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Abstract—In this paper the mechanical system of a two-link
manipulator will be optimized in terms of energy consumption
using the framework of Bernstein polynomials. Considering
specific definition of the cost function, the required torque is
minimized such a way to move the system from one given position
to another as well as to guarantee a smooth trajectory of the
end effector between these positions. The unique property of
Bernstein polynomials having an underlying symmetry within
the individual basis functions is the motivation for using them
in this environment. The results of the paper show a lower
energy consumption due to its symmetric properties, compared
to power based polynomials, and a smooth trajectory considering
an indirect motion determined by a third, intermediate point.

Index Terms—Bernstein polynomials, Bézier curve, Optimiza-
tion, Two-Link manipulator

I. INTRODUCTION

One of the most important aspects in the design of a
reference trajectory, that should be tracked by a closed loop
controller system, is represented by an optimum with respect
to the power consumption. In this sense, a technique aimed
at minimizing power consumption is a suitable technique to
be applied. The model of the considered system represents a
constraint for the optimization problem. In [1] a constrained
optimization problem is formulated for a valve motion track-
ing problem. A solution then is approximated by exploiting
local flatness and physical properties of the system. Different
approaches which are considered as general methods in the
area of control of electromagnetic drives can be seen in [2]–
[4]. The two-link manipulator which is being modeled in [5]
serves as the basis of the following equations of motion. The
reason for this particular manipulator in Cartesian space is
because of the versatile usage in different application areas.
A 7th degree Bézier curve is then being used for modeling
the initial conditions. Apart from that this simulation has no
further restrictions. The symmetry of Bernstein polynomials is
the reason for a more optimal trajectory compared to normal
polynomials. In the optimization itself a numerical approxi-
mation is necessary due to the complexity of the dynamical
system therefore the Simpson Integration is being used due to
its calculable error. This paper is structured as follows. First,
in Section II the equations of motion are explained briefly,
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then the necessary Bernstein polynomial framework will be
derived as well as the needed information about the kind of
optimization in the following algorithm. The overview of the
optimization is given in Section III. Section IV deals with the
results. Discussion and conclusion closes this paper in Section
V.

Main Nomenclature

q11, q12: Angle of the manipulator
m1,m2: Mass of link 1 and link 2
G1, G2: Gravitational acceleration
l1, l2: length of link 1 and link 2
lc1: length to center of gravity of link 1
lc2: length to center of gravity of link 2
τ1, τ2: Needed torque
C: Bézier curve
C ′: 1st derivative of the Bézier curve
C ′′: 2nd derivative of the Bézier curve
Bi,n: Bernstein polynomial n-th degree
Cf : Cost function of the simulation
θ1; θ2: Angular position

II. BACKGROUND

A. Robotics

The manipulator,used in the following optimization, consists
of two arms in serial arrangement with two rotational joints.
This doesn’t include the end-effector itself, which will not
be simulated. Point P in Fig. 1 represents the end-effector
interacting with the environment and that is able to pick up
pieces or to use tools for machining of work pieces. Therefore
it is assumed that the end point of the second link is the Tool
Center Point (TCP) representing the end-point which is being
moved throughout the optimization. The joints between both
links are mass-less and have no length for a more compact
simulation, they are ideal joints. In addition, both joints have
no restraints in maximal or minimal angular position, velocity
or acceleration. The reachable workspace is set to allow the
positive x and y coordinates [6] only.



P

Fig. 1. Graphical representation of the two link manipulator

The Fig. 1 shows schematically the two link manipulator
in Cartesian work space. The degrees of freedom are limited
to 2, able to rotate around θ1 and θ2 only. This implies
that this robot has only two independent position variables in
relation to the coordinate system [7]. The following kinematic
equations will be derived from the geometric properties. After
the understanding of how the two link manipulator is modeled
it is now important to describe it not only as a static model
but in terms of motion, dynamics. The inverse kinematics
necessary for obtaining the joint angles is defined by Eq. (1)
and (2). The number of solutions depends on the number of
joints [8], in this case for every position of the end effector two
solutions can be calculated. Taking the equations of motion
further described into consideration, the solutions have an
impact on the needed energy due to the gravitational forces.
The following figure Fig. 2 shows these possible solutions in
a graphical way. Further, the angles q1 and q2 are shown.
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Fig. 2. Possible Solutions for the inverse kinematics

