

(i) Shift layer - It is a custom layer with two parameters representing translation in x and
y axis. Parameter values are constrained with the hyperbolic tangent. The expected shift
is set to [−50, 50]. For the shift to be learned, we had to accelerate the learning rate by a
factor of 2000. The default value is zero.

(ii) Scale layer - It is a custom layer with two parameters representing the anisotropic scale
in x and y axis. Parameters in this layer do not need to be constrained, bound for scale
was set to be 10%, i.e. values in the interval [0.9, 1.1]. The default value of the parameter
is one (in scaled range it is zero in the expected range [−1, 1]), the parameter represents
percentage deviation from the default scale which is one.

(iii) Rotation layer - It is a custom layer with one parameter representing rotation angle in
radians. The learning rate for this layer was scaled down by a factor of 10. No additional
constraints were used, expected rotation is within range [−4◦, 4◦]. Default value is 0◦.

(iv) Interpolating layer - It is a custom layer that takes image coordinates transformed by the
previous three layers (similarity transformation) and assigns a pixel value to each coordinate
using linear interpolation on 2×2 neighborhood. The custom gradient was also implemented
as a standard image gradient but over the larger neighborhood (4×4 patch without corners
= 12 pixels)

3.1.1. Learning rate issues As mentioned above, we encountered great obstacles while
setting up the optimization. First, let’s take into account only the shift layer. With
default/recommended parameters for the ADAM optimizer, the translation never moved far
from the initial values, resulting in a detected shift being under one pixel in any situation.
Increasing the learning rate solved this problem however finding the correct parameters proved
to be difficult. The effect of increasing the learning rate is not linear. For a large range of values,
the optimizer gets stuck in some local minimum near the initial position. Increasing learning
rate too much leads to parameter explosion i.e. unconstrained growth.

Adding another layer further complicates the convergence. Keeping the settings from shift-
layer-only case leads to convergence for purely shifted images however it failed to detect
rotation/scale. Interestingly for certain settings rotational parameter was correctly estimated
only in the cases where translation was also present. Setting the correct learning rates for
each layer thus cannot be done separately and the influence of presence/absence of each
transformation must be explored.

We set our ANN to detect transformation with translation up to 50px, rotation up to 4◦ and
scale up to 10%. Convergence was tested for all possible combinations of these transforms (e.g.
just translation, scale + rotation, etc.). These bounds should be more than sufficient in the case
where input images are (roughly) preregistered.

3.1.2. Local optimum and Data preprocessing One of the main reasons for failed registration
is the convergence into a local minimum. This is more frequent in the cases of multimodal data
processing. To prevent this phenomenon and to help the optimizer we prepared stages of training
with blurred images. In stage one we apply heavy Gaussian blur. This leads to alignment based
on larger more uniform regions rather than details. We repeat this process in stages two and
three with moderate and small blur. Finally, in the fourth stage, we use original, clean data.
After this stage, the error is around 1 pixel. Finally, in the fifth stage, we switch optimizer for
SGD. This helps us further improve the error to subpixel precision. Note that using the ADAM
optimizer for the early stages as well as applying the blur is necessary. The SGD optimizer
alone was not able to handle even small transformations. Even in the case of non-blurred data,
the optimization diverged or got stuck in a local minimum. The last stage with SGD optimizer
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fixed ADAM oscillations near the correct solution. Our last experiments shown that SGD is
necessary especially for tx and ty estimation. In the last stage it is therefore possible to disable
trainable parameter for rang, sx and sy and refine the translation alone.

3.2. Metacentrum
ANN convergence to the true transformation highly depends on many parameters. Moreover,
without extra assumptions about the data, the convergence is hard to achieve. For this reason,
we set up experiments instead of an analytical approach to direct method evaluation.

We have started with shift estimation. As an input for the experiment data from INO-CNR
captured by 32 band VIS-NIR scanner [12] precisely registered by design was used. We simulated
the transformation by shifting VIS bands and then tried to find out shifting parameters by ANN.
This first experiment also helps us with setup for the learning rates [lr, beta1, beta2] and training
stages (a blur of the input image in the first three stages, SGD usage for final refinement).

In this first experiment shift range was set in the range [−50, 50]px which we consider as
sufficient for nowadays available 20Mpx cameras. We have processed 43 image samples of size
400 × 400px of different kinds (detailed structures and line sketches as well as gradual color
transitions). Every experiment was repeated with the same parametrization, but with different
gradient descent seed, 20 times to obtain statistically relevant data.

