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Abstract
Observation of random variables is often corrupted by additive Gaussian noise. Noise-
reducing data processing is time-consuming and may introduce unwanted artifacts. In this
paper, a novel approach to description of random variables insensitive with respect to Gaus-
sian noise is presented. The proposed quantities represent the probability density function of
the variable to be observed, while noise estimation, deconvolution or denoising are avoided.
Projection operators are constructed, that divide the probability density function into a non-
Gaussian and a Gaussian part. The Gaussian part is subsequently removed by modifying the
characteristic function to ensure the invariance. The descriptors are based on the moments of
the probability density function of the noisy random variable. The invariance property and
the performance of the proposed method are demonstrated on real image data.

Keywords Multivariate density · Gaussian additive noise · Noise-robust estimation ·
Moments · Invariant characteristics

1 Introduction

Observation of random variables in a real-world environment is often corrupted by numerous
degradation factors, among which an additive random noise is one of the most frequent
ones. The noise may be introduced by measurement device imperfection, by storing and
transmitting, and also due to the precision loss when pre-processing the data.

This work has been supported by the Czech Science Foundation (Grant No. GA18-07247S), by the Grant
SGS18/188/OHK4/3T/14 provided by the Ministry of Education, Youth, and Sports of the Czech Republic
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Let X be the multivariate random variable to be observed and let N be an additive noise.
As a result of the measurement, we actually observe realizations of a random variable Z =
X + N instead of X , which is observed only indirectly. If the signal-to-noise ratio is low, the
corruption is so heavy that it is very difficult to deduce anything about the observed variable
X from the sample data Z . This situation occurs frequently in many application areas such
as signal and image processing, econometrics, experimental physics, geoscience, and many
others.

A large amount of effort has been spent to develop methods that decrease the impact of the
noise and allow to estimate either the entire X or at least some of its discriminative character-
istics. These methods can be categorized into three main groups – denoising, deconvolution,
and robust estimators.

Denoising methods aim to suppress the noise in the data and are usually based on linear
or non-linear filtering of high-frequency components and data smoothing. The advantage
of denoising methods is that they provide a complete estimate of X while the common
disadvantage howevermay be artifacts and deformation or loss of high-frequency information
contained in original X .

Deconvolutionmethods try to recover the probability density function (PDF) fX of random
variable X from the estimated PDF of the observed Z . Assuming the noise is independent of
the data, it is well known that the PDF of the sum of two independent random variables is a
convolution of the densities of the summands, i.e. in our case

fZ (x) = ( fX ∗ fN ) (x) =
∫

fX (x − s) fN (s) ds. (1)

Deconvolution methods could theoretically yield an accurate estimate of fX but in reality
they suffer from several drawbacks. Blind deconvolution methods, which do not require
any prior knowledge of the noise density fN , are numerically unstable, may converge to an
incorrect solution and are very time-consuming. Non-blind methods are better in that sense
but obtaining a good estimate of fN may be in practice difficult or even impossible.

Robust estimators try to estimate certain characteristics of X such asmean value, variance,
skewness and higher-order moments directly from the observed samples of Z . Standard
formulas for sample moments do not perform well on noisy data. This is why some authors
proposed not to resolve Eq. (1) but only to find some characteristics which are not affected
by convolution. Such characteristics, called convolution invariants, must be the same for
both fZ and fX and should be calculated directly from sample observations of Z . This
modern approach [it was firstly proposed in Höschl IV and Flusser (2016)] may be very
efficient whenever a complete knowledge of fX is not necessary, typically in noisy signal
classification and signal/image retrieval. In this paper, we develop this idea substantially.

The main idea of this paper is as follows. We assume that noise N is a multivariate Gaus-
sian random variable with zero mean and a general covariance matrix, which is unknown.
We introduce projection operators, acting on the space of all PDF’s, that divide each PDF
into two components. Based on the known parametric form of fN , we show that one of the
components can be used to compute quantities, which are invariant with respect to convolu-
tion in Eq. (1). These quantities can be used directly to characterize fX without any noise
estimation, denoising and deconvolution. Unlike Höschl IV and Flusser (2016), where the
idea of invariant descriptors was used heuristically for univariate densities only, we present
here a consistent theory for multivariate densities.

After providing the state-of-the-art review in Sect. 2, we formulate the problem formally
in Sect. 3. Section 4 is dedicated to the construction of a projection operator and its rela-
tion to invariants. This theory is then used for the construction of moment-based invariants
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descriptors in r dimensions (r -D) in Sect. 5. In Sect. 6, one and two-dimensional cases are
analyzed in detail and explicit invariant formula is derived. Finally, the experimental section
verifies the theory on simulated as well as real data from image processing area and shows a
potential application in image retrieval.

