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The paper presents a new theory of invariants to Gaussian blur. Unlike earlier methods, the blur ker- 

nel may be arbitrary oriented, scaled and elongated. Such blurring is a semi-group action in the image 

space, where the orbits are classes of blur-equivalent images. We propose a non-linear projection oper- 

ator which extracts blur-insensitive component of the image. The invariants are then formally defined 

as moments of this component but can be computed directly from the blurred image without an ex- 

plicit construction of the projections. Image description by the new invariants does not require any prior 

knowledge of the blur kernel parameters and does not include any deconvolution. The invariance prop- 

erty could be extended also to linear transformation of the image coordinates and combined affine-blur 

invariants can be constructed. Experimental comparison to three other blur-invariant methods is given. 

Potential applications of the new invariants are in blur/position invariant image recognition and in robust 

template matching. 
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. Introduction 

In image processing and analysis, we often have to deal with

mages which are degraded versions of the original scene. One of

he most common degradations is blur , which usually appears as

 smoothing or suppression of high-frequency details of the image.

apturing an ideal scene f by an imaging device with the point-

pread function (PSF) h , the observed image g can be modeled as

 convolution of both 

( x ) = ( f ∗ h )(x ) . (1)

his linear image formation model, even if it is very simple, is

 reasonably accurate approximation of many imaging devices and

cquisition scenarios. In this paper, we concentrate our attention

o the case when the PSF is a Gaussian function with unknown

arameters. 

Gaussian blur appears whenever the image has been acquired

hrough a turbulent medium and the acquisition/exposure time is

y far longer than the period of Brownian motion of the particles

n the medium. Random fluctuations of the refractive index per-

urb the phase of the light and blur the acquired image. Ground-

ased astronomical imaging through the atmosphere, long-distance

erial and satellite surveillance, taking pictures through a haze, un-
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erwater imaging, and fluorescence microscopy are typical exam-

les of such situation (in some cases, the blur may be coupled with

 contrast decrease). Gaussian blur is also introduced into the im-

ges as the sensor blur which is due to a finite size of the sampling

ulse. It may be sometimes applied intentionally as a low-pass fil-

er for noise suppression, as a graphic tool to soften the image,

nd as a preprocessing when building the scale-space image pyra-

id to prevent aliasing artifacts. Few examples of Gaussian-blurred

mages can be seen in Fig. 1 . 

Eq. (1) is an example of an inverse problem , where we want to

stimate f from its degraded version g , while the PSF may be par-

ially known or unknown. This task is ill posed. Without additional

onstraints, infinitely many solutions satisfying Eq. (1) may exist.

olving of (1) has been known in image processing literature as im-

ge restoration and can be traced back to1960’s. Despite of its long

istory, it has not been fully resolved. Although some of the cur-

ent image restoration and deconvolution methods yield good re-

ults, they rely on prior knowledge incorporated into regularization

erms or in other constraints. If such prior knowledge is not avail-

ble, the methods may diverge or converge to a solution which is

ar from the ground truth. In case of a Gaussian blur, the paramet-

ic shape of the PSF can be used as a prior but another specific

roblem appears. Since any Gaussian function is infinitely divisible

it can be expressed as a convolution of arbitrary number of Gaus-

ians) and since the convolution is an associative operation, the

econvolution may eliminate only a part of the actual blur, while

he rest of the blur may be mistakenly considered as a part of the
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Fig. 1. Examples of the Gaussian blur: (a) a sunspot blurred by atmospheric turbulence, (b) underwater photo blurred by light dispersion, (c) a picture taken through haze, 

(d) a digitally low-pass filtered image. 

Fig. 2. Four approaches to analysis of blurred images. Image restoration via deconvolution (first branch), description and recognition by blur invariants (second branch), 

matching by minimum blur-invariant distance (third branch), and brute-force searching an augmented database (last branch). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

m  

o  

a  

w  

d  

a  

b  

n  

t  

n  

c  

t  

t  

G  

t  

d  

i  

t  

l  

a  

a  

t  

i  

o

 

c  

t  

i  

r  

i  

t  

a  

T  
original image. From a purely mathematical point of view, there is

in principle no chance to avoid these formally correct but actually

false solutions if no other prior information is available. 

In 1990 ′ s, some researchers not only realized all the above-

mentioned difficulties connected with the solving of Eq. (1) but

also found out that in many applications a complete restoration

of f is not necessary and can be avoided, provided that an appro-

priate image representation is used. A typical example is a recog-

nition of objects in blurred images, where a blur-robust object de-

scription forms a sufficient input for the classifier. This led to in-

troducing the idea of blur invariants . Roughly speaking, blur invari-

ant I is a functional fulfilling the constraint I( f ) = I( f ∗ h ) for any h

from a certain set S of admissible PSF’s. Many systems of blur in-

variants have been proposed so far. They differ from one another

by the assumptions on the PSF, by the mathematical tools used for

invariant construction, by the domain in which the invariants are

defined, and by the application area which the invariants were de-

signed for (see [1] , Chapter 6, for a survey of blur invariants and

further references). 

Instead of constructing blur invariants of an individual image, in

a few papers the authors proposed rather to use blur-invariant dis-

tance to measure the similarity between a blurred query image and

clear database elements. This may help for such PSF’s for which the

invariants I ( f ) are difficult to design or expensive to calculate. 

The last group of methods replaces the theoretical construc-

tion of blur invariants with a brute-force search of an augmented

database, which contains numerous samples of artificially gener-

ated blurred versions of each clear database image. 

Fig. 2 illustrates the differences between these four approaches.

Relevant work of all these categories are reviewed in Section 2 . 

All current methods dealing with Gaussian blur, regardless of

the category they belong to, suffer from two serious limitations.

