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Abstract—This paper deals with the explicit model predictive
control (MPC) algorithms for permanent magnet synchronous
motors (PMSM). The algorithms generate continuous and smooth
set of pre-computed control laws represented by parameterized
gains. The selection and application of the gains in real motion
control of PMSM is explained. The MPC design introduces cost
functions and control laws that define explicit algorithms. For this
purpose, a unified state-space model of PMSM is proposed.
In the paper, practical aspects of considered explicit MPC
algorithms are investigated for control systems with floating-point
arithmetic and usual incremental position sensors with quantized
values. The proposed solution is demonstrated by real experi-
ments with 95 W PMSM controlled by Field-Programmable Gate
Array (FPGA) unit.

Index Terms—predictive control, FPGA, permanent magnet
motors, control design, position control, velocity control

I. INTRODUCTION

A lot of modern industrial, home and traffic applications are
designed with effort to minimize mechanical elements trans-
mitting power between drives and driven system, i.e. to use
direct-drive concept. In this context, permanent magnet syn-
chronous motors (PMSM) are frequently used. They have con-
venient construction (few mechanical elements) and adequate
controllability (wide operation and loading ranges).

The control of PMSM is realized by two basic vector control
strategies [1], namely Field-Oriented Control (FOC) in [2]
and direct control (direct converter, finite-set control of speed,
torque, current or power) in [3]–[6]. In spite of the faster re-
sponse of the direct control, FOC, e.g. by model predictive
control (MPC) [7], can more fit a PMSM motion especially
in industrial applications with robotic systems, manipulators
as it is e.g. in [8], where reference profiles are sophisticated
time-parameterized curves [9]. The FOC principle consists
in the design of appropriate amplitude and phase of stator volt-
age vector. The amplitude and phase are inputs to the Pulse-
Width-Modulation (PWM) that provides appropriate voltage
distribution in stator windings. The voltages excite adequate
amplitude and frequency of Alternate Currents (AC) of the
stator and generate motion and torque in the rotor. The FOC
approaches include usual cascade PI control [2], [10] with
dedicated MPC concept [11], and more general, MPC torque
techniques [7], [12], multiparametric quadratic programming
optimisation [13] or explicit MPC [14], [15], based on the pri-
mary concept of generalized predictive control (GPC) [16].

The paper follows up on our previous works [15], [17].
It introduces a novel unified model, specific fast procedure
for online control law selection and practical notes for direct
hardware implementation. At first, in Section II, the unified
mathematical model is proposed for both position and speed
control tasks so that a single control algorithm can also
be used. The required task is selected by controller parameters
only. In Section III, MPC concept with appropriate cost
functions and optimisation criterions employing the unified
model is described. Consequently, in Section IV, appropriate
explicit control laws and off-line generation of gain profiles are
explained. Simultaneously, a selection procedure for efficient
picking from continuous stored off-line pre-computed gain
profiles is introduced. The proposed procedure fits the gain
profiles by parametric curves. It provides the fast gain se-
lection by only single independent parameter in comparison
with a discontinuous gain selection according to the state vec-
tor with minimally four variables [7]. Finally, Section V deals
with the implementation issues of off-line design and storing
of the gain profiles and on-line evaluation of the explicit
control laws with the gains determined from the stored
profiles. Real experiments are demonstrated in Section VI
using 95 W PMSM drive controlled by novel FPGA unit
involving the proposed predictive algorithms.

II. UNIFIED MODEL FOR CONTROL DESIGN

PMSM model is given by the voltage distribution in appro-
priate AC phase system and by torque equilibrium equation,
see [18], [19]. With Clarke and Park transformation, the model
in d - q rotating field coordinate system (reference frame) is:

uSd = RS iSd + Ld
d

dt
iSd − Lq ωe iSq (1)

uSq = RS iSq + Lq
d

dt
iSq + Ld ωe iSd + ψM ωe (2)

where RS , Ld, Lq and ψM are stator resistance, d - q induc-
tances and rotor magnetic flux respectively (motor parame-
ters); uSd, uSq are d - q voltages (system inputs); iSd, iSq
are d - q currents; ωe is the electrical rotor speed (mechanical
speed is ωm = ωe/p, where p is a number of pole pairs),