2 Literature review

2.1 Denoisingmethods

Majority of the articles on denoising comes from signal processing area, such as Motwani
et al. (2004), Buades et al. (2005b). These methods often lead to subjective improvement but
they can cause the loss of important information, the formation of artifacts, smoothing of the
signal, etc. The simplest way of removing noise from the signal is a linear filtering, when
the corrupted signal is convolved with some low-pass filter. This method, however, leads to
deformation of the high-frequency components of the signal. Non-linear filtering methods,
such as median filter and the anisotropic filter designed by Perona and Malik (1990), attempt
to avoid the effect of signal blurring. One of the state-of-the-art methods is the Non-Local
Means algorithm based on the self-similarity of signal patches (Buades et al. 2005a). Various
methods rely on a transform domain filtering, e.g. wavelet-based denoising (Chen et al. 2013;
Cho and Bui 2005), ridgelet- and curvelet-based denoising (Starck et al. 2002), and Fourier
Wiener filtering (Khireddine et al. 2007). Other methods make use of minimization of some
functionals, e.g. a total variation method (Chambolle and Lions 1997) and a method using
higher order statistics (Teuber et al. 2012).

2.2 Deconvolutionmethods

Many books and papers dedicated to this topic have been published. The tutorial arti-
cle (De Brabanter and De Moor 2012) and the book (Meister 2009) gave an introduction
to deconvolution problems in non-parametric statistics (density estimation based on contam-
inated data, errors-in-variables regression, and image reconstruction). One of the approaches
is to estimate the density of Z in the non-parametric form by a kernel estimator and then
to use Fourier transform to recover the distribution of X (Carroll and Hall 1988; Stefan-
ski and Carroll 1990; Fan 1992); another is Bayesian approach (Efron 2014) and wavelet
approach (Pensky et al. 1999). The paper (Butucea et al. 2009) tries to estimate E[ψ(X)],
where ψ is a known integrable function and the distribution of N is known. In Johannes
et al. (2009), the authors deal with the estimation of deconvolution, when only an estimate of
the distribution of N is available. The authors of Comte and Lacour (2011) suppose that the
distribution of N is unknown and present an adaptive estimator. The goal of Kappus et al.
(2014) is analogous, but they do not impose any assumption on the shape of the characteristic
function of noise.

2.3 Convolution invariants

The use of convolution invariants for a noise-robust PDF estimation was firstly proposed in
the paper Höschl IV and Flusser (2016), which was motivated by histogram-based image
retrieval. The authors presented invariants defined for univariate densities only. Their invari-
ants were based onmoments of a histogram of the noisy graylevel image. However, the results
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of Höschl IV and Flusser (2016) cannot be easily extended to multidimensional signals and
multivariate PDF’s. It should be noted that convolution invariants have been thoroughly stud-
ied in a different context and domains (Flusser and Suk 1998; Flusser et al. 2003; Galigekere
and Swamy 2006; Ojansivu and Heikkilä 2007; Zhang et al. 2010; Gopalan et al. 2012;
Makaremi and Ahmadi 2012; Pedone et al. 2013; Flusser et al. 2015) but those results are
not suitable for noisy PDF estimation due to a very specific convolution kernel shapes, that
do not correspond to real-life noise PDFs.

3 Problem formulation

Let X and N be two r -D independent random variables with probability density functions
fX and fN , respectively, where N ∼ N (0,Σ) is a normally distributed zero-mean random
variable with a regular covariance matrix Σ . Then fN has the well-known Gaussian shape

fN (x) = 1√
(2π)r |Σ | exp

{
−1

2
xTΣ−1x

}
, (2)

where x = (x1, . . . , xr )T . Most frequently, but not necessarily, X is the multivariate random
variable which represents the original non-corrupted data and N is an additive Gaussian
noise.

Under the above assumptions, the PDF of the sum of these variables

Z = X + N (3)

exists and is given by
fZ = fX ∗ fN . (4)

Our aim is to design a functional (descriptor) I , which is invariant with respect to the
noise. Since we construct this functional on the space of the PDFs, we require

I ( fX ) = I ( fZ ) = I ( fX ∗ fN ) (5)

for any normally distributed zero-mean random variable N with arbitrary (unknown) covari-
ance matrix Σ .