The first one is that they were designed for circular Gaussian blur

only and cannot handle more general scenarios. The assumption
f the circular symmetry of the blur is an intrinsic aspect of most

ethods. The generalization from circular to anisotropic arbitrary

riented Gaussian blur is non-trivial and requires completely new

pproaches. The second limitation, which is partially connected

ith the first one, is that almost all current methods cannot han-

le simultaneously the blur and geometric transformations, such

s rotation, scaling and affine transformation. They either cannot

e adapted to handle spatial transformations at all (this is true

amely for the invariant distances) or the possibility of the adap-

ation is coupled with the assumption of circular blur, which must

ot be violated under the spatial transformation (which is not the

ase of an affine transform). Since in practical applications the

emplate rotation/scaling/affine transform may be present quite of-

en, this is a serious drawback. One might think that an anisotropic

aussian blur does not appear often in practice but the opposite is

rue. If the sensor has different resolution in horizontal and vertical

irection then, even if the ground-truth PSF is circular, the image

s blurred differently in x and y . If, moreover, the sensor parame-

ers are not adjusted w.r.t. the database images, we face the prob-

em of recognition of rotated/scaled/skewed and blurred images by

n arbitrary-shaped Gaussian. An anisotropic Gaussian blur appears

lso if the turbulence in the medium, we are taking the picture

hrough, is in certain direction more significant (due to wind for

nstance) than in the others. All this is a clear call for a discovery

f more advanced invariants. 

The main novel contribution of this paper is the design of the

ombined invariants to Gaussian blur and spatial affine transforma-

ion. This problem has not been tackled in the literature so far. This

s accomplished through a derivation of the invariants w.r.t. blur-

ing with a general (anisotropic) Gaussian kernel. The new blur

nvariants are defined by means of non-linear projection opera-

ors and are able to handle much more general scenarios than

ny other existing method, as we demonstrate by experiments.

his brings immediate practical benefits. When applying the earlier
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nvariants, we should first check whether or not the Gaussian blur-

ing PSF is circularly symmetric, which is almost impossible to ver-

fy from the blurred image itself. If this constraint has not been

et, the method fails. The new invariants presented in this paper

an be applied directly and do not require any prior estimation of

he blurring PSF. The proposed combination with a rotation/affine

nvariance is based on the Substitution Theorem , which crowns the

aper. 

The paper is structured as follows. After the literature survey

iven in the next Section, we introduce the mathematical back-

round of Gaussian blur in Section 3 . Blur invariants in Fourier do-

ain are proposed in Section 4 and their counterparts in image

omain, moment-based blur invariants, are presented in Section 5 .

n Section 6 , we formulate the Substitution Theorem, which allows

o construct combined blur-affine invariants. Section 7 presents

everal recognition experiments on real real images and video. 

. Related work 

State-of-the-art methods, dealing with the model (1) and with

aussian blur, can be categorized into four main groups. In the se-

uel, we give a brief overview of each of them. 

.1. Restoration methods 

Several image restoration methods specifically designed for

aussian blur have been published. They try to estimate the size

variance) of the blur and perform a non-blind deconvolution.

onarvar et al. [2] proposed to perform the deconvolution in the

oment domain but that algorithm contains a time-consuming

earch in the parametric space and is sensitive to overestimation

f the Gaussian variance. The APEX method [3] estimated the blur

ariance by fitting the image spectrum in the Fourier domain.

here exist also several local methods that estimate the blur size

y investigating the response on a point source or on an ideal

dge [4,5] . A common weakness of these methods is their sensi-

ivity to noise and the necessity of the prior knowledge where an

deal point or edge is located. Xue and Blu [6] proposed to esti-

ate the blur variance by minimizing a proper functional and then

o apply a non-blind Wiener filtering. As in the previous cases, the

ethod is sensitive to the variance overestimation and relatively

ime consuming. Numerous other methods were developed spe-

ially for atmospheric turbulence restoration [7] and most of the

eneral blind-deconvolution algorithms (see, for instance, [8] for

 survey and further references) can be used for Gaussian blur

estoration as well with average results. 

Restoration methods are not direct competitors of the proposed

nvariant-based technique. They were primarily designed to yield

n estimation of the ideal image for visual interpretation. When

sed for recognition purposes, they serve as a pre-processing of

he query image which is then described by some standard fea-

ures. Such approach is, however, slow and unstable due to the

estoration artifacts. 

.2. Brute force and convolution neural networks 

A brute-force approach to recognition of degraded images re-

ies on high computational power of current super-computers. To

void both inversion of the degradation model as well as the de-

ign of the invariants, the training set is extended with all as-

umable degradations (using a proper sampling of the parametric

pace) of the training images. This process is called data augmenta-

ion and is popular especially in the connection with deep convolu-

ion neural networks (CNNs) where it may improve the recognition

ate, see for instance [9] . Large-scale data augmentation is, how-

ver, time and memory consuming. In our case, the augmentation
ould require to generate blurred and spatially deformed versions

f each training image with Gaussian kernels and transformation

arameters from a certain range, and a consequent massive train-

ng. Since this would enlarge the training set by several orders, it

s clear that this is not a feasible solution for databases containing

any classes. Without data augmentation, even the state-of-the-

rt CNNs that perform excellently on clear images fail frequently

hen recognizing blurred inputs. As shown experimentally in [10] ,

heir performance drops when they are used to recognize degraded

mages while they have been trained on clear images only [10] . 

.3. Blur-invariant distances 

The idea of blur-invariant distance was firstly proposed by

hang et al. [11] and has found several successors. All algorithms

f this kind try to define a distance between two images, which

ulfills the constrain d( f 1 , f 2 ) = d( f 1 ∗ h, f 2 ) for any admissible h . 

Zhang et al. [11,12] assumed circular Gaussian blur, estimated

he blur level of the images to be compared (the authors took

he integral of the image Laplacian as the blur estimator) and

rought the images to the same blur level by blurring of the one

hich was less blurred. The distance d ( f 1 , f 2 ) is then defined ei-

her as a weighted L 2 -distance between the images of the same

lur level [11] or as a geodesic distance on the surface of the man-

fold which contains the images of the same blur level [12] . The

dvantage of the Zhang’s method is its simplicity. It does not con-

ain any deblurring, minimization and iterations. However, the pro-

osed estimation of the blur level is questionable for two images

ith different amount of high-frequency information. 

Gopalan et al. [13] derived another blur-invariant distance mea-

ure without assuming the knowledge of the blur shape but they

mposed a limitation on the blur support size. The authors showed

hat all blurred versions of the given image create a linear sub-

pace, which can be understood as a point on Grassmann manifold.

he blur-invariant distance between two images is then defined as

he Riemannian distance between two points on the manifold. At

he same time, this can be equivalently understood as measuring

he angle between two subspaces. Although the Gopalan’s method

oes not explicitly use the parametric shape of the blur, it per-

orms well on Gaussian blur. However, the method suffers from

wo major drawbacks – the absence of any constraints imposed on

he blur (except the support size) admits physically non-realistic

lurs with negative values and the calculation of the Riemannian

istance is very time-consuming. 

