
Sketch2Code: Automatic hand-drawn UI
elements detection with Faster R-CNN

Aleš Zita1,2, Lukáš Picek3,5, and Antonín Říha4
1 Czech Academy of Sciences, Institute of Information Theory and Automation

2 Faculty of Mathematics and Physics, Charles University
3 Dept. of Cybernetics, Faculty of Applied Sciences, University of West Bohemia

4 Faculty of Information Technology, Czech Technical University
5 PiVa AI

Abstract. Transcription of User Interface (UI) elements hand drawings
to the computer code is a tedious and repetitive task. Therefore, a need
arose to create a system capable of automating such process. This paper
describes a deep learning-based method for hand-drawn user interface el-
ements detection and localization. The proposed method scored 1st place
in the ImageCLEFdrawnUI competition while achieving an overall pre-
cision of 0.9708. The final method is based on Faster R-CNN object
detector framework with ResNet-50 backbone architecture trained with
advanced regularization techniques. The code has been made available
at: https://github.com/picekl/ImageCLEF2020-DrawnUI.

Keywords: Web Design, Object Detection, Convolutional Neural Networks,
Machine Learning, Computer Vision, User Interface, Deep Learning

1 Introduction
The ImageCLEFdrawnUI [3] challenge was organized in connection with the
ImageCLEF 2020 evaluation campaign [7] at the Conference and Labs of the
Evaluation Forum (CLEF). The Main goal of this competition was to create an
algorithm or system which can automatically recognise and localize UI elements
on high resolution pictures of their drawings. The desired outcome of the detec-
tion process are localized bounding boxes with corresponding classes assignments
of the UI elements.

1.1 Motivation
The main motivation for this task is to simplify the process of websites creation
by enabling people to create websites by drawing UI elements on a whiteboard
or on a piece of paper to make the web page building process more accessible.
In this context, the detection and recognition of hand drawn UI elements task
addresses the problem of automatically transcribing the UI to computer code.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.

https://orcid.org/0000-0001-8119-3147
https://orcid.org/0000-0002-6041-9722
https://orcid.org/0000-0002-6166-9176
https://github.com/picekl/ImageCLEF2020-DrawnUI


Fig. 1. Example images with annotations from ImageCLEFdrawnUI competition train-
ing dataset.

1.2 Dataset

The complete dataset consists of 1,000 hand drawn templates captured multiple
times with different cameras, resulting in 2,950 high-resolution images. These
data were further randomly split into 2,363 training and 587 test images. The
training part includes 65,993 UI elements belonging to 21 classes. All images
were annotated with bounding boxes and class labels by human experts. More
detailed class distribution description is listed in Table 1. Example images are
depicted in Figure 1.

1.3 Solution

The proposed solution is based on utilization of a standard object detection
network architecture and coherent data preparation and augmentation. In par-
ticular, the Faster R-CNN [10] framework with the ResNet-50 [5] feature extrac-
tor was used. The system was implemented and fine-tuned using TensorFlow
Object Detection API1 [6] from publicly available checkpoints. All networks in
our experiments shared the optimizer settings - RMSProp [13] with momentum
of 0.9. The initial architecture was based on our work [8] submitted to Image-
CLEFcoral competition [2]. This included for instance the data augmentation
methods or Accumulated Gradient Normalization technique [4]. During our fol-
lowup research, we considered and tested several approaches including new data
synthesis, different network architectures as well as network ensemble variants.

1 https://github.com/tensorflow/models/blob/master/research/object_detection

https://github.com/tensorflow/models/blob/master/research/object_detection


Table 1. Class distribution description including number of UI elements and their
number in training and validation set.