The mathematical solution is written below. Note that either
Eq. (1) or Eq. (2) can be used, not a combination of them.
The solution for the upper combination is

q11 = arctan
y

x
+ arctan

l2 sin q2
l1 + l2 cos q2

(1a)

q21 = − arccos
x2 + y2 − l21 − l22

2 l1 l2
(1b)

and for the lower combination

q12 = arctan
y

x
− arctan

l2 sin q2
l1 + l2 cos q2

(2a)

q22 = arccos
x2 + y2 − l21 − l22

2 l1 l2
. (2b)

B. Equations of motion

The following equations describe the model in terms of
dynamical components which are derived according to [5].
Now, it is possible to calculate the needed torque for link 1
and link 2, τ1 and τ2, for a given set of angular positions θ1,
θ2. This model includes also the effects of gravitation.

H11 = m1`
2
c1 +m2

(
`21 + `2c2 + 2`1`c2 cos θ2

)
(3a)

H22 = m2`
2
c2 (3b)

H12 = m2

(
`2c2 + `1`c2 cos θ2

)
(3c)

H21 = H12 (3d)
h = m2`1`c2 sin θ2 (3e)
G1 = m1`c1g cos θ1 +m2g {`c2 cos (θ1 + θ2) + `1 cos θ1}

(3f)
G2 = m2g`c2 cos (θ1 + θ2) (3g)

with lc1 = l1
2 and lc2 = l2

2 . The needed torque is calculated
as followed.

τ1 = H11θ̈1 +H12θ̈2 − hθ̇22 − 2hθ̇1θ̇2 +G1 (4)

τ2 = H22θ̈2 +H21θ̈1 + hθ̇21 +G2. (5)

Now the needed equations for torques (inverse dynamic model)
of the two link manipulator are defined. In the next section
Bernstein polynomials will be discussed. Then, the mathemat-
ical optimization will follow.

C. Bernstein polynomials and Bézier curve

As defined in [9] the Bézier curve is a parameterized sum
of polynomials called Bernstein polynomials. Usually, these
polynomials are used for modeling free-form curves e.g. in
computer aided design. This approach will use the symmetry
of the Bernstein polynomials depicted in Fig. 3. They are
defined as

C(u) =

n∑
i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (6)

where Bi,n(u) is the Bernstein polynomial n-th degree which
is defined as

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i. (7)



The form is mathematically equivalent to the power based one
but has some unique properties: [9].

1. Partition of unity:
∑n

i=0Bi,n(u) = 1 for all 0 ≤ u ≤ 1;
2. B0,n(0) = Bn,n(1) = 1;
3. Bi,n attains exactly one maximum on the interval [0,1],

that is, at u = i/n;
4. For any n, the set of polynomials Bi,n is symmetric

with respect to u = 1/2;
5. Endpoint interpolation: C(0) = P0 and C(1) = Pn.

Partition of unity means that no matter how many Bernstein
polynomials are being used for describing a curve, the sum
of these polynomials is always 1. Especially the symmetry is
important for the following optimization.
To give a better understanding on how the symmetry charac-
terizes the Bernstein polynomials, the following figure shows
the polynomials of the quadratic Bézier curve:
B0,2 = (1− u)2, B1,2 = 2u(1− u) and B2,2 = u2.
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Fig. 3. Bernstein polynomials of quadratic Bézier curve

To determine the first and second derivative of a Bézier curve
the following equations are necessary.

C
′
(u) = n

n−1∑
i=0

Bi,n−1(u)(Pi+1 −Pi) (8)

with B−1,n−1(u) = Bn,n−1(u) = 0. And for the second
derivative

C
′′
(u) = n(n− 1)

n−2∑
i=0

Bi,n−2(u)(Pi+2 − 2Pi+1 +Pi). (9)

Finally the used, 7th degree Bézier curve and its derivatives
are shown in Eq. (10, 11) and Eq. (12).

C(u) = (1− u)7P0+ 7u(1− u)6P1+ 21u2(1− u)5P2

+ 35u3(1− u)4P3+ 35u4(1− u)3P4

+ 21u5(1− u)2P5+ 7u6(1− u)P6+ u7P7
(10)

C
′
(u) = 7(1− u)6(P1−P0) + 42u(1− u)5(P2−P1)

+ 105u2(1− u)4(P3−P2) + 140u3(1− u)3

(P4−P3) + 105u4(1− u)2(P5−P4)

+ 42u5(1− u)(P6−P5) + 7u6(P7−P6)
(11)

C
′′
(u) = 42(1− u)5(P2− 2P1+P0) + 210u(1− u)4

(P3− 2P2+P1) + 420u2(1− u)3

(P4− 2P3+P2) + 420u3(1− u)2

(P5− 2P4+P3) + 210u4(1− u)
(P6− 2P5+P4) + 42u5(P7− 2P6+P5).