J
d2ϑe
dt2

=
3

2
p2
(
ψM iSq+(Ld−Lq)iSd iSq

)
−B ωe−p τL (3)

where J and B are moment of inertia and friction coefficient;
ϑe is the electrical rotor position; and τL is a load torque.978-1-7281-9023-5/21/$31.00 © 2021 IEEE



The individual expressions (1), (2) and (3) can be rearranged
into one unified state-space model as follows:

d

dt
x(t) = Ac(ωe)x(t) + Bc u(t)

y(t) = Cx(t)
(4)

where x(t) and y(t) are state and output vectors defined below
and Ac(ωe) and Bc are state and input matrices as follows

Ac(ωe)=


−RS

Ld

Lq

Ld
ωe 0 0 0

−Ld

Lq
ωe −RS

Lq
−ψM

Lq
0 0

0 3
2
p2

J ψM −BJ 0 − p
J

0 0 1 0 0
0 0 0 0 0

, Bc=


1
Ld

0

0 1
Lq

0 0

0 0
0 0

 (5)

Assuming the same inductances Ld ≈ Lq and adequate
compensation of passive, flux current iSd → 0, similarly
for surface-mounted magnet structures, these matrices are

Ac(ωe) =


−RS

LS
ωe 0 0 0

− ωe −RS

LS
−ψM

LS
0 0

0 3
2
p2

J ψM −BJ 0 − p
J

0 0 1 0 0
0 0 0 0 0

, Bc=


1
LS

0

0 1
LS

0 0

0 0
0 0

 (6)

considering single value of inductances LS≡Ld=Lq .
Remaining output matrix C determines required task: speed
control C ≡ Cs or position control C ≡ Cp as follows

Cs =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

, Cp =

 1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 (7)

for speed control with output y = [iSd, iSq, ωe]
T and for po-

sition control with output y = [iSd, iSq, ϑe]
T , respectively.

Thus Ac(ωe) is a varying state matrix with parameter ωe;
Bc is a constant input matrix; and C is a constant output
matrix with unit elements in compliance with the required
task and [iSd, iSq, ωe, ϑe, τL]T is a state vector x(t).

Note, that the two nonlinear terms ωe iSq and ωe iSd
in (1) and (2) respectively are decomposed in (5) and (6)
as in [19]. The rest nonlinear term iSd iSq in (3) is omitted
in (5) with the assumption just below (5). The appropriate
unified state-space model (4) is the initial model for the control
design, i.e. it keeps one structure and identical dimensions
for both speed and position tasks.

III. PREDICTIVE CONTROL DESIGN

A. Definitions of MPC Design

This section outlines essential design terms. A used notation
considers several principal variables:

∆x, x, ∆y, y, ∆u, u, e, w .

They represent increments and absolute values of the system
state, system outputs, control actions u = [uSd, uSq ]T ,
errors and references w = [wiSd

, wiSq
, wωe

]T or w =
[wiSd

, wiSq , wϑe ]T respectively. All variables are considered
and defined as vectors respecting general multidimensional
character of the PMSM model described in Section II.

The MPC algorithms are derived in discrete-time domain
for direct digital implementation. Hence, the MPC design is
evaluated for discretized state-space model (4) as follows:

x̂k+1 = Ad(ωe k) xk +Bd(ωe k) uk

yk = C xk
(8)

where Ad(ωe k) = eAc(ωe k)Ts

and Bd(ωe k) = (Ac(ωe k))−1 (eAc(ωe k)Ts − Inx)Bc

subject to
ymin ≤ yj ≤ ymax, (C xmin ≤ C xj ≤ C xmax)

umin ≤ uj ≤ umax (9)
yj = wj , (C xj = wj)

at all time instants j > 0 and k > 0, where the index
j gradually falls within finite intervals of the time instants
j = k, · · ·, k + N , where k represents an initial time
instant of the appropriate topical finite interval determined
by prediction horizon N and x̂∗ is a prediction of state x∗.
In (8), Ad(ωe k) is a varying state matrix with respect
to the speed ωe. Bd(ωe k) is a varying input matrix as well.
These matrices are determined by the discretization in [20],
as indicated. I is identity matrix of order equal to number
of states nx. C is a constant output matrix. It is identi-
cal for both continuous and discrete-time domains. Hence,
MPC design has to be evaluated for values of speed ωe
from its operating range Ωe ⊂ R. It determines matrices
Ad(ωe) and Bd(ωe).