To comply with Eq. (5) is, however, not the only desirable property of I . At the same time,
I must be discriminable, which means

I ( fX ) �= I ( fY ) (6)

for any X and Y such that they are not linked as Y = X + N for any Gaussian N .
If we design such invariant I , it maps the original data as well as all its corrupted versions

into a single point in an abstract feature space, while any two distinct data are mapped into
distinct points regardless of their potential corruption. Such invariant feature space can be
efficiently used for data description and classification.

4 Construction of the invariant

The main idea of constructing invariants to Gaussian convolution is based on projections of a
PDF onto the set of all Gaussian functions. In this way, we extract the Gaussian component of
the random variable. We will show that the ratio of the characteristic functions of the original
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random variable and of its Gaussian component possesses the desired invariant property. In
the sequel, we introduce the necessary mathematical background.

Let us denote the set of all probability density functions with finite second-order central
moments as D and the set of all zero-mean Gaussian probability density functions

S = { fN |Σ � 0}, (7)

where Σ � 0 denotes the positive-definiteness of covariance matrix Σ . The set S exhibits the
following basic properties.

Lemma 1 S is closed under convolution.

It holds for any two Gaussian PDFs fN1 and fN2 with covariance matrices Σ1 and Σ2

that the result of convolution

fN1 ∗ fN2 = fN

is again a Gaussian PDF with covariance matrix Σ = Σ1 + Σ2.
Let us define projection operator P that projects an arbitrary f ∈ D on the “nearest”

Gaussian PDF in the sense of having the same covariance matrix. In particular, P : D �→ S
is defined as

P f = fN , (8)

where fN has the same covariance matrix as f . The operator P is well defined for all PDFs
with a regular covariance matrix1 and is idempotent, i.e. P2 = P . Note that P is not linear,
so it is not a projector in the common sense known from linear algebra.

For our purposes, the crucial property of operator P is that it commutes with the convo-
lution with functions from S. This property is necessary for the construction of the invariant
descriptors.

Lemma 2 Let f ∈ D and g ∈ S. Then
P( f ∗ g) = P f ∗ g. (9)

Proof First, we investigate the right-hand side, wherewe have a convolution of twoGaussians
with covariancematricesΣ f andΣg , respectively. Thanks to Lemma1, this is also aGaussian
with covariance matrix Σ = Σ f + Σg .

On the left-hand side, P( f ∗ g) is by definition a Gaussian with covariance matrix Σ f ∗g .
It is well known that central second-order moments of any PDF, which is a convolution of
two other PDFs, are sums of the same moments of the factors. The same is true for entire
covariance matrix. Hence, we have Σ f ∗g = Σ f + Σg = Σ , which completes the proof.


�
Nowwe formulate the principal theorem of the paper that introduces the invariant descrip-

tor of a probability density function as a ratio of certain characteristic functions.

Theorem 1 Let f ∈ D and let P be the projection operator defined above. Then the ratio of
characteristic functions Φ of the densities f and P f

I ( f ) = Φ( f )

Φ(P f )
(10)

is an invariant to convolution with a Gaussian probability density function, i.e. I ( f ) =
I ( f ∗ fN ) for any fN ∈ S.
1 It is possible to extend this definition also to singular covariancematrices by admitting degenerated Gaussian
densities in S.
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Proof First, note that I is well defined. Both characteristic functions always exist (they
actually equal to the Fourier transform of the respective PDF) and the denominator is non-
zero everywhere. The rest of the proof follows from the fact that P commutes with the
Gaussian convolution (see Lemma 2). If fN ∈ S, then

I ( f ∗ fN ) = Φ( f ∗ fN )

Φ(P( f ∗ fN ))
= Φ( f ∗ fN )

Φ(P f ∗ fN )
= Φ( f )Φ( fN )

Φ(P f )Φ( fN )
= Φ( f )

Φ(P f )
= I ( f ).


�
The following Theorem claims that the invariant I is a complete description of f modulo

convolution with a Gaussian.

Theorem 2 Let f1 and f2 be two probability density functions and I ( f ) be the invariant
defined in Theorem 1. Then I ( f1) = I ( f2) if and only if there exist fN1 , fN2 ∈ S such that
fN1 ∗ f1 = fN2 ∗ f2.

Proof Let us prove the forward implication first.

I ( f1) = I ( f2) ⇒ Φ( f1)

Φ(P f1)
= Φ( f2)

Φ(P f2)
⇒ Φ( f1)Φ(P f2) = Φ( f2)Φ(P f1)

⇒ Φ( f1 ∗ P f2) = Φ( f2 ∗ P f1) ⇒ f1 ∗ P f2 = f2 ∗ P f1.