In the second experiment, we have enabled similarity transformation (rotation and scale
layers were added). The ranges for transformation were set to [−50, 50]px, [−4◦,+4◦], [0.9, 1.1].
Again, we expect rough pre-registration by humans or process of screening where these limits
seem achievable for nowadays available cameras. In this test case, 350 different transformations
were tested in two repeats per each sample (30k runs altogether).

In the last experiment, we tried to combine registration layers: scale, rotation, and shift,
with extrapolation layers from our previous paper [2]. In this case, we focus on the performance
of registration in sense of combining different modalities (first two tests works mainly with the
same modality in the input layer as well as in the error computation).

For such big scale computation, we used the National computation grid Metacentrum.

4. Results
The test scenarios described in the previous subsection were evaluated and we illustrate them
by following graphs.

The first test (shift estimation) evaluates if our approach converges at all. We have expected
good convergence for the same modality but we also try to estimate modality distance, where
convergence occurred.

This test shows that custom layers written in TensorFlow work as expected. Moreover, we
show (see Figure 3) that for shift convergence slight shift in a spectral band is not an issue.
We have used as an input modality sub-band with middle wavelength 700nm and we were able
to find out correct [sx, sy] for input modality from 620nm up to 1150nm. The wider modality
distance for input and output (450nm versus 80nm in NIR versus VIS) is caused by lower
variability of reflectance signal between NIR subbands.

In the second test we have tried more complex transformations and optimization of 5
parameters [tx, ty, rang, sx, sy]. We also tested all transformation combinations on 43 different
datasets to evaluate, how relevant are the data itself in the sense of registration convergence.
Results are shown in the Figure 3. The worst results have samples 26-34 which contain drawings
(other samples were paintings).

Finally, the last experiment with approximation layers should demonstrate, that the
composition of ANN by registration and approximation layers works as expected. The expected
output is a good registration convergence for distant bands. This last experiment was not so
successful especially for tx, ty where the error was about a 1px misplacement. However, we were
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Figure 3: Convergence of shift estimation for various modality distances

able to demonstrate, that spectral distance between input and output modality can be bigger
without any negative effect on registration convergence. The Figure 5 shows that we were able
to extend convergence of the ANN to the correct registration parameters from 80nm spectral
distance between input and output in VIS range up to 220nm and for NIR range from 350nm
up to more than 900nm which is sufficient output for standard DLSR camera with removed NIR
filter.

5. Conclusion
Half of our goal, to register multimodal images of artwork, was met. We suggested new
architecture of ANN for combining registration layers with modality transformation layers. We
tested this architecture for a shift, rotation and scale on real datasets at a huge scale and set up
limits for successful registration layers application. We suggested the configuration of ANN and
algorithm for ANN training suitable for estimation of registration parameters and we evaluated
it on more than 2M experiments.

Our approach to registration of multimodal data is very promising. We see here a significant
unlock which will enable the application of algorithms for pigment or layer identification to
low-costly acquired data. Moreover, the usefulness of pigment databases now available will be
proven in the short term in everyday restorers and conservators’ practice.
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Figure 4: Convergence overview for testing samples: shift, rotation and scale. The boxplots
demonstrate that data strongly influence the result. Samples 26-34 had problem to converge
tx, ty. We do not currently know if this is caused by optimizer configuration which must be
adapted for such data (expected) or by the type of the data itself.

6. Future work
There is still a large amount of work necessary to fully cover artwork dataset registration needs.
In the next few months, we would like to develop and test an ANN layer for radial distortion.
In parallel, we still need to improve ANN optimizers for better convergence, especially for a
complex scenario.

Our current plan for pushing our work forward is as follows:

• Optimizer setup for the shift, rotation, and scale (before Heritech 2020)

• Spherical distortion software compensation (Jun 2020)
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Figure 5: Last experiment takes as an input image in 700nm and output wavelength goes from
480 up to 1600, we have tested how many of test runs on 44 different samples converge to the
correct transformation (error less than 1px). ANN were constructed from registration layers
(shift, rotation and scale) and two layer extrapolating intensity from input modality to output
modality.

• Extension of TensorFlow python libraries with designed registration layers (Mid-Late 2021)
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