To achieve incremental and integrative character of MPC
that suppresses undesirable steady-state error, the model (8)
can be written in an incremental form. For simplicity of further
notation only, let us write Ad ≡ Ad(ωe k) and Bd ≡ Bd(ωe k)
keeping dependence on ωe without any change. Then, incre-
mental form of the model (8) is:
x̂k+1 − xk = Ad (xk − xk−1) + Bd (uk − uk−1)

ŷk+1 − yk = CAd (xk − xk−1) + CBd (uk − uk−1)
(10)

Hence, the final condensed form of the incremental model can
be written as follows using difference ∆∗j = ∗j − ∗j−1

∆x̂k+1 = Ad ∆xk + Bd ∆uk

∆ŷk+1 = CAd ∆xk + CBd ∆uk
(11)

This modification will be used in MPC design to obtain one
discrete integrator. In addition to the discrete model (8) or (11),
an evolution model of aggregated control error ēk is considered

ek = wk − yk, ēk = ēk−1 + ek (12)

This modification will be used as a second discrete integrator.
To suppress steady-state error, one integrator is suitable

for zero-order (step) reference signals and two integrators
are suitable for first-order (ramp) reference signals. More-
over, two integrators correspond to usual cascade PI control
in [1]. From practical point of view, the former modification
is sufficient for static or slow-varying applications working
with a finite set of reference points, the latter modification is
sufficient for majority of dynamic applications as continuous
motion control along continuous reference trajectories.



Furthermore, let us define time sequences (sequence vectors
of variables) ∆Ŷk+1, Ŷk+1, ∆Uk, Wk+1, Êk and Wsk, arising
in the MPC design, as follows:

∆Ŷk+1 = [ ∆ŷ Tk+1, ∆ŷ Tk+2, · · ·, ∆ŷ Tk+N ]T (13)

Ŷk+1 = [ ŷ Tk+1, ŷ Tk+2, · · ·, ŷ Tk+N ]T (14)

∆Uk = [ ∆uTk , ∆uTk+1, · · ·, ∆uTk+N−1 ]T (15)

Wk+1 = [ wT
k+1, wT

k+2, · · ·, wT
k+N ]T (16)

Êk = [ ēTk , ˆ̄eTk+1, · · ·, ˆ̄eTk+N−1 ]T (17)

Wsk = [ 0T, wTk+1,(
2∑
i=1

{wk+i})T, · · ·,(
N−1∑
i=1

{wk+i})T ]T (18)

Finally, control parameters QYW , Q∆Y and Q∆U are:

Q� =

Q
T
∗
Q

∗
0

. . .
0 QT

∗
Q

∗


∣∣∣∣∣∣∣

subscripts �, ∗ :

� ∈ {YW, ∆Y, ∆U}
∗ ∈ {yw, ∆y, ∆u}

(19)

which weigh individual terms in a MPC criterion.

B. Optimality Criterion and Quadratic Cost Functions

In this paper, the design criterion is defined as follows

min
∆Uk

Jk(Ŷk+1, ∆Ŷk+1, ∆Uk,Wk+1) (20)

subject to : ∆x̂k+j = Ad ∆x̂k+j−1 +Bd ∆uk+j−1,

∆ŷk+j = C ∆x̂k+j , ∀ j = 1, · · · , N
(ymin =)C xmin ≤ C xj ≤ C xmax (= ymax),

umin ≤ uj ≤ umax and ωe k = x(3)k for Ad and Bd

where x(3)k denotes the third element of the state vector
xk = [iSd, iSq, ωe, ϑe, τL] Tk in the recent time instant k.
Thus, one particular value ωe serves for the determination
of matrices Ad and Bd for a computation of corresponding
control-law gains within one particular prediction horizon N .
Appropriate cost function in (20) is expressed for one involved
integrator leading to the first MPC algorithm

Jk = (Ŷk+1 −Wk+1)TQYW (Ŷk+1 −Wk+1)

+ ∆Ŷ Tk+1Q∆Y ∆Ŷk+1 + ∆UTk Q∆U∆Uk (21)

or for two integrators leading to the second MPC algorithm

Jk = (Ŷk+1−Wk+1− Êk)TQYW (Ŷk+1−Wk+1− Êk)

+ ∆Ŷ Tk+1Q∆Y ∆Ŷk+1 + ∆UTk Q∆U∆Uk (22)

A number of discrete integrators will be obvious from MPC
algorithms summarized in the following subsection.