The Gopalan’s method was improved by Vageeswaran et al. [14] ,

ho introduced the positivity and energy-preserving constraints

nto the Gopalan’s method. Under these constraints, blur-

quivalent images form a convex set in the image space. The blur-

nvariant distance between the query image and the template is

efined as the distance between the point, representing the query

mage, and its projection onto the convex set containing all blurred

ersions of the template. Most recently, essentially the same idea

as independently proposed by Lébl et al. [15] who also presented

n efficient algorithm for distance calculation by quadratic pro-

ramming. 

Fig. 3 visualizes, in a simplified way, the differences between

he above mentioned distance measures. All three measures are

ompared to the proposed method in the experiments in Section 7 .

.4. Explicit blur invariants 

Invariants w.r.t. blur were originally proposed in the work by

lusser et al. [16,17] . The first blur invariants were invariant w.r.t.

ny centrosymmetric PSF, without taking into account its paramet-

ic form. In 2015, Flusser et al. proposed a general theory of linear
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Fig. 3. Illustration of three blur invariant distances: Zhang’s (Z) “image to image”, 

Gopalan’s (G) “subspace to subspace” and Lébl’s and Vageeswaran’s (P) “image to 

a convex set”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 2D general Gaussian function with the principal eigenvector oriented in ap- 

prox 30 degrees and with the eigenvalue ratio 6. 
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projection operators [18] , which allowed to design specific blur in-

variants w.r.t. arbitrary N -fold symmetric blur, which led to an in-

crease of their discriminability. The literature on blur invariants is

relatively rich. Below we review only those methods, that were de-

signed specifically for Gaussian blur. If a parametric Gaussian form

of the blur kernel is assumed, the general invariants from [18] and

similar can be still used but do not provide the optimal discrimi-

nation power. 

Liu and Zhang [19] realized that the complex moments of the

image, one index of which is zero, are invariant to Gaussian blur.

Xiao [20] seemingly derived invariants to Gaussian blur but in fact

he only employed the symmetry of the Gaussian rather than its

parametric form. Höschl proposed invariants to Gaussian convo-

lution in 1D and applied them to image histograms [21] . Flusser

et al. [22] introduced a complete set of moment-based Gaussian

blur invariants for the case that the Gaussian PSF is circularly

symmetric. The experimental evaluation in [22] shows that these

invariants, thanks to their specificity, outperform in template-

matching experiments general methods such as cross-correlation,

local phase quantization (LPQ) [23] and centrosymmetric blur in-

variants [17] . They even performed better than the Zhang’s dis-

tance [12] . 

Serious weakness of all above mentioned Gaussian-blur invari-

ant methods is that they assume circularly symmetric Gaussian

blur only. Some of them, such as [12] and [22] , could be gener-

alized to work with elongated Gaussian blur in axial position (i.e.

with a diagonal covariance matrix) but it is not possible to go be-

yond this limitation. This is also the reason why these methods

cannot combine the invariance to blur with the invariance to image

rotation and/or affine transformation, which is a critical limitation

for practical usage. 

Most recently, Kostková et al. [24] published the first paper ever

on invariants w.r.t. Gaussian blur with a non-diagonal covariance

matrix. In this paper, we adopt some preliminary results published

in [24] . However, the idea of the combined invariants was not

mentioned in [24] . 

3. Gaussian blur 

In this section, we establish the necessary mathematical back-

ground which will be later used for designing the invariants. 

By d -dimensional image function (or just image for short) f ( x )

we understand any function from L 1 
(
R 

d 
)
, the integral of which is

nonzero. For the sake of generality, we do not constraint it to be

non-negative. In this paper, we are mostly dealing with 2D images,

but many conclusions are valid or can be readily extended to arbi-

trary d . 

By d -dimensional Gaussian G � we understand the function 

G �(x ) = 

1 

(2 π) d/ 2 
√ | �| exp 

(
−1 

2 

x 

T �−1 x 

)
, (2)
here x ≡ (x 1 , x 2 , . . . , x d ) 
T and � is a d × d regular covariance ma-

rix. Since the covariance matrix is positive definite, we have, for

ts determinant, | �| > 0. We consider centralized Gaussians only

convolution with a non-centralized PSF just introduces an extra

hift of the image). 

The covariance matrix determines the shape of the Gaussian.

f it is a multiple of a unitary matrix, then we get a circularly

ymmetric function. If it is diagonal but not unitary, we obtain

n “elongated” Gaussian with elliptical contours in the axial po-

ition (in that case, d -dimensional Gaussian can be factorized into

 product of d one-dimensional Gaussians). Generally, the Gaus-

ian may be arbitrary oriented and elongated. The eigenvectors of

define the axes of the Gaussian and the eigenvalues determine

ts elongation (see Fig. 4 ). 

The set S of all Gaussian blurring kernels is 

 = { aG �| a > 0 , � positive definite } . (3)

ote that S is not a linear vector space because the sum of two dif-

erent Gaussians is not a Gaussian. For the sake of generality, we

onsider un-normalized kernels to be able to model also a change

f the image contrast. The basic properties of the set S are listed

elow. The closure properties play the most important role in de-

iving invariants. 

roposition 1 (Integrability) . S ⊂ L 1 since 
∫ 

aG � = a . 

roposition 2 (Convolution closure) . S is closed under convolution

s 

 1 G �1 
∗ a 2 G �2 

= a 1 a 2 G �1 +�2 
. 

roposition 3 (Multiplication closure) . S is closed under point-wise

ultiplication as 

 1 G �1 
· a 2 G �2 

= aG � , 

here 

 = 

a 1 a 2 

(2 π) d/ 2 
√ | �1 + �2 | 

nd � = 

(
�−1 

1 
+ �−1 

2 

)−1 
. 

roposition 4 (Fourier transform closure) . Fourier transform of

 function from S always exists, lies in S and is given by 

(aG �) = 

a 

(2 π) d/ 2 
√ | �| G �1 

, 

here 

1 = 

1 

4 π2 
�−1 . 

roposition 5 (Coordinate transform closure) . Let A be a regular

 × d matrix describing a linear transform of the coordinates. Then

 turns to itself under the transform x ′ = A x . This follows from the

act that 

G �(A x ) = 

a 

‖ A ‖ 

G A −1 �A −T (x ) , 
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1 If m 00 = 0 or if C is not positive definite or if some second-order moment(s) 

are infinite, then Pf is undefined. Although such functions exist in L 1 , they do not 

describe real-life images and we do not consider them in this paper. 
here ‖ A ‖ means the absolute value of the determinant of A and

 

−T ≡ ( A 

T ) −1 = ( A 

−1 ) T . 

