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ABSTRACT

Priors play an important role of regularizers in image deblur-
ring algorithms. Image priors are frequently studied and many
forms were proposed in the literature. Blur priors are consid-
ered less important and the most common forms are simple
uniform distributions with domain constraints. We propose
a more informative blur prior based on the notion of atomic
norm which favors blurs composed of line segments and is
suitable for motion blur. The prior is formulated as a linear
program that can be inserted into any optimization task. Eval-
uation is conducted on blind deblurring of moving objects.

Index Terms— deblurring, deconvolution, motion blur,
atomic norm, convolutional sparse coding

1. INTRODUCTION

Blur is common image degradation that limits resolving
power of acquisition devices. It is caused by various physical
phenomena such as blur of atmospheric turbulence, out-
of-focus blur, lens aberrations, or blur produced by cam-
era/object motion. Blur characteristics imply that the prob-
lem of deblurring, i.e. estimating the original sharp image,
is ill-posed. The situation is even worse in blind deblurring
when the blur shape is not known and has to be estimated
together with the image.

Blind deblurring is an active field of research and the lit-
erature presents a wide range of methods. The most frequent
are methods based on alternating maximization of a posteriori
probability (MAP) [1], then we have methods marginalizing
the posterior [2], and lastly we witness a surge of learning-
based methods [3]. The majority of deblurring papers con-
sider motion blur, which probably stems from the fact that it
is the most common type of blur in everyday photography;
see examples in Fig. 1.

Priors are essential for alleviating the ill-posed nature of
deblurring. A lot of work was devoted to image priors but
much less to blur priors. Image priors in MAP approaches are
based on the central idea that image features, such as gradi-
ents, are more sparse for sharp images than for blurred ones
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Fig. 1. Real examples of motion blur caused by camera mo-
tion (top) and by object motion (bottom). Blurred images
(left) and estimated sharp images (right) with zoomed blur
kernels shown in insets.

[4, 5, 6]. Likewise, the success of learning-based methods is
in accurate modeling of the sharp image (patch) distribution.
On the other hand, blur priors are typically flat and enforce
only non-negativity and constant energy as was advocated in
[7, 8]. This reasoning is driven by the notion that the blur
size is by several orders of magnitudes smaller than the im-
age size and therefore inferring the blur from the posterior is
driven primarily by the likelihood function. However, if the
image estimation is inaccurate, which is the case in the ini-
tial stages of blind deblurring, a more informative blur prior
is likely to help in avoiding local maxima and/or speeding up
the convergence.

In this work, we focus on designing priors for motion
blurs that look as curves. A straightforward method for en-
forcing curves is to use parametric models, yet such mod-
els are either too restrictive or not known at all. Inference
over parameters directly in the deblurring problem is often
intractable and curves must be fitted ex-post [9, 10].

We propose a non-parametric prior favoring blurs com-
posed of curve segments which is particularly useful for mo-
tion blur. The proposed prior is differentiable, convex, and
can be easily plugged into any optimization problem. We
demonstrate its performance on a blind deblurring problem of
fast moving objects, where the goal is to estimate the object
motion blur from a single video frame of the object traveling
over the static background.
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Fig. 2. Proposed atoms: 36 line segments of length 5 used to
build the atomic set A.

2. PROBLEM FORMULATION

A general formation model for a blurred image g is formu-
lated as

g = D(h, u) + n , (1)

where D is a blur operator whose mathematical form is as-
sumed to be known, h are unknown parameters of the blur,
u is the unknown sharp image, and n is additive noise. For
camera motion in Fig. 1(top), the blur is standard convolu-
tion D(h, u) = h ∗ u and h is called convolution kernel or
Point Spread Function (PSF). When the camera motion is
more complex, convolution becomes space-variant and h is
also a function of the position in the image. For object mo-
tion in Fig. 1(bottom), the blur operator is convolution with
occlusion D(h, [u,m]) = h ∗ u + (1 − h ∗ m)b, where in
this case u is a foreground object in motion, m is the object
silhouette in the form of a binary mask, b is the static back-
ground and h is a convolution kernel corresponding to the 2D
object trajectory. If the object undergoes rotation and/or the
trajectory has a strong depth component, h is more complex
and the degradation cannot be expressed as convolution any-
more [11]. However, irrespective of the chosen problem, we
will refer to h simply as blur.