So, we have found fN1 = P f2 and fN2 = P f1. The backward implication follows directly
from Theorem 1. 
�

In 1D, Theorem 2 can be formulated in a stronger way. I ( f1) = I ( f2) if and only if there
exists fN ∈ S such that fN ∗ f1 = f2 or fN ∗ f2 = f1. This statement follows from the
divisibility of 1D Gaussian functions but it cannot be extended into the multidimensional
case.

Theorems 1 and 2 show that invariant I entirely and uniquely describes any PDF modulo
convolution with a Gaussian. In particular, for any f ∈ S we have I ( f ) = 1.

5 Invariants frommoments

Although theoretically the invariant I ( f ) fully describes f , several problems can occur when
dealing with finite-precision arithmetic. The division by small numbers leads to the precision
loss. To speed up the computation, it would be better to avoid the explicit construction of
Φ( f ) and Φ(P f ). In this Section, we show that it can be accomplished by constructing
moment-based invariants equivalent to I ( f ).

We can rewrite Eq. (10) as
Φ(P f ) · I ( f ) = Φ( f ). (11)

If the 1D characteristic function is n-times differentiable, then its k-th derivative (k ≤ n) is
the moment mk of the PDF up to a multiplicative constant. The same is true in multidimen-
sional case. If the characteristic function Φ( f ) has a Taylor expansion, then we can write,
using a multi-index notation,

∞∑
k=0

|k|�=0, even

i|k|

k! m
(P f )
k uk ·

∞∑
p=0

i|p|

p! Apup =
∞∑
q=0

i|q|

q! m
( f )
q uq. (12)
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where the Ak’s are Taylor coefficients of I ( f ). By equating the coefficients of the same
power of u we get

k∑
l=0

|l| even

i|l|

l! m
(P f )
l

i|k|−|l|

(k − l)! Ak−l = i|k|

k! m
( f )
k , (13)

which is equivalent to

k∑
l=0

|l| even

(
k
l

)
m(P f )

l Ak−l = m( f )
k . (14)

Since I ( f ) is an invariant, each Ak must be an invariant, too. Re-arranging the previous
equation, we obtain a recursive formula for Ak

Ak = m( f )
k −

k∑
l=0

|l|�=0, even

(
k
l

)
m(P f )

l Ak−l. (15)

For characteristic functions that do not possess a complete Taylor expansion, we may
use the Taylor’s Theorem. If the characteristic function has continuous derivatives up to the
order n + 1, then one can write the characteristic function as the Taylor expansion up to the
n-th order plus the remainder. Consequently, the invariants up to the order n exist and follow
Formula (15).

An intuitive meaning of the invariants Ak is the following one. They could be understood
as moments of a “mother function” fm , which is a function that has no Gaussian component
and that “generates” f in the sense that there exist g ∈ S such that f = g ∗ fm . In general,
fm lies outside D or may not even exist but the invariants Ak can be, however, still applied
correctly.

Another noteworthy point is that generally we have to calculate moments of both f and
P f in order to evaluate Eq. (15). In the next Section, we show how the construction of P f
and calculation of its moments can be avoided in one and two dimensions.

6 Invariants in one and two dimensions

In many practical applications, especially in signal and image processing, the PDFs we want
to characterize are one dimensional or two dimensional functions. In this Section, we show
how Eq. (15) can be further simplified in those cases.

In 1D, the recursive form of invariants (15) obtains the form

Ap = m( f )
p −

p∑
k=2
k even

(
p

k

)
(k − 1)!!mk/2

2 Ap−k . (16)

This simplification follows from the fact that the odd-order moments of a 1D Gaussian
with standard deviation σ vanish and the even-order ones are given as mp = σ p(p − 1)!! .
Furthermore, σ 2 ≡ m(P f )

2 = m( f )
2 which allows us to express all moments of P f in terms of
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those of f . Thanks to this, Eq. (16) can be equivalently rewritten in a non-recursive form as

Ap =
p∑

k=0
k even

(−1)k/2
(
p

k

)
(k − 1)!!mk/2

2 m( f )
p−k . (17)