In the sequel, we use a slightly extended definition of S with

irac δ-function being incorporated 

 = { aG �| a > 0 , � positive definite } ∪ { aδ} . (4)

roposition 2 , along with the associativity of convolution, says that

 S , ∗) is a semi-group (it is not a group since convolution is not

nvertible within S ). Hence, convolution with a function from S is

 semi-group action on L 1 . 

The image space L 1 is factorized into blur-equivalent classes by

he following relation. We say that the images f and g are Gaussian

lur equivalent ( f ~ g ), if and only if there exist h 1 , h 2 ∈ S such that

 1 ∗ f = h 2 ∗ g. Thanks to Proposition 2 and to the commutativity

f convolution, this relation is transitive, while symmetry and re-

exivity are obvious. At the same time, the equivalence classes of

 1 / ~ are related to the orbits of the above mentioned semi-group

ction. An orbit, originating from image f , is the set of all images

hat can be obtained from f as the result of the semi-group action.

e will later show that the classes of L 1 / ~ are exactly the same as

he orbits generated by certain special images (this assertion will

e formulated as Theorem 2 in Section 4 ). 

The main idea of this paper is the following. We are going to

nd these “origins” of the orbits (we will call them primordial im-

ges ) and describe them by means of properly chosen descriptors

invariants of the orbits. For instance, the set S itself forms an

rbit with δ being its primordial image. The invariants stay con-

tant within each equivalence class, while should distinguish any

wo images belonging to different classes. The invariance in ques-

ion is in fact the invariance w.r.t. arbitrary Gaussian blur. The main

rick, which makes this theory practically applicable, is that the in-

ariants can be calculated from the given blurred image without

xplicitly constructing the primordial image. 

In Section 4 , we define a projection operator that “projects” each

mage onto S . The primordial images and, consequently, Gaussian

lur invariants are constructed by means of this projection opera-

or. 

. Projection operators and blur invariants 

In linear algebra, projection operators onto linear subspaces are

 well-established tool to decompose the given space into a direct

um of two subspaces, which usually have distinct properties. The

dea of projecting the image space onto proper subspaces and then

o define the image invariants in one of them was originally pro-

osed by Flusser et al. in [18] , where the invariants w.r.t. convolu-

ion with a symmetric non-parametric kernel were proposed. The

uthors constructed the projection onto the kernel subspace and

efined the invariants in the complementary subspace. 

In this paper, we face an analogous situation – we may try to

onstruct the image projection onto the set S , eliminate somehow

his Gaussian component of the image and define the invariants

n the complement. However, there is a significant difference from

he mathematical point of view. While in [18] , linear projections

nto linear, mutually orthogonal, subspaces were sufficient to re-

olve the problem, here we have to find a projection onto the set S

f Gaussian kernels, which is not a linear subspace. Clearly, the

espective projection operator cannot be linear and must be con-

tructed in a different way than the operators proposed in [18] . 

Let us define the projection operator P such that it projects an

mage f onto the nearest un-normalized Gaussian, where the term

nearest” means the Gaussian having the same integral and covari- 

nce matrix as the image f itself. So, for d = 2 we define 

 f = m 00 G C , (5)
here 

 = 

1 

m 00 

(
m 20 m 11 

m 11 m 02 

)
, 

nd m pq is the centralized image moment 

 pq = 

∫ ∫ 
(x − c 1 ) 

p (y − c 2 ) 
q f (x, y ) d x d y (6)

ith ( c 1 , c 2 ) being the image centroid. 

Clearly, P is well defined for all “common” images 1 and actually

f Pf exists, then always Pf ∈ S . Although P is not linear, it can still

e called projection operator, because it is idempotent, i.e. P 2 = P .

n particular, P (aG �) = aG � . Pf can be understood as a Gaussian

omponent of f . Note, that the Gaussian component depends both

n the image content and on the Gaussian blur (if any). Both fac-

ors contribute jointly to Pf . So, Pf is not an estimate of the actual

lur kernel. 

The key property of P , which will be later used for construc-

ion of the invariants, is that it commutes with a convolution with

 Gaussian kernel, as shown in the following lemma. 

emma 1. Let P be the above-defined projector, f ∈ L 1 be an image

unction such that Pf exists and let G � ∈ S. Then it holds 

 ( f ∗ G �) = P f ∗ G � . (7)

roof. To prove this lemma, we first recall how the image central

oments are transformed under convolution. For arbitrary f and h

e have 

 

( f∗h ) 
00 

= m 

( f ) 
00 

m 

(h ) 
00 

, 

 

( f∗h ) 
20 

= m 

( f ) 
20 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
20 

, 

 

( f∗h ) 
11 

= m 

( f ) 
11 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
11 

, 

 

( f∗h ) 
02 

= m 

( f ) 
02 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
02 

. 

onsidering the projection of f ∗ G �, it must have a form P ( f ∗
 �) = aG K , where a = m 

( f∗G �) 
00 

= m 

( f ) 
00 

and 

 = 

1 

m 00 

(
m 20 + m 00 �20 m 11 + m 00 �11 

m 11 + m 00 �11 m 02 + m 00 �02 

)
. 

ll moments m pq in the above equation are related to f . Hence,

 = C + �. On the other hand, we have 

 f ∗ G � = m 00 G C ∗ G � = m 00 G C+� . 

he last equality follows from Proposition 2 . �

Now we can formulate the Fundamental theorem on blur in-

ariants. 

heorem 1. Let P be the above-defined projector and let f be an im-

ge function such that Pf exists. Then 

 ( f ) = 

F( f ) 

F(P f ) 
(8) 

s an invariant to Gaussian blur, i.e. I( f ) = I( f ∗ h ) for any h ∈ S. 

roof. The proof follows immediately from Lemma 1 . 

 ( f ∗ h ) = 

F( f ∗ h ) 

F(P ( f ∗ h )) 
= 

F ( f ) F (h ) 

F(P f ∗ h ) 
= 

F ( f ) F (h ) 

F (P f ) F (h ) 
= 

F( f ) 

F(P f ) 
= I( f ) 

�

Note that if Pf exists, then I ( f ) is well defined on all frequencies

ecause the denominator F(P f ) is a Gaussian and hence non-zero

verywhere. 
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Fig. 5. Visualization of the main idea: The image is projected onto a set of Gaus- 

sians and this projection (i.e. the Gaussian part of the image) is used to “decon- 

volve” the image in Fourier domain. Blur-invariant primordial image is obtained as 

the result of this operation. Moments of the primordial image are blur invariants 

introduced in Eq. (15) . 
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2 We assume that all moments are finite, which is guaranteed for all images with 

bounded support. 
The following Theorem says that the invariant I ( f ) is complete ,

which means the equality I ( f 1 ) = I ( f 2 ) occurs if and only if f 1 and

f 2 belong to the same equivalence class. 

Theorem 2. Let f 1 and f 2 be two image functions and I ( f ) be the in-

variant defined in Theorem 1 . Then I ( f 1 ) = I ( f 2 ) if and only if there

exist h 1 , h 2 ∈ S such that h 1 ∗ f 1 = h 2 ∗ f 2 . 

The proof is straightforward by setting h 1 = P f 2 and h 2 = P f 1 .

The completeness guarantees that I ( f ) discriminates between the

images from different equivalence classes, while stays constant in-

side each class due to the invariance property. This assertion not

only shows the limitations (the images belonging to the same

equivalence class can never be discriminated) but also explains

why these invariants outperform general blur invariants if Gaus-

sian blur is present (equivalence classes w.r.t. a general blur are

larger than those w.r.t. Gaussian blur). 

Invariant I ( f ) is a ratio of two Fourier transforms which may be

interpreted as a deconvolution in frequency domain. Having an im-

age f , we seemingly “deconvolve” it by the kernel Pf . This deconvo-

lution always sends the Gaussian component of f to δ-function. We

call the result of this seeming deconvolution the primordial image 

f r = F 

−1 (I( f )) . 

Hence, I ( f ) can be viewed as Fourier transform of f r . Note that f r
is actually the “maximally possible” deconvolved image f , which

creates the origin of the respective orbit (see Fig. 5 for schematic

illustration). Primordial image can be also understood as a kind

of normalization (or canonical form) of f w.r.t. arbitrary Gaussian

blurring. 

It should be noted, that the primordial image is a useful theo-

retical concept of blur invariants but it is not actually constructed

in the implementation of the method. It may lie outside L 1 or may

even not exist but it does not matter – the existence of its Fourier

transform, the invariants are obtained from, is guaranteed. 

5. Invariants in the image domain 

Although I ( f ) itself could serve as an image descriptor, its di-

rect usage brings certain difficulties and disadvantages. On high

frequencies, we divide by small numbers which may lead to pre-

cision loss. This effect is even more severe if f is noisy. This prob-

lem could be overcome by suppressing high frequencies by a low-

pass filter, but such a procedure would introduce a user-defined

parameter (the cut-off frequency) which should be set up with re-

spect to the particular noise level. Another disadvantage is that we
ould have to actually construct F(P f ) in order to calculate I ( f ).

hat is why we prefer to work directly in the image domain, where

oment-based invariants equivalent to I ( f ) can be constructed and

valuated without an explicit calculation of Pf . 

First of all, we recall that geometric moments of an image are

aylor coefficients (up to a constant factor) of its Fourier trans-

orm 

2 

( f )(u ) = 

∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p u 

p (9)

for simplicity, and also to show the independence of the dimen-

ion d , we use the multi-index notation). 

Theorem 1 can be rewritten as 

(P f ) (u ) · I( f )(u ) = F( f ) (u ) . 

ll these three Fourier transforms can be expanded similarly

o (9) into absolutely convergent Taylor series 

 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

(P f ) 
p u 

p ·
∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

M p u 

p = 

∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p u 

p , 

(10)

here by M p we denote the Taylor coefficient of I ( f ) (we will show

ater that M p is in fact the moment of the primordial image). 

Comparing the coefficients of the same powers of u we obtain,

or any p , 

 

k ≤p 

(−2 π i ) | k | 
k ! 

(−2 π i ) | p −k | 
(p − k )! 

m 

(P f ) 
k 

M p −k = 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p , (11)

hich can be read as 

 

k ≤p 

(
p 

k 

)
m 

(P f ) 
k 

M p −k = m 

( f ) 
p . (12)

n 2D, Eq. (12) reads as 

p ∑ 

 =0 

q ∑ 

n =0 

(
p 

m 

)(
q 

n 

)
m 

(P f ) 
mn M p−m,q −n = m 

( f ) 
pq . (13)

Since P f = m 

( f ) 
00 

G C , where C is given by the second-order mo-

ents of f , we can express its moments m 

(P f ) 
mn without actually

onstructing the projection Pf . Clearly, m 

(P f ) 
mn = 0 for any odd m + n

ue to the centrosymmetry of G C . For any even m + n, m 

(P f ) 
mn can

e expressed in terms of the moments of f as 

 

(P f ) 
mn = m 

( f ) 
00 

m 

(G C ) 
mn 

= m 

( f ) 
00 

� m 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ m −n 
2 

(−1) i − j 

(
m 

2 i 

)(
i 

j 

)
(m + n − 2 i − 1)!! ·

·(2 i − 1)!! 

(
m 11 

m 00 

)m −2 j (m 20 

m 00 

) j (m 02 

m 00 

) n −m 
2 + j 

. (14)

he above expression was obtained by substituting our particular C

nto the formula for moments of a 2D Gaussian. (The moment for-

ula for a diagonal covariance matrix is well known. For a general

ovariance matrix, it is not commonly cited in the literature. It can

e either deduced from the papers presenting general approaches

o moment calculation [25,26] or obtained directly from the defi-

ition by integration.) 
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3 The term weight of an invariant has been commonly used in the theory of algebraic 

invariants, see for instance [1] , [29] for the definition. For any given invariant, its 

weight is known and follows from the way how the invariant has been constructed. 
Now we can isolate M pq on the left-hand side and obtain the

ecurrence 

 pq = 

m 

( f ) 
pq 

m 00 

−
p ∑ 

l=0 

q ∑ 

k =0 
l+ k 
 =0 , 

l+ k even 

(
p 

l 

)(
q 

k 

) � k 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ k −l 
2 

(−1) i − j 

(
k 

2 i 

)(
i 

j 

)
(l + k − 2 i − 1)!! ·

· (2 i − 1)!! 