C. Explicit MPC Algorithms

Using definitions in [15] and cost functions (21) and (22),
the off-line minimisation of (20) dJk

d∆uk
= 0 leads to the explicit

MPC control laws used on-line:
• first MPC algorithm (one discrete integrator)

∆uk :=Ke(ωe k)(Wk+1−[I, · · ·, I]T yk)−K∆x(ωe k)∆xk (23)
uk := uk−1 + ∆uk (24)

• second MPC algorithm (two discrete integrators)

ēk := ēk−1 + wk − yk (25)
∆uk := Kē(ωe k) ēk +KWL(ωe k)Wk+1

−Ky(ωe k) yk −K∆x(ωe k) ∆xk
(26)

uk := uk−1 + ∆uk (27)

where Ke(·), K∆x(·), Kē(·), KWL(·) and Ky(·) are gains
for current value ωe k. New gain label KWL(ωe k) arises
from the following rearrangement

KWL(ωe k)Wk+1 = KW (ωe k) (I + L)Wk+1

= KW (ωe k) (Wk+1 +Wsk) (28)

where matrix L = [ tril(1N ,−1) ⊗ Iny
] includes sums indi-

cated in Wsk, tril is a lower triangular selection from matrix
of ones of order N on the −1 diagonal and below, and ⊗
denotes Kronecker product with identity matrix I of ny order
equivalent to motor outputs, see Sec. II, above (7). The gain
values have continuous and smooth profiles, domains of which
are identical with range Ωe (ωe k ∈ Ωe) relating to a specific
PMSM application. Note that the constrains (9) in (20) are
solved independently according to [15], [21].

IV. GAIN-SELECTION FROM EXPLICIT SETS

Let us consider for simplicity the first MPC algorithm
with only two gains Ke(ωe) and K∆x(ωe). The gain Ke(ωe)
depends on the length of prediction horizon N , i.e. Ke(ωe)
is a matrix of type R (2, 3N), whereas K∆x(ωe) is a matrix
of fixed type R (2, 5). An example of the gain profiles and ap-
proximations is shown in Fig. 1 and Fig. 2.

Ke (2, 3)|1:

Ke (2, 3)|2:

Ke (2, 3)|3:

Ke (2, 3)|4:

Fig. 1. Gain profiles Ke(ωe)(2, 3N) = [ke(i = 1, 2; j = (1, 2, 3)

+ 3 (k − 1))|k=1,···,N ]; N = 4 (in rows).

KDx (1, 5):

KDx (2, 5):

Fig. 2. Gain profiles KMx(ωe)(2, 5)=[kMx(i=1, 2; j=1, 2, · · ·, 5)].



The profiles of individual gain elements are continuous
and smooth. They can be simply selected using polynomials
with only one parameter ωe. The orders of the polynomials de-
pend on curve shapes. However, for PMSM drives, the second-
order polynomials are sufficient:
k(·) i,j = p(ωe) = p(0,i,j) + p(1,i,j) ωe + p(2,i,j) ω

2
e (29)

= p(0,i,j) + ωe ( p(1,i,j) + p(2,i,j) ωe)

where indexes i, j correspond to the types of gain matrices.
Such selection gives appropriate explicit MPC gains from their
pre-computed sets generally for whole operating range Ωe
of the motor. Furthermore, it has reasonable memory de-
mands since values for the whole Ωe are stored by finite
number of coefficients of the polynomials p(ωe), e.g. a number
of the coefficients for the first algorithm is

(2× 3N)× 3 coeff.+ (2× 5)× 3 coeff.

= (18N + 30) coeff.
(30)

i.e. for N = 4, the total number is 102 coefficients for 34
polynomials (29). The coefficients of the polynomials can be
simply determined by MATLAB function ’ polyfit ’:

p(0,1,2) i,j = polyfit (Ωe, k(·) i,j , n) (31)

The second order polynomial (29), i.e. n = 2, can describe
arbitrary constant values, straight lines or parabola curves.