Dataset distribution Train. / Val. split
Class Name # Boxes Fraction[%] Train. Boxes Val. Boxes Fraction[%]

button 18,704 28.34 16,841 1,863 9.96%
paragraph 10,367 15.71 9,342 1,025 9.89%

image 7,683 11.64 7,020 663 8.63%
link 6,809 10.32 6,140 669 9.83%

linebreak 5,798 8.786 5,267 531 9.16%
container 4,678 7.089 4,233 445 9.51%

header 4,356 6.601 3,947 409 9.39%
textinput 1,732 2.624 1,577 155 8.95%

label 1,691 2.562 1,539 152 8.99%
dropdown 1,472 2.231 1,350 122 8.29%

list 798 1.209 702 96 12.03%
checkbox 758 1.148 694 64 8.44%

video 360 0.545 323 37 10.28%
radiobutton 279 0.422 246 33 11.83%

toggle 178 0.249 159 19 10.67%
datepicker 91 0.138 83 8 8.79%

rating 75 0.114 62 13 17.33%
slider 75 0.114 65 10 13.33%

textarea 47 0.071 42 5 10.64%
table 29 0.043 25 4 13.79%

stepperinput 13 0.019 10 3 23.08%

2 Methodology

2.1 Data analysis and preparation

Dataset splitting for validation - To create a set for continuous network
performance evaluation, the provided dataset needed to be split into training and
validation sets. After careful examination of the content, it became apparent that
a random split of the dataset could cause discrepancies between the validation
and training sets performances. The reason being, that less frequent classes could
end up not having comparable representations in both the training and validation
sets. Therefore the split had to be carefully engineered and resulted in the final
approximate ratio of 11:1 for training and validation sets, respectively.

Data distribution - To better understand the problem at hand, we have per-
formed a frequency analysis on UI element type distribution and concluded,
that some of the element types are represented by very few occurrences in the
training dataset, namely the ’stepper input’, ’text area’ or ’table’ (See Table 1).
Reviewing the training dataset further revealed that it contains multiple images
of the same drawings. This is caused by the fact that the whole dataset (training
and testing) consists of 2,950 images of only 1,000 templates, i.e., the templates
were each captured by several different cameras. Following the random splitting



of the dataset to the training and testing part caused some rarer elements to
go to the training set multiple times and others not at all. This worsens the
uneven distribution of the UI element classes in such a way that, for example,
the rarest element is contained only on two templates (6 images) in the training
dataset. For the deep network to learn to recognize such an element, a much
higher number of examples is needed.

Synthetic dataset - To compensate for the uneven distribution of the UI
element types, we decided to expand the training dataset with synthetic data
containing such elements. The data were generated using augmentations of seg-
mented UI elements, which were consequently pasted on random size paper of
very light random color. The augmentation consisted mainly of constrained ran-
dom affine transformations. We have added 500 synthetically generated images
with the least frequent classes. Examples of the synthetic data are depicted in
Figure 2. UI element classes which were artificially added are: datepicker, rating,
slider, textarea, table and stepperinput.

The experiment performed with ResNet-50 backbone and grayscale data with
1000 × 1000 input size was evaluated over the validation set and showed inter-
esting improvement in all measured scores on RGB images. Specifically, mean
average precision with Intersection over Union (IoU) greater than 0.5 (mAP0.5)
by 0.0081, mAP by 0.0222, and by Recall@100 (Recall calculated using best
100 detections) 0.0315. Although we were able to flatten the UI elements dis-
tribution curve, the overall performance of the original network was marginally
better on grayscale images.

Fig. 2. Synthetic data example images. For classes with very few instances we injected
the training set with artificial data containing augmented instances of these classes.



Table 2. Results of input format experiment. Trained for 50 epochs on 1000 × 1000
grayscale images with Faster R-CNN

Input format mAP0.5 mAP Recall@100
RGB 0.9151 0.5814 0.6594

Grayscale 0.9151 0.5855 0.6689
Gray ++ 0.9087 0.5788 0.6705

Data preprocessing - While testing, we experimented with three different ap-
proaches to input preprocessing. First, images without any augmentations. Sec-
ond, images were converted to grayscale. Third, where grayscale images without
borders around captured drawing and with dilated lines were used. This effect
was achieved by finding contours in the image using OpenCV [1]. These contours
were then sorted by area, and the largest of them was used to crop the image.
In some cases, this approach did not work correctly, especially where parts of
the image were covered with a shadow, so this crop was only applied when the
area of the contour was at least 70% of the image. After the crop, we utilized
CLAHE [9] for histogram equalization and applied topological erosion to pro-
nounce lines on paper. This approach is described as Gray++ in our results.
Refer to Table 2, where it can be seen that Gray++ was worse in our testing,
so our submissions mainly used grayscale images.