In 2D, simplification of Eq. (15) is much more difficult. First, we need to express the
moments of 2D Gaussian PDF explicitly. If we assume that the two components of our
random variable N are independent, then we can constraint the covariance matrix of P f to
be diagonal. Then the general moment of P f is simply

m(P f )
pq = (p − 1)!!(q − 1)!!mp

20m
q
02 (18)

and we obtain similar formulas as in 1D case

Amn = m( f )
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

)
(l − 1)!!(k − 1)!!ml/2

20 m
k/2
02 Am−l,n−k (19)

in the recursive form and

Amn =
m∑
l=0

n∑
k=0

l+k even

(−1)
k+l
2

(
m

l

)(
n

k

)
(l − 1)!!(k − 1)!!ml/2

20 m
k/2
02 m( f )

m−l,n−k (20)

in the explicit form.
However, the assumption of independent components and hence of the diagonal covariance

matrix is not realistic in practice. We illustrate this by real data from signal processing. The
signal was captured in two spectral bands, both corrupted by a thermal noise of the sensor.
This noise can be approximatively modelled as an additive Gaussian noise. In Fig. 1, we
can see the 2D histogram of the noise extracted from a real image by means of denoising
algorithm and subtracting from the original. The normalized histogram is a sampled PDF of
the noise. It is clearly apparent that there is a strong correlation between the noise in red and
green channels. So, to make our method applicable in practice, we have to assume a general
covariance matrix of P f .

For a general covariance matrix, the formula for moments of a 2D Gaussian is much more
complicated and is not commonly cited in the literature. It can be either deduced, after some
manipulations, from the papers presenting general approaches tomoment calculation (Isserlis
1918; Bar andDittrich 1971;VonRosen 1988; Blacher 2003; Schott 2003; Triantafyllopoulos
2003; Song and Lee 2015) or obtained directly from the definition by integration as shown
in “Appendix A”.

The moments of 2D Gaussian PDF are given as

m(P f )
mn =

�m
2 �∑

i=0

i∑
j=0

j≥m−n
2

(−1)i− j
(
m

2i

)(
i

j

)
(m + n − 2i − 1)!!(2i − 1)!!mm−2 j

11 m j
20m

n−m
2 + j

02 . (21)
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Fig. 1 2D histogram of the noise
extracted from red and green
channels of a real digital image.
The on-chip postprocessing
introduces a correlation about
0.33 between the noise in
individual channels (Color figure
online)

If we use Formula (21), the general recursive definition of the invariants (15) turns to the
form

Amn =m( f )
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!

· (2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02Am−l,n−k,

(22)

which can again be rewritten into a non-recursive formula

Amn =
m∑
l=0

n∑
k=0

l+k even

(−1)
k+l
2

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!

· (2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02m

( f )
m−l,n−k .

(23)

The proof of equivalence of (22) and (23) can be found in “Appendix B”.

7 Implementation

The formulas (22) and (23) are both efficient in the sense that they contain only the moments
of f , which is the PDF of the observed noisy random variable. As we will see in the next
section, in practice the theoretical PDF is often replaced with a normalized multidimensional
histogram, which is in fact a sampled PDF and is easy to compute directly from the observed
values. Neither the characteristic function Φ( f ) nor the projection P f are necessary to
be constructed. This is the main advantage of the moment approach over the direct use of
I ( f ). Hence, in numerical implementation, we always use the moment-based invariants Amn

instead of I ( f ).
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The value of Amn can be calculated either from (22) or (23). Since they are theoretically
equivalent, the choice depends on the particular task. If all invariants up to a certain order
are to be computed, the recursive formula is recommended. Formula (23) is more efficient if
we want to compute a single invariant only. The complexity of both depends mainly on our
ability to compute the moments of the PDF efficiently. Since the PDF may be of arbitrary
shape, we calculate the moments from definition without any speed-up tricks.

In Eqs. (22) and (23), we may use either general or central moments, depending on the
nature of the random variable we observe. If there is a systematic shift of the values, which
is not important in our application, we use central moments that are not influenced by this
shift. Regardless of what moments we employ, some invariants are trivial. A00 = 1 and
A20 = A02 = A11 = 0 because of the normalization constraints. If we use central moments,
then also A10 = A01 = 0. Trivial invariants are useless for the PDF description and should
be removed from the feature vector to reduce its dimensionality.

When calculating the moments of a large-scale histogram, we face a threat of a precision
loss due to rounding or even a floating-point overflow. This may happen particularly for
higher-order moments and degrade the calculation of the invariants. However, in practice we
usually obtain a sufficient characterization of the PDF from the invariants Amn of reasonably
low orders (in our experiments in the next section, the maximum order was 25) and we do
not encounter any significant precision loss, but one has to be aware of this danger.

8 Experiments

In this section, we demonstrate the invariance property and performance of the proposed
method on real data from image processing.