(12)

D. Optimization and cost function

Convex optimization is characterized by finding the smallest
value for a vector x = (x1, ..., xn) which satisfies all given
constraints being represented by the constraint functions fi.
The constants bi are the limits of the constraint function
defined as

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m.
(13)

If a convex function is being minimized whether it is with or
without constraints, this function will only have one minimum.
This function, the cost function, includes mathematical proper-
ties from the mechanical system which was described earlier.
Due to its complexity and the fact that it includes sine and
cosine functions a non convex cost function can be presumed.
This means, not only one global minimum is possible, more
local minima are existing. Further the question remains if the
cost function, which is acquired in the next chapter, even has
a global minimum, which would complicate the optimization
even more. A local minimum is defined as a point x∗ which
satisfies the following condition [10]:

f (x∗) ≤ f(x) for all x such that ‖x− x∗‖ < ε. (14)

Furthermore, a differentiability of the cost function is assumed,
not only for the analysis of the results later but for general
understanding of the system, derivatives are necessary. When
it comes to the minimization of the two-link manipulator,
the first, first-order necessary condition Eq. (15) is followed
by finding the minima, defining the sufficient condition. In
this paper the mathematical approach is being simplified by
inserting 0 for both variables. As a result the corresponding
solution reveals, if it is a minimum or a maximum.

∇f (x∗) = 0. (15)

It is now necessary to define a cost function which will be the
core of the optimization. Due to the nature of the system given



the energy to be minimized is given via τ1 and τ2, which then
will be implemented in the cost function

Cf =

∫ tf

ti

(τ1θ̇1 + τ2θ̇2)dt. (16)

This cost function takes into account both torques needed
for the movement, states the energy which the manipulator
needs to move from the initial point P0 to the final point P1

passing through a given intermediate point P2. It represents
the mechanical work (energy) needed to move the whole
manipulator from the beginning trough the specification given
by points P0, P1 and P2. In terms of dimension this means
finding the optimum in units J [= Nm].

III. STRUCTURE OF THE SIMULATION

Bernstein polynomials and normal polynomials are both
capable to describe the motion of two-link manipulator.
Therefore it is possible so that a simulation using normal
polynomials gives a different result than a simulation with
Bernstein polynomials. The results may vary due the different
structure of the Bernstein polynomials. That’s why the follow-
ing simulation is done once with power based and once with
Bernstein polynomials. The sequence of the individual steps is
the same as well as the inputs of the system. Only the construct
for implementing the angular position varies. The structure of
the Matlab code is shown in the following flowchart Fig. 4.
Fig. 5 shows scenarios where the manipulator is not capable
of reaching both points. This is referred as ’check possibility’
in the flowchart.

Initial Conditions

Check Possibility

Inverse Kinematics Solve System of Equations

Solve Equations of Motion

Define Cost-Function

Optimize Values

Plot Results

Fig. 4. Flowchart of the algorithm and simulation in Matlab
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Fig. 5. Scenarios for not reachable points

The coordinates in [m] of the points are P0 = [15.7; 2.2],
P1 = [13.1; 6.8] and P2 = [11.1; 3.5]. The lengths of the
links are l1 = 9m and l2 = 7m. The masses of the links are
m1 = 5kg and m2 = 4kg. Finally, the gravitation is set to
9.81ms−2. The manipulator has one second to execute the
movement. At time t = 0.6s, it reaches point P2. The last
setting of the interpolation in the code is sampling (dT). Since
the integration of the cost function is done numerically, then
the degree of fineness can be changed.
For the numerical approximation of the integral the Simpson
integration is being used. The cost function itself is complex
therefore it is necessary to approximate numerically via

S(N)(f) =
h

6

(
f(x0) + 2

N−1∑
k=1

f(xk)

+ f(xN ) + 4

N∑
k=1

f
(xk−1 + xk

2

))
. (17)

Due to the numerical integration a certain error is being
implemented. The error can be reduced approximating with a
higher rate.In Fig. 12 a short cutout from the original Matlab
code is taken in order to show how the cost function Cf is
being optimized.