The classical solution to the ill-posed problem of esti-
mating the sharp image (object) u and blur h from the sin-
gle observed image g is formulated as a maximum a posteri-
ori (MAP) estimator, which is equivalent to the minimization
problem

min
h,u

γ
2 ‖D(h, u)− g‖2 + φ(u) + ψ(h) . (2)

The first term is given by the formation model (1) and it is
called a data term (negative log of the likelihood function). In
this particular case we assume n to be white Gaussian noise
of distribution N(0, 1/γ) and the data term is equivalent to
least squares. The remaining two terms are regularizations
(negative log of prior distributions) for the image and blur
that define our prior knowledge and make the problem better
posed. They must be carefully chosen as the final solution is
strongly influenced by their form.

Image priors are based on the notion of image feature
sparsity. It has been shown that simple features such as
derivatives have heavy-tailed distribution (Laplacian or Gaus-
sian mixture) in natural images independent of the image con-
tent. Gradient-based forms φ(u) :=

∑
i |∇ui|p for 0 < p ≤ 1

50 dB

20 dB

Fig. 3. Examples on synthetic data for 50 dB and 20 dB:
(left) input images with a blurred moving object marked by
red frames, the moving object appearance is enlarged in the
inset; (center) estimated blurs using the standard blur prior
on top and the proposed curve prior on bottom; (right) corre-
sponding estimates of the moving object.

or
∑

i λi|∇ui|2 with learnable parameters λ are among the
most frequently used image priors in the literature [12]. In the
case of object motion with occlusion, additional prior terms
enforcing relation between u and m were proposed in [10].

Blur priors are considered to be less informative com-
pared to the likelihood function and the image prior. Re-
cently, a low-rank prior was proposed in [13], yet it is non-
convex and difficult to optimize with. The most popular form
for motion blur is the classical �1 norm, i.e. ψ(h) =

∑
i |hi|.

Frequently the non-negativity and constant energy constraints
are assumed and then we obtain a flat prior with h lying in the
simplex S := {h |hi ≥ 0,

∑
i hi = 1}:

ψ(h) := χS(h) =

{
0, h ∈ S;

+∞, h /∈ S.
(3)

3. BLUR PRIOR FOR CURVES

This work focuses on priors that enforce curve-like blurs that
are typical for motion. We propose to use an atomic norm
[14], which is a versatile mathematical form for defining a
broad family of convex functionals. Let A := {a(1), . . . , a(N)}
be a set of atoms a(n) that constitute simple building blocks
of general images and they are the extreme points of the con-
vex hull conv(A). The atomic norm induced by A is defined
as

‖x‖A := inf{t > 0 | 1
tx ∈ conv(A)} . (4)

If the atomic set A is centrally symmetric about the origin, i.e.
a ∈ A if and only if −a ∈ A, then ‖ ·‖A is a norm. For exam-
ple, A is a set of unit-norm one-sparse elements {±ei} (the
standard basis with both signs) then ‖ · ‖A corresponds to the
�1 norm. However in our case, we do not require properties
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Fig. 4. Performance with respect to noise using the standard
blur prior (blue) and the proposed curve prior (red). Higher
values of NCC are better.

of the norm. More important is that (4) is a convex function
for any set A and it can be written as a linear program

‖x‖A = min
c

∑
i

ci

s.t. x =
∑
i

cia
(i), ci ≥ 0 .

(5)

To construct a prior that favors curves, we design atoms
{a(k)} as short line segments with different orientation and
curvature; see an example of 5-pixel segments in Fig. 2. The
atomic set A contains all shifted versions of such atoms to
make the prior translation invariant and the linear combina-
tion x =

∑
i cia

(i) can be then expressed in a more compact
form with convolution as x =

∑
k a

(k) ∗ c(k), where c(k) are
ci’s corresponding to shifted versions of a(k) and arranged in
an image. Note that (5) is then similar to convolutional sparse
coding [15].

Using the atomic set A defined above, we propose to de-
sign the blur prior as

ψ(h) =

{
α‖h‖A, h ∈ S;

+∞, h /∈ S ,
(6)

where α is the prior weight.

4. OPTIMIZATION

The proposed solution to blind restoration of motion-blurred
images is obtained by substituting (6) and (5) for the blur prior
in the minimization problem (2):

min
h,c,u

γ
2 ‖D(h, u)− g‖2 + φ(u) + χS(h) + α

∑
i

ci

s.t. h =
∑
i

cia
(i), ci ≥ 0

(7)

Fig. 5. Mean performance on the FMO dataset with respect
to the trajectory length using the standard blur prior (blue
dashed) and the proposed curve prior (red solid). Vertical bars
show the standard error of the mean.