We can view an image as a realization of a random variable, the dimension of which
is given by the number of spectral/color bands. Its normalized multidimensional histogram
plays the role of a sampled multivariate PDF. The image has been corrupted by an additive
Gaussian noise in all bands, which is assumed to be independent of the image content.

8.1 Invariance to simulated noise

In this experiment, we show the invariance property if the noise exactly follows the Gaussian
model. We used real color photographs as the test data and we corrupted them by an artificial
Gaussian noise generated from thePDF (2).Wedid not cut off the values belowzero and above
255 in order to fulfill the assumption of normal distribution. We used two families of noise,
each represented by 100 realizations. Medium noise (SNR about 32 dB) was generated such
that the eigenvalues of the correlation matrix were set λ1 = 6, λ2 = 3.5 and the correlation
coefficient was random. Heavy noise (SNR about 28) was generated in the same way using
λ1 = 15 and λ2 = 8. To get 2D histograms, we used the RGB channels pairwise.

In Fig. 2, we can see the first test image. Figure 3 shows a segment of the original and
noisy images, respectively, to illustrate the visual appearance of the noise. Figure 4 shows
the 2D histogram of blue and green channels and the histogram of the same channels of the
noisy image.

We calculated more than 300 invariants using Eq. (22) of a histogram of each noisy image
and took the mean value of each invariant (separately for medium noise and heavy noise).
Thenwe calculated relative errors between this mean value and the invariants calculated from
the original “clear” histogram. The relative errors of all invariants are visualized in Fig. 5
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Fig. 2 The original image of a meadow

Fig. 3 The segment of the original image (left) and of the noisy image (right). The noise is visually apparent

Fig. 4 2D histogram of the blue and green channels of the original clear image (left) and of the same image
corrupted by an additive Gaussian noise (right). Note that the “noisy” histogram is actually a smoothed version
of the original histogram
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Fig. 5 Mean relative errors of the invariants (top) and of the moments (bottom) up to the order 25. The 25×25
matrix contains the color-encoded values of the mean errors of individual invariants/moments. Only the upper
left triangle of the matrix is valid. Top left matrix shows invariants calculated from 100 instances of medium
noise (see the text for the details on noise generation), top right matrix shows the same for heavy noise. The
bottom matrices display the same for the moments (Color figure online)

(top). We can see that almost all errors are reasonably low. Relative errors higher than 1%
appear only for heavy noise in case of few invariants of orders between 20 and 25. To show
the advantage of the proposed invariants over the plain moments, we calculated the same for
the moments of the histograms, see Fig. 5 bottom. Comparing the corresponding values, we
can see the errors of the moments are by one order higher since the moments do not posses
the invariance property and are heavily influenced by noise. The errors of the invariants are,
however, not zero as one could expect from the theory. Especially for higher-order invariants,
we face precision loss in calculations. Another source of errors is that the theory assumes
continuous Gaussian convolution kernel while in the discrete domain we work with sampled
and truncated Gaussian.

We repeated this experiment on other test images and with various color band pairs. In
most cases, the results were fully comparable to those described above (see Figs. 6, 7 and 8
for three other examples). However, we found a few examples where the relative errors of the
invariants are significantly higher, even for medium noise. This occurs when the histogram is
extremely sparse. In such a case, the sampling errors are more significant and the invariants
properties derived in a continuous domain are violated (see Fig. 9 for an example).

8.2 Invariance on real pictures

In the second experiment, we tested the invariance on real noisy images captured by a compact
camera. The noise comes mainly due to physical processes on the CCD chip and has several
components. Photon shot noise, thermal noise, readout noise and background noise are the
main ones. An additive noise component can be reasonably modelled by a Gaussian random
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Fig. 6 Picture of a living room a with its 2D histograms b and mean relative errors (c, d). Mean relative errors
of the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 7 Picture of a couple a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 8 Picture of a market a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 9 Picture of a mountain a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of blue–green (first row) and red–blue (second
row) channels were used (Color figure online)
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Fig. 10 A patch of a real noisy picture (left) and the same patch with the noise suppressed by time averaging
over 10 images (right)

variable uncorrelated with the image values while the signal-dependent component (which
is less significant here) follows Poisson distribution and cannot be handled by the proposed
method. The main difference from the synthetic case is that the pixel values are always
between 0 and 255, which cuts off the tails of the noise distribution and makes the PDF
different from a Gaussian.