(
m 11 

m 00 

)k −2 j ( m 20 

m 00 

) l−k 
2 + j ( m 02 

m 00 

) j 

M p−l,q −k . (15) 

his recurrence formula defines Gaussian blur invariants in the im-

ge domain. Since I ( f ) has been proven to be invariant to Gaussian

lur, all coefficients M pq must also be blur invariants. The M pq ’s

an be understood as the moments of the primordial image f r . The

ower of Eq. (15) lies in the fact that we can calculate them di-

ectly from the moments of f , without constructing the primordial

mage explicitly either in frequency or in the spatial domain and

lso without any prior knowledge of the blurring kernel orienta-

ion. Thanks to the uniqueness of Fourier transform, the set of all

 pq ’s carries the same information about the function f as I ( f ) it-

elf, so the cumulative discrimination power of all M pq ’s equals to

hat of I ( f ). 

Some of the invariants (15) are always trivial. Regardless of f ,

e have M 00 = 1 , M 10 = M 01 = 0 because we work in centralized

oordinates, and M 20 = M 11 = M 02 = 0 since these three moments

ere already used for the definition of Pf . Note that the joint null-

pace of all M pq ’s except M 00 equals the set S , which is implied

y the fact that P (aG �) = aG � and the corresponding primordial

mage f (S) 
r = δ. 

Eq. (15) can be turned to an equivalent non-recursive form 

 pq = 

1 

m 00 

p ∑ 

l=0 

q ∑ 

k =0 
l+ k even 

(−1) 
k + l 

2 

(
p 

l 

)(
q 

k 

) � k 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ k −l 
2 

(−1) i − j 

(
k 

2 i 

)(
i 

j 

)
(l+ k −2 i −1)!! ·

· (2 i − 1)!! 

(
m 11 

m 00 

)k −2 j ( m 20 

m 00 

) l−k 
2 + j ( m 02 

m 00 

) j 

m 

( f ) 
p−l,q −k 

. (16) 

hile the recursive formula is efficient if we want to calculate all

nvariants up to a certain order, the non-recursive one is useful for

alculating a single invariant of higher order. 

. Combined invariants 

One of the main benefits of the assumption that the covariance

atrix is not constrained to be diagonal is the existence of com-

ined invariants to blur and affine transformation of the coordi-

ates. If the blurring Gaussian kernel was assumed in the axial po-

ition and hence C was constrained to be diagonal, we could never

ombine blur with an affine transformation or rotation, because it

ould violate the assumption. This is why the combined invariants

ave not been constructed yet (except a very special case of a uni-

ary covariance matrix and rotation, see [22] ). 

The key idea of designing the combined invariants follows from

he observation how the primordial image is transformed if the

riginal image has undergone an affine transformation f ′ (x ) =
f (A x ) . By means of Propositions 3 –5 , it is easy to show that 

 

(
f ′ 
)
(u ) = I( f ) 

(
A 

−T u 

)
. 

pplying inverse Fourier transform, we get 

f ′ r (x ) = ‖ A ‖ f r (A x ) , 

here f ′ r is the primordial image of f ′ . This relation tells us that

he primordial image is transformed by the same coordinate trans-

ormation as the original image. 

Since the invariants M pq in Eq. (15) are in a fact moments of f r ,

e can simply substitute them into any affine or rotation moment

nvariant (we only should avoid those containing second-order mo-

ents because they would lead to trivial invariants) and we end up
ith the combined invariant. The theory of both affine and rotation

oment invariants has been well elaborated and several complete

nd independent invariant sets are available, see for instance [1,27–

1] . Since blur invariants M pq also form a complete and indepen-

ent set (see Theorem 2 ), we get in this way a complete and inde-

endent set of combined invariants. This strong result is summa-

ized in the following Theorem. 

heorem 3 (Substitution Theorem) . Let f be an image function and

et M pq be invariants w.r.t. Gaussian blur defined by Eq. (15) . Let

f ′ (x ) = f (A x ) , A being a regular 2 × 2 matrix. Let J(m pq | p, q =
 , . . . , r) be an absolute invariant of image moments w.r.t. A,

.e. J(m 

′ 
pq | p, q = 0 , . . . , r) = J(m pq | p, q = 0 , . . . , r) . Then J(M pq | p, q =

 , . . . , r) is a relative invariant w.r.t. both A and Gaussian blur as 

 A ‖ 

w J(M 

′ 
pq | p, q = 0 , . . . , r) = J(M pq | p, q = 0 , . . . , r) , 

here w is the weight 3 of invariant J(m pq | p, q = 0 , . . . , r) . 

roof. Since f ′ r (x ) = ‖ A ‖ f r (A x ) , the moments M 

′ 
pq of f ′ r (x ) are re-

ated to the moments ˜ M pq of f r ( A x ) as M 

′ 
pq = ‖ A ‖ ˜ M pq for any p

nd q . In the theory of affine moment invariants [1,29] , it is well

nown that any absolute invariant J(m pq | p, q = 0 , . . . , r) must have

 form of a finite sum, where all terms are products of K mo-

ents ( K is called the degree of the invariant) divided by (K + w ) -

h power of m 00 . The statement of Theorem 3 follows immediately

rom this fact. Note that the invariance of J(M pq | p, q = 0 , . . . , r)

.r.t. Gaussian blur is obvious and does not depend on the order

n which the blurring and the coordinate transformation A have

een applied. They are commutative in the sense that ( f ∗ h ) ′ =
 / ‖ A ‖ ( f ′ ∗ h ′ ) and still h ′ ∈ S thanks to Proposition 5 . �

Since A is usually unknown in practice, absolute invariants are

ore convenient image descriptors than the relative ones. An abso-

ute combined invariant can be obtained as a ratio of two relative

nvariants of the same weight or, more generally, as a ratio of any

wo products of various relative invariants such that the factor ‖ A ‖
s cancelled. 

. Experiments 

Numerical experiments presented in this section aim to illus-

rate the properties of the proposed invariants, namely to evaluate

he invariance w.r.t. arbitrary Gaussian blur, the recognition power

nd the robustness to additive noise. First, we prove the invariance

n static images and also on a real video, where the Gaussian blur

odel is not exactly valid. As sample applications, we show how

he blur invariants can be used for object tracking in a video and

or recognition of blurred faces. A comparison to other state-of-

he-art methods is given. Finally, we show the performance of the

ombined affine-blur invariants in digit recognition. 

.1. Invariance verification on public datasets 

This basic experiment is a verification of the invariance of func-

ionals M pq from Eq. (15) . We used two public-domain image

atabases, which contain series of Gaussian-blurred images (see

ig. 6 for two examples). We used 30 series (original and five

lurred instances of various extent of the blur) from the CID:IQ

ataset [32] and 23 series from the CSIQ dataset [33] . For each of

hem, we calculated the invariants up to the 9th order. The relative

rror of all invariants on each image series was always between

0 −4 and 10 −3 , which illustrates a perfect invariance. The fluctu- 

tion within a single series is so small that in no way diminishes
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Fig. 6. Two examples of the Gaussian-blurred image series from the CSIQ database. 

Fig. 7. The values of a single invariant calculated over 23 series (from left to right) consisting of six blurred instances of the originals (from front to back). The value is 

always almost constant within each individual series while significantly different for distinct images. 

Fig. 8. Four sample frames of a video blurred due to the hot air turbulence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The values of the invariants up to the 8th order calculated over 99 frames 

of a video corrupted by a real turbulence blur. The value of each invariant is always 

almost constant on all frames. 
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the ability to discriminate two different originals, as is illustrated

in Fig. 7 . 

7.2. Verification on a real video 

In this experiment, we used publicly accessible video 4 

from [7] showing a static scene (front side of a building) captured

intentionally through a turbulent hot air. Due to the turbulence,

the video is degraded by a time-varying blur, which is, according

to [7] , expected to be approximately Gaussian. Four sample frames

of the sequence are shown in Fig. 8 . 

Similarly to the previous experiment, we calculated the blur in-

variants M pq from Eq. (15) up to the 8th order for each frame. The

graph in Fig. 9 summarizes the results. It is worth noting that the

invariants exhibit a perfect stability even if the real blur is proba-

bly not exactly Gaussian. 

7.3. Tracking in a video 

The proposed blur invariants can be used also for tracking ob-

jects in a blurred video. We took an indoor video that starts with

a clear frame. Then the video becomes more and more blurred. The

blur is Gaussian with a time-varying covariance matrix. In the first

frame, we chose the template of interest that we track by invariant

template matching in the rest of the video. 
4 http://alumni.soe.ucsc.edu/ ∼xzhu/doc/turbulence.html . 5
To show the strength of the method, each frame was processed

ndependently (in reality, the motion information could be used to

peed up and stabilize the tracking but here we wanted to demon-

trate solely the performance of the invariants). We can evaluate

isually that the tracking is reasonably stable and accurate and ac-

ually follows the real motion of the template. Sample frames with

he detected template are shown in Fig. 10 . 5 
5 The full video is available at http://zoi.utia.cas.cz/files/Tracking _ changing _ blur _ 

th _ order.gif . 

http://alumni.soe.ucsc.edu/~xzhu/doc/turbulence.html
http://zoi.utia.cas.cz/files/Tracking_changing_blur_5th_order.gif
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Fig. 10. Tracking in a blurred video. The initial clear image with the template (top 

left), sample frames of the blurred video with the template detected. 

Table 1 

The recognition rate [%] of the tested methods for Gaussian blur of 

various size. 

Blur size (Gaussian) Invariants Zhang Lébl Gopalan 

7 × 7 100 100 100 74 

11 × 11 100 86 100 25 

15 × 15 100 48 100 5 

7

 

i  

W  

t  

e  

t  

t  

s

 

F  

d  

n  

a

 

s  

a  

t  

b  

b  

b  

p  

s  

p  

a  

t  

c  

m

 

t  

p  

m  

T  

i  

G  

b  

r

 

r  

Table 2 

The recognition rate [%] of the tested methods for a motion blur 

of various size. 

Blur size (motion) Invariants Zhang Lébl Gopalan 

7 × 7 87 100 100 99 

11 × 11 71 72 100 76 

15 × 15 45 17 100 40 

Table 3 

Noise robustness test: The recognition rate [%] achieved for various SNR. 

SNR [dB] Invariants Zhang Lébl Gopalan OG Invariants 

20 100 100 100 76 100 

10 100 55 100 51 100 

5 99 44 99 37 99 

2 97 37 87 27 97 

0 92 32 79 26 95 
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6 It should be noted that the use of OG moments in blur invariants is solely be- 

cause of their favorable numerical properties. As proved by Kautsky [42] , blur in- 

variants in any two distinct polynomial bases are theoretically equivalent. 
.4. Recognition of blurred faces 

In this experiment we show the performance of the proposed

nvariants in face recognition applied on blurred photographs.

e compare the proposed method with the blur-invariant dis-

ances proposed by Gopalan et al. [13] , Zhang et al. [11] , and Lébl

t al. [15] (see Section 2.3 for a brief description of these competi-

ors). We calculated also the standard � 2 -distance, which does not

ake the blur into account at all, but it expectedly failed completely

o we did not include it in the tables. 

We used 38 distinct human faces from the Extended Yale

ace Database B [34] (the same database was used in [13] ). This

atabase contains clear faces only, so we created the blurred and

oisy query images artificially (see Fig. 11 for some examples). In

ll tests, moment invariants up to the 9th order were used. 

First, we tested the recognition rate as a function of the blur

ize. The blurred, noise-free query image was always classified

gainst the clear 38-image database. While moment invariants and

he Lébl’s method are 100% successful even for relatively large

lurs, the Gopalan’s method surprisingly does not reach compara-

le results. Its success rate drops very rapidly with the increasing

lur size, even if we provided the correct blur size as the input

arameter of the algorithm. The Zhang’s method performs well for

mall blurs (see Table 1 ). It should be pointed out, that the re-

orted 100% success rate of the invariants was achieved thanks to

 controlled noise-free environment, where the Gaussian convolu-

ion model held perfectly. In the next two experiments, these ideal

onditions will be relaxed and we will monitor the impact on the

ethod performance. 