2.2 Object Detection Networks
There are several network architectures that were taken into the consideration
for this task, in particular the Faster R-CNN [10] and EfficientDet [12]. The
initial performance test for each particular network architecture was to train
these networks with recommended configuration. These tests revealed the overall
architecture suitability for the task at hand. The best performance was achieved
with the Faster R-CNN architecture that used comparable backbones. Refer to
Table 4.

Next, we needed to decide on the object detection network backbone. We
have tested several widely used backbone architectures, namely the ResNet-
50 [5], ResNet-101 [5], Inception V2 and Inception-ResNet-V2 [11] (Table 3).

Table 3. Results of backbone architecture experiment. Trained for 50 epochs on
1000× 1000 grayscale images with Faster R-CNN.

Backbone mAP0.5 mAP Recall@100
Inception-V2 0.8974 0.5850 0.6689

ResNet-50 0.9151 0.5855 0.6689
ResNet-101 0.9035 0.6035 0.6835

Inception-ResNet-V2 0.9176 0.6095 0.6904

Table 4. Results of detection framework experiment. Trained for 50 epochs on
1000× 1000 RGB images.

Approach mAP0.5 mAP Recall@100
EfficientDet-B3 0.583 0.416 0.458

Faster R-CNN ResNet-50 0.9151 0.5814 0.6594



Table 5. Training and network parameters shared among all experiments.

Parameter Value Parameter Value
Optimizer RMSprop Gradient Clipping 10.0
Momentum 0.9 Input size 1000× 1000
Initial and min LR 0.032 - 0.000032 Feature extractor stride 16
LR decay type Exponential Pretrained Checkpoints COCO
LR decay factor 0.975 Num epochs 50
Batch size 2 Gradient accumulation 12

3 Submissions

In this competition, the AICrowd platform2 was used to evaluate participants
submissions. Each participating team was allowed to submit up to 10 text files
with detection bounding-boxes in a specific format for each image. We have
created 7 submission using configurations listed below.

Baseline configuration - As a baseline for all our experiments we used Faster
R-CNN with ResNet-50 as a backbone. For training we used parameters and
augmentations described in Table 5 and [8], respectively. Finally, threshold-
ing was used to select only detection with high confidence.

Submission 1 - Baseline experiment trained on RGB images. Tested on original-
size RGB images. Detection confidence threshold was set to 0.8.

Submission 2 - Submission 1 trained and tested on the grayscale images.
Submission 3 - Submission 2 trained on whole training set with no data for

validation with confidence threshold of 0.95.
Submission 4 - Submission 3 trained for 80 epochs.
Submission 5 - Submission 1 with Inception-ResNet-V2 as backbone. Trained

and tested on grayscale images with confidence threshold of 0.8.
Submission 6 - Voting ensemble created by combining models used in Sub-

missions 2, 3 and 5 with confidence threshold of 0.8.
Submission 7 - Submission 6 with confidence threshold of 0.45.

4 Competition Results and Discusion

The official ImageCLEFdrawnUI competition results are displayed in Figure 3.
The proposed system achieved the best Overall Precision score of 0.9709 and
outperformed 2 other participating teams as well as the baseline solution pro-
posed by organizers. The best scoring submission was produced by Mask R-CNN
model with ResNet-50 backbone architecture and input resolution of 1000×1000
trained for 80 epochs with parameters and augmentations described in Table 5
2 https://www.aicrowd.com

https://www.aicrowd.com


Table 6. Submission results achieved over test set.

Submission 1 2 3 4 5 6 7
Overall Precision 0.939 0.956 0.971 0.944 0.956 0.956 0.942

mAP@0.5 0.688 0.676 0.583 0.647 0.695 0.694 0.755
Recall@0.5 0.536 0.517 0.445 0.472 0.520 0.519 0.555

Run ID 67733 67814 67816 67991 68003 68014 68015

and [8], respectively. The resulting predictions were filtered with confidence
threshold of 0.95 to maximize the official metric of mAP.