To obtain test images with visually apparent noise, we deliberately took pictures of the
same scene in a dark environment using low exposure and high ISO. Such setup amplifies
the noise, see Fig. 10 left for an example. Since it was not possible to capture the reference
clear image directly, we estimated it by a time-averaging of twenty noisy images of the same
scene, see Fig. 10 right.

We calculated three 2D histograms (R–G, R–B, and G–B) of each noisy image and the
denoised image and computed the invariants. The ratio between the invariants is plotted in
Fig. 11. Ideally, it should be close to one. We can, however, observe some oscillations around
this theoretical value. This is caused by several factors. The actual noise distribution is not
exactly normal (the normality hypothesis was in all cases rejected by the Pearson’s test)
and the convolution model between the clear and noisy histogram is not valid in boundary
regions of the color space. Still, the invariants are relatively stable (especially comparing to
moments and other common PDF characteristics) and provide a noise-robust description of
the histogram, which can be used for instance in histogram-based image retrieval systems.

8.3 Application in image retrieval

The previous experiments indicated that one of the potential application areas of the proposed
convolution invariants could be a content-based image retrieval (CBIR). CBIRmethods often
relies on histograms, because two images with similar histograms are mostly perceived as
similar by humans (Pass and Zabih 1996; Wang and Healey 1998; Swain and Ballard 1991).
Another attractive property of the histogram is that it does not depend on image translation,
rotation and (if normalized to the image size) on scaling. Simple preprocessing can also
make the histogram insensitive to linear changes of the contrast and brightness of the image.
Current CBIR methods based on comparing histograms are sensitive to noise in the images.
We already demonstrated that an additive noise leads to a histogram smoothing, which results
in a drop of the retrieval performance because different histograms tend to be more and more
similar to each other.
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Fig. 11 The ratio of the invariants up to the order 8 of noisy and clear images for histogram of red and
blue channels (left), red and green channels (right) and green and blue channels (bottom), respectively. Black
crosses denote the median of the invariants (Color figure online)

We envisage the use of the proposed invariants as noise-robust descriptors of multidi-
mensional histograms, similarly as the authors of Höschl IV and Flusser (2016) used the
1D convolution invariants for graylevel histogram recognition. The new invariants could be
helpful in the case of noisy database and/or noisy query images (see Fig. 12 for the proposed
method outline).

9 Conclusion

Weproposed a newmethod for description of random variables, which is robust to an additive
Gaussian noise. The method is based on the fact that the PDF of the noisy variable is a
convolution of the PDF of the original unobservable variable and the PDF of the noise.

We constructed a projection operator onto the set of all Gaussian probability density
functions, removed the Gaussian part of the functions and described the complement by
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Fig. 12 Noise-robust CBIR. From left to right: original image and its histogram, noisy images with smoothed
histograms, representation of the histograms by the proposed convolution invariants, image retrieval based
on histogram similarity measured by the invariants. The actual implementation works with color images and
multidimensional histograms

invariants composed of moments. The method does not require any estimation of the noise
parameters, which makes it attractive for practical usage The 2D case was discussed in more
details because of its importance in applications. The invariance property was demonstrated
on experiments from image processing area.

A Explicit formula for Gaussianmoments in two dimensions

In this Appendix, we present the derivation of the explicit formula for 2D central moments
of the Gaussian probability density function fN (x) with the covariance matrix

Σ =
(

σ1 ρ

ρ σ2

)
.

It holds for the inverse matrix Σ−1 and its determinant

Σ−1 = 1

|Σ |
(

σ2 −ρ

−ρ σ1

)
≡

(
a b
b c

)
, |Σ−1| = ac − b2 = 1

|Σ | .

If m + n is odd, the moments vanish due to the symmetry

m( fN )
mn = 0.
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For m + n even we have

m( fN )
mn = 1

2π
√|Σ |

∫∫

R2

xm yne− 1
2 (ax2+2bxy+cy2) dx dy

= 1

2π
√|Σ |

∫∫

R2

xme
− 1

2 x
2
(
a− b2

c

)
yne

− 1
2

(
y+ b

c x
)2

c
dx dy =

=
∣∣∣∣ y + b

c x = u
x = v

∣∣∣∣ = 1

2π
√|Σ |

∫∫

R2

vme
− 1

2 v2
(
a− b2

c

) (
u − b

c
v

)n

e− 1
2 u

2c du dv.