IV. RESULTS

The following Fig. 6 and Fig. 8 demonstrate the trajectory
of the end effector moving from P0 to P1 passing through the
intermediate Point P2. The trajectory using the power based
polynomials seems to have a more natural curve where as
the Bernstein polynomial based one has a little bump at the
beginning. In both cases all points have been reached and
both trajectories seems to be smooth. Now it is important
to look at the needed torque for each link. Fig. 7 shows
the needed torque for the first link using polynomial (grey)
and Bézier (red) optimization. The horizontal lines represent
the approximated absolute sum of the needed torque. Despite
the wider interval and dynamic range, the Bézier optimiza-
tion needs less energy, explicitly τBl1 = 2163.24Nm and
τPl1 = 2366.11Nm. The same applies to the second link in
Fig. 9, where τBl2 = 275.23Nm and τPl2 = 332.44Nm.
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Fig. 6. Graphical representation of optimization with Bézier

In both cases less torque is being used for optimizing the
given problem witch makes it about 10% more effective with
Bernstein polynomials. Comparing the needed torque with the
position of the end effector it is possible to see a connection
between these graphs. Near t = 0.6s the maximum needed
torque for link 1 as well as the minimum needed torque for
link 2 are both located giving an indication of the middle point
P2.
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Fig. 7. Needed torque for link 1

Another way of comparing the two optimization methods is
looking at the cost-function itself. Again, when comparing
these two values the Bézier optimization will reveal a slight
advantage in the needed energy which can be seen in Equation
(18). Last a distinction is visible in Fig 10. This figure shows
the angular position of both links, the upper two lines referring
to the first, the lower ones to the second link. While the
rough trend remains the same a difference can be seen in the
maximum deviation of the desired angular position.

CfB = 259.48Nm[= J ] CfP = 306.1Nm (18)
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Fig. 8. Graphical representation of optimization with normal polynomials

The overshoot is lower, especially when looking at the second
link and it happens around t = 0.6s which again gives an
indication on when the intermediate point is being reached. In
this particular scenario not only a more effective optimization
is being obtained but a more intuitive model when analyzing
its parameters.
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Fig. 9. Needed torque for link 2

Still important to note is the comparison in acceleration of link
1 shown in Fig. 11. The maximum and minimum value of the
acceleration profile using the Bézier optimization is higher but
its absolute mean value is lower than the polynomial one. A
similar result is obtained comparing the second link. This and
the maximum and minimum torque values in Fig. 7 and Fig. 9
show a higher range but smaller mean value reflecting a lower
energy consumption.
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V. CONCLUSION AND FUTURE WORK

Comparing the needed torque with the trajectory the ref-
ereed indication of the intermediate point can give a better
understanding in the peak of needed torque while modeling
the trajectory itself. It ca be an indication on when to expect
the peak. In accordance with the obtained results, Bernstein
polynomials offer interesting applications in the field of con-
trol.

In fact, as already observed, because of the symmetric struc-
ture of Bernstein polynomial curve parameterization, for the
same given constraints, smoother trajectories can be obtained.
Smoother trajectories imply small accelerations and thus less
energy involved in the motion. If the obtained Bernstein
polynomial trajectories are taken as reference trajectories for

a controller of a control loop, this offers a real opportunity to
improve the performance of the whole controlled system. It
can moreover be complemented by some initial path shaping
or smoothing as it is presented in [11].

1 Cf=(tau1*Cu1)+(tau2*Cu2);
2 %Simpson
3 N=1/dT;
4 f0=subs(Cf,t,ti);
5 fN=subs(Cf,t,tf);
6 I1=ti+dT:dT:tf-dT;
7 for s1=1:N-1
8 T1(s1)=subs(Cf,t,I1(1,s1));
9 end

10 fs1=sum(T1);
11 I2=ti:dT:tf;
12 for s2=1:N
13 T2(s2)=subs(Cf,t,((I2(1,s2)+I2(1,s2+1))/2));
14 end
15 fs2=sum(T2);
16 CApp=(dT/6)*(f0+2*fs1+fN+4*fs2);
17 GApp=gradient(CApp); GApp==0;
18 I=subs(GApp,{P3_1,P3_2},{0,0});I=double(I);
19 min=min(I);
20 %Take minimum
21 for i=1:length(I)
22 if I(i,1)==min
23 Opt=GApp(i,1);
24 end
25 end
26 Opt==0;Opt=solve(Opt,P3_1,P3_2);
27 P3_1opt=Opt.P3_1; P3_2opt=Opt.P3_2;

Fig. 12. Overview of the algorithm for optimizing the cost function.
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