V. IMPLEMENTATION

In this section, the real implementation will be described.
This includes the following: the description of basic configura-
tion or logical parts of the control unit with embedded explicit
MPC algorithms defined in Section III-C, sensor quantization
in off-line MPC design, description of used control unit
LX RoCoN ( [17]) and information on parameters of used
PMSM. Discussed issues are generally applicable to PMSM
and or BrushLess DC or AC motors, i.e. BLDC or BLAC
motors.

A. Block Diagram of MPC Implementation

The block diagram of the MPC implementation is shown
in Fig. 3. The diagram corresponds to the real implementation
in FPGA unit that will be described in Section V-B. The in-
dividual logical blocks of the diagram are as follows:
‘Reference Signal Generator’ generates reference values either
for speed or position according to the required control task.
Reference generation is given by simple time-parameterized
polynomial profiles evaluated on-line, whereas reference com-
position is in fact lookup table value selection e.g. as in [9].
‘Position/Speed’ block selects proper signals and ensures field
weakening in speed control, [15].
‘Predictive Control Law’ block realises MPC control algo-
rithms (23)-(24) and (25)-(27) including on-line gain selection
by adequate polynomials (29) by the recent ωe.
Transformation blocks are represented by the expressions:
• ‘Forward Clarke Transformation’: currents[

iSα
iSβ

]
=

[
1 0 0
0 1√

3
− 1√

3

] iSA
iSB
iSC

 (32)
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Speed
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PMSM

IRC
HALL

Current
ADC

iA

iB
iC

Inverse Park
Transformation

d, q
to alpha, beta

Inverse Clarke
Transformation

alpha, beta
to A, B, C PWM

Predictive
Control

Law
in d, q

Reference Signal Generator
ϑew / ωew

uA

uB

uC

Explicit Predictive Controller Controller Outputs and PWM

ϑe

iSd

iSq

Position
Sensing

Fig. 3. Block diagram of MPC implementation.

• ‘Forward Park Transformation’: currents[
iSd
iSq

]
=

[
cosϑe sinϑe
− sinϑe cosϑe

][
iSα
iSβ

]
(33)

• ‘Inverse Park Transformation’: voltages[
uSα
uSβ

]
=

[
cosϑe − sinϑe
sinϑe cosϑe

][
uSd
uSq

]
(34)

• ‘Inverse Clarke Transformation’: voltages uSA

uSB

uSC

=

 1 0

− 1
2

√
3

2

− 1
2 −

√
3

2


[
uSα
uSβ

]
(35)

Prior to power blocks connecting control unit with real PMSM,
it is desirable to suppress passive components of phase volt-
ages. Such suppression can be done as follows

umin = min(uSA, uSB , uSC)

uSA = uSA − umin

uSB = uSB − umin

uSC = uSC − umin

(36)

Note that this suppression is independent of a stator winding
configuration (star or delta), but it corresponds to the rotor po-
sition. It also applies to currents in (32).
‘Current ADC’ is current analog-to-digital converter.
‘HALL’ is a HALL-effect sensor serving for initial approx-
imate rotor position determination, i.e. the determining one
of six sectors of the rotor.
‘IRC’ is an incremental rotary encoder sensor synchronized
by HALL sensor with correction given by calibration index.
This index relates to the electrical revolution of the rotor.
IRC generates pulses corresponding to the recent increment
of the rotor position ϑe only.
‘Position Sensing’ block processes data of IRC and HALL
sensors. The initial rough sector position of the rotor is
given by HALL sensor. Once the index from IRC sensor
appears, then the precise rotor alignment is maintained in this
block. Since only position is available, relating speed ωe
has to be estimated. For off-line control design as well as
for on-line Explicit Predictive Controller laws, the sufficient
estimation can be performed by backward Euler substitution

ωe k =
ϑe k − ϑe k−1

Ts
(37)



Furthermore, during off-line control gain design stage, sensor
quantisation should be emulated, i.e. simulated position should
be quantised as follows

ϑe k =
2π

mn
round (

ϑe k mn

2π
) (38)

where mn is a sensor resolution, i.e. number of marks per revo-
lution. It leads to more