If D is a linear operator such as convolution, the problem
is non-smooth convex (quadratic) w.r.t. h and c. Depend-
ing on the choice of φ it is also convex w.r.t. u. The lit-
erature presents many techniques for solving such problems.
We use the popular alternating direction method of multipli-
ers (ADMM) [16] and here show the solution only for h. The
solution for u can be derived similarly. To simplify notation,
we assume the standard convolution model and write it in a
matrix form D(h, u) = u ∗ h ≡ Uh, where U is a matrix per-
forming convolution with u, rewrite the constraint in a matrix
form h =

∑
i cia

(i) ≡ Ac, and define ρ(c) := α
∑

i P (ci),
where P (x) = x for x ≥ 0 and P (x) = ∞ for x < 0. To
tackle (7) w.r.t h and c, we split variables h and c, and convert
the constrained minimization to the unconstrained minimiza-
tion of the scaled augmented Lagrangian:

L(h, c, v, w) = γ
2 ‖Uh− g‖2 + χS(v) + ρ(w)+ (8)

β
2

(
‖h− v − λv‖2 + ‖c− w − λw‖2 + ‖h−Ac− λh‖2

)
,

where λv , λw and λh are scaled Lagrange multipliers of con-
straints v = h, w = c and h = Ac, respectively.

We minimize L in an alternating manner and get two up-
date equations

h =
(
UTU + 2β

γ I
)−1(UT g + β

γ (v + λv +Ac+ λh)
)
, (9)

c =
(
ATA+ I

)−1(AT (h− λh) + w + λw

)
, (10)

solved by Conjugate Gradients, two update equations with
proximal operators

v = proxχS
(h− λv) , (11)

w = proxρ(c− λw) , (12)
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Fig. 6. FMO dataset examples of different trajectory length and estimated blurs using the standard prior (3rd row) and the
proposed curve prior (4th row in the red frame). Estimated blurs are brightened to better visualize small values. In insets are
sharp objects estimated using the corresponding blur.

solved by projection to the simplex [17] and by rectified soft-
thresholding, respectively, and three simple update equations
for Lagrange multipliers

λv = λv−h+v, λw = λw−c+w, λh = λh−h+Ac . (13)

5. EXPERIMENTS

We demonstrate the performance of the proposed blur prior
on the problem of fast moving object (FMO), in which the
blur is a curve corresponding to the object trajectory. Refer to
[11] for more details about this problem and how to solve it
with ADMM. Two sets of experiments were conducted. First
is on synthetic data and evaluates performance with respect to
the noise level. Second is on the FMO dataset [18] and shows
performance on real data with respect to the blur size.

We compare the proposed curve blur prior in (6) with the
standard blur prior in (3) that only enforces non-negativity
and constant energy. Normalized cross correlation (NCC)
was chosen as the quality measure for evaluating the perfor-
mance. If h is the ground-truth blur and ĥ is the estimated
blur, then NCC = (

∑
i hiĥi)/(‖h‖2‖ĥ‖2). For all experi-

ments, the blur prior weight α was set to 1. For the synthetic
data, the data term weight was set according to the noise level
(SNR) to maximize the mean NCC: γ = 10 (50 dB), γ = 5
(40 dB), γ = 2.5 (30 dB), γ = 1 (20 dB) and γ = 0.1 (10 dB).
For the FMO dataset, γ was set to 1.

The synthetic data simulate a simplified 2D world: a color
disk of the diameter 20 flying along a random trajectory of
the length 100 over the static background. Two examples for
noise levels 50 dB and 20 dB, and the estimated blurs and fly-
ing object for the standard prior and the proposed curve prior
are in Fig. 3. The curve prior helps the restoration method to

converge to a better solution especially for lower SNRs, when
the likelihood term is less informative. Notice that the curve
blur prior has a positive impact also on the estimation of the
moving object appearance. The mean performance over 20
random trajectories for different noise levels is summarized
in Fig. 4.

The FMO dataset comprises 30-fps videos of various
fast moving objects and includes ground-truth trajectories
estimated from high-speed (240 fps) footage. We took 470
frames from the dataset and a video frame preceding each
chosen frame was used as the background. Results were
grouped into 8 categories according to the trajectory length
from small blurs < 20 pixels up to blurs exceeding 160 pixels.
Mean performance over the dataset is summarized in Fig. 5.
Fig. 6 shows one example per category with the ground-truth
trajectories and estimated blurs using the standard prior and
the proposed curve prior. The curve prior outperforms the
standard prior for all blur sizes with a gain slightly increas-
ing towards larger blurs. For both priors, the performance
decreases with an increasing blur size.

6. CONCLUSIONS

We proposed a blur prior tailored for motion blurs and solv-
able by simple linear programming. The prior is constructed
using the atomic norm which is a highly flexible mathemat-
ical mapping and we believe it can be used as a general
methodology for designing priors for other types of blurs
in future. Performance of the proposed prior was tested on
the blind restoration problem of fast moving objects and it
outperformed standard uniform priors that are currently used
as motion blur priors.
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