If we apply a significantly non-Gaussian blur (we used a direc-

ional motion blur in this experiment), we observe a drop of the

erformance of the invariants, while the other methods perform

ore or less the same as in the case of Gaussian blur (see Table 2 ).

his is not surprising, because the derivation of the invariants was

nherently based on the assumption of a Gaussian blur while the

opalan’s and Lébl’s methods assume only the knowledge of the

lur size, which was fulfilled in this experiment. The invariants are

elatively sensitive to the violation of the Gaussian blur shape. 

Then, we tested the noise robustness of all methods. We cor-

upted the query images with an additive white normally dis-
ributed noise of SNR from 20 dB to 0 dB. The success rate of the

nvariants as well as of the Lébl’s method remains very high even

or heavy noise, while the other two methods appear to be vulner-

ble. Table 3 summarizes the results. High robustness of the invari-

nts can be explained by the fact that the moments, being integral

eatures, average-out the noise. 

Many papers on moments have shown experimentally that or-

hogonal (OG) moments are more robust to numerical errors and

lso to noise. This is due to the fact that OG moments can be

alculated indirectly using recurrent formulas, which avoids work-

ng with very high and very low numbers. For this reason, vari-

us OG moments have been implemented in moment invariants,

here they replace traditional geometric moments (see [1] , Chap-

er 7, for a survey of OG moments). In the context of blur invari-

nts (but not to Gaussian blur), this approach was applied for in-

tance in [35–41] . 6 We tested the use of Legendre moments in the

roposed Gaussian blur invariants. We expressed geometric mo-

ents as functions of Legendre moments, substituted these func-

ions into (15) and obtained in this way blur invariants in terms of

egendre moments. We applied these invariants on the same noisy

acial images as above. The results are shown in the rightmost col-

mn of Table 3 . The recognition rate is the same as for the invari-

nts from geometric moments except SNR = 0 dB, where a slightly

etter robustness of OG moments appears. 

Finally, we compared the speed of all methods. We evaluated it

s a function of the image size. The results are shown in Fig. 12 .

he time refers to a single query and does not comprise any pre-

alculations on the database images. 

The proposed invariants work with a highly-compressed image

epresentation (only the moments up to the 9th order were used).

ll other methods use a complete pixel-wise representation, how-

ver with various time-efficiency. The Lébl’s method is the most

fficient for small images. As the image size increases, moment in-

ariants become more time efficient. They outperform the Lébl’s

ethod for images larger than approximately 600 × 600 pixels.

t should be noted, that the complexity of calculation of the in-

ariants is determined solely by the complexity of moment com-

utation. For a graylevel N × N image, this is typically O ( N 

2 ) and

oes not depend on the actual blur size (unlike the Zhang’s and

opalan’s methods). Although some faster algorithms exist for mo-

ent computation [43] , we did not use them here because they

re efficient for special types of images only. 
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Fig. 11. Sample face images used in the experiments: clear database faces (images 1–3), blurred (images 4–6) and noisy (images 7–9) query images. 

Fig. 12. Time [s] needed to compare a query image to a single database image as 

a function of the image size. The blur size was fixed at 15 × 15 pixels. The time 

axis is shown in a logarithmic scale. 

Fig. 13. 100 randomly blurred and affinely deformed pictures of digit 4. 
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7.5. Recognition of blurred and affinely deformed objects 

In the last experiment, we demonstrate the power of the com-

bined affine-blur invariants proposed in Section 6 . For this test,

we used the popular MNIST dataset of handwritten digits [44] .

For each digit 0 , 1 , . . . , 9 we randomly generated 100 blurred and

affinely deformed samples (see Fig. 13 showing the test set of

the digit 4) and classified them against the original dataset. The

affine-blur invariants used in this test were constructed according

to the Substitution Theorem ( Theorem 3 ), where we used the well-

established Affine moment invariants (AMIs) [29] as J ( m pq ). 

To illustrate the advantage of the combined invariants, we com-

pared them both to “pure” AMIs [29] and to “pure” Gaussian blur

invariants (15) . The combined invariants yielded the overall recog-

nition rate 98.5 %, while the AMIs only 20 % and the blur invariants

performed even worse yielding 15.6 % success rate. This clearly
hows that the Substitution Theorem brings invariants of a new

uality. 

The comparison to the Gopalan’s, Zhang’s, and Lébl’s invariant

istances as in the face recognition experiment does not make

ense here because all those methods require the images to be

recisely geometrically aligned and collapse completely in case of

patial misalignment. 

. Conclusion 

Blur invariants w.r.t. blur kernels which are defined by certain

eneric properties rather than by their parametric form were al-

eady discovered for centrosymmetric [17] , radial [45] , N -fold ro-

ational symmetric [18,46] , and N -fold dihedral [47] blurs, respec-

ively. In this paper, we focused on parametric kernels since they

llow to derive more specific invariants which yields a better dis-

rimination power. We proposed new invariants w.r.t. Gaussian

lur. Unlike all earlier works on Gaussian blur, our method does

ot require the Gaussian blurring kernel to be circularly symmetric

nd works with arbitrary Gaussians. We found a non-linear projec-

ion operator by means of which the invariants are defined in the

ourier domain. Equivalently, the invariants can be calculated di-

ectly in the image domain, without an explicit construction of the

rojections. We showed that the new invariants can be made in-

ariant also to a linear transformation of the coordinates thanks

o the Substitution Theorem, which was not possible in case of

arlier Gaussian-blur invariants. Experimental evaluation and com-

arison to alternative approaches (namely to various blur-invariant

istances) showed a superior performance in most scenarios in

erms of the recognition rate and speed. 

In a future work, it would be interesting to couple the proposed

lur-invariant representation with the CNNs in order to make the

NNs blur-invariant without any data augmentation. CNNs proba-

ly cannot be fed directly with the moment invariant (15) . Instead,

e envisage to use the Fourier-domain invariants (8) for this pur-

ose. However, since the distinctive patterns in spectral domain

re totally different from those in the image domain, one proba-

ly cannot use any publicly available pre-trained network and will

ave to train (and maybe also to design) the network by himself. 
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