We can separate the integrals and use the formula for 1D moments of Gaussian function:

= 1

2π
√|Σ |

n∑
k=0

(
n

k

)(
−b

c

)n−k ∫

R

uke− 1
2 u

2c du
∫

R

vm+n−ke
− 1

2 v2
(
a− b2

c

)
dv

= 1√|Σ |
n∑

k=0,
k even

(
n

k

) (−b

c

)n−k
(

1

a − b2
c

)m+n−k+1
2

(m + n − k − 1)!!
(
1

c

) k+1
2

(k − 1)!!

=
n∑

k=0,
k even

(
n

k

) ( −b

|Σ−1|
)n−k (

c

|Σ−1|
)m−n

2 |Σ |k/2(m + n − k − 1)!!(k − 1)!!

=
� n
2 �∑

i=0

(
n

2i

)
ρn−2iσ

m−n
2

1

(
σ1σ2 − ρ2)i (m + n − 2i − 1)!!(2i − 1)!!

=
� n
2 �∑

i=0

i∑
j=0

(−1)i− j
(
n

2i

)(
i

k

)
(m + n − 2i − 1)!!(2i − 1)!!ρn−2 jσ

m−n
2 + j

1 σ
j
2 . (24)

We may reduce the quadratic form in the exponent to a sum of squares in the following way

1

2π
√|Σ |

∫∫

R2

yne
− 1

2 y
2
(
c− b2

a

)
xme

− 1
2

(
x+ b

a y
)2

a
dx dy.

Then using the substitution

x + b
a y = u
y = v

another formula for moments of bivariate Gaussian distribution is obtained

m( fN )
mn =

�m
2 �∑

i=0

i∑
j=0

(−1)i− j
(
m

2i

)(
i

j

)
(m + n − 2i − 1)!!(2i − 1)!!ρm−2 jσ

j
1 σ

n−m
2 + j

2 . (25)

When we compare these two results, it is obvious that the coefficients of negative powers
must be zero. Hence,moments are composed of positive powers of the elements of covariance
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matrix only

m( fN )
mn =

�m
2 �∑

i=0

i∑
j=0

j≥m−n
2

(−1)i− j
(
m

2i

)(
i

j

)
(m + n − 2i − 1)!!ρm−2 jσ

j
1 σ

n−m
2 + j

2 . (26)

B Proof of the equivalence

Let us show that Formulas (22) and (23) for convolution invariants are equivalent. The proof
is done by induction.

Proof A00 = 1 in Formula (22) as well as in Formula (23).
Let us assume (m, n), m + n > 0. From the induction assumption, the explicit formula

is valid for all indices (p, q), where p ≤ m, q ≤ n and (p, q) �= (m, n).

Amn = mmn −
m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!(2i − 1)!!

· mk−2 j
11 m

l−k
2 + j

20 m j
02Am−l,n−k =

= mmn −
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k=0
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(
m

l

)(
n

k

) � k
2 �∑
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2
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(
k

2i

)(
i

j

)

· (l + k − 2i − 1)!!(2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02

·
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(−1)
s+t
2

(
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t

)(
n − k

s

) � s
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α∑
β=0
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2

(−1)α−β

(
s

2α

)(
α

β

)

(2α − 1)!!(s + t − 2α − 1)!!
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11 m
t−s
2 +β

20 mβ
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= mmn −
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n∑
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n!
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� k
2 �∑

i=0
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(−1)i− j
(
k
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)(
i

j

)
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·
� s
2 �∑
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It remains to prove that for p + q > 0, p + q even, it holds
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q∑
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(
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)(
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)
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For p+q
2 being odd, the proof is trivial because every combination is present twice with the

opposite signs. Thus, all terms vanish.

k = a, l = b ⇒ (−1)
a+b
2
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)(
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b

)
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All the terms of (29) are zero if N > 0. If N = 0, there remains the last term only
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Now we prove that this term is zero as well. This term is equivalent to
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It can be shown for l ≥ m using the method of generating functions described in Gould and
Quaintance (2012) that
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We adopt the notation from Gould and Quaintance (2012) for double factorial binomial
coefficients and we recall (p + q)/2 is even. The previous expression can be rewritten
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The inner sum is zero if q > p
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For the caseq = p (q−pmust be non-negative) the inner sumequals 1 and the expression (33)
is

p!
p∑

m=0

(−1)m
(
p

m

)
= p!(1 − 1)p (35)

which completes the proof because it is zero whenever p > 0.
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The formula
p∑

k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

)
m( fN )

l,k m( fN )
q−l,p−k = 0 (36)

holds not only for p+ q even but for all p and q . If p+ q is odd, then m( fN )
q−l,p−k is Gaussian

moment of the odd order and all the terms in summation are zero. 
�
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