In our opinion, the winning submission is not the best of our submissions. Ac-
cording to the widely accepted performance metrics (mAP@0.5 and Recall@0.5),
our Submission 5 (run ID 68003), which scored 3rd place overall, is superior to
the winning submission. It diminishes ImageCLEF Overall Precision only by
0.0144, while it increases mAP@0.5 by 0.111 and Recall@0.5 by 0.074.

5 Conclusion

In this paper, we have presented a system for automatic hand-drawn UI ele-
ment detection and localization. To achieve this goal, we had to gain a deep
understanding of the provided dataset and perform many experiments to craft
the best data preprocessing and augmentation methods, as well as objectively
adjust the network parameters.

The final methods were based on the Faster R-CNN detection network with
ResNet-50 used as a backbone architecture. The presented method scored first
place in ImageCLEFdrawnUI competition, with an overall precision of 0.9708.

Fig. 3. Results for all runs submitted by the competition participants. Including addi-
tional metrics e.g. mAP@IoU0.5 and Recall@IoU0.5.



6 Acknowledgements
Lukáš Picek was supported by the Ministry of Education, Youth and Sports of
the Czech Republic project No. LO1506, and by the grant of the UWB project
No. SGS-2019-027.

References
1. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
2. Chamberlain, J., Campello, A., Wright, J.P., Clift, L.G., Clark, A., García Seco de

Herrera, A.: Overview of the ImageCLEFcoral 2020 task: Automated coral reef
image annotation. In: CLEF2020 Working Notes. CEUR Workshop Proceedings,
CEUR-WS.org <http://ceur-ws.org> (2020)

3. Fichou, D., Berari, R., Brie, P., Dogariu, M., Ştefan, L.D., Constantin, M.G.,
Ionescu, B.: Overview of ImageCLEFdrawnUI 2020: The Detection and Recogni-
tion of Hand Drawn Website UIs Task. In: CLEF2020 Working Notes. CEUR Work-
shop Proceedings, CEUR-WS.org <http://ceur-ws.org>, Thessaloniki, Greece
(September 22-25 2020)

4. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016)

6. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., et al.: Speed/accuracy trade-offs for modern
convolutional object detectors. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 7310–7311 (2017)

7. Ionescu, B., Müller, H., Péteri, R., Abacha, A.B., Datla, V., Hasan, S.A., Demner-
Fushman, D., Kozlovski, S., Liauchuk, V., Cid, Y.D., Kovalev, V., Pelka, O.,
Friedrich, C.M., de Herrera, A.G.S., Ninh, V.T., Le, T.K., Zhou, L., Piras, L.,
Riegler, M., l Halvorsen, P., Tran, M.T., Lux, M., Gurrin, C., Dang-Nguyen, D.T.,
Chamberlain, J., Clark, A., Campello, A., Fichou, D., Berari, R., Brie, P., Dogariu,
M., Ştefan, L.D., Constantin, M.G.: Overview of the ImageCLEF 2020: Multimedia
retrieval in lifelogging, medical, nature, and internet applications. In: Experimental
IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 11th
International Conference of the CLEF Association (CLEF 2020), vol. 12260. LNCS
Lecture Notes in Computer Science, Springer, Thessaloniki, Greece (September 22-
25 2020)

8. Picek, L., Říha, A., Zita, A.: Coral reef annotation, localisation and pixel-wise clas-
sification using mask-rcnn and bag of tricks. In: CLEF (Working Notes). CEUR-
WS.org <http://ceur-ws.org>, Thessaloniki, Greece (September 22-25 2020)

9. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer,
T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram
equalization and its variations. Computer vision, graphics, and image processing
39(3), 355–368 (1987)

10. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 28, pp. 91–99. Curran Associates, Inc. (2015)



11. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-first AAAI confer-
ence on artificial intelligence (2017)

12. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10781–10790 (2020)

13. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learn-
ing 4(2), 26–31 (2012)


	Sketch2Code: Automatic hand-drawn UI elements detection with Faster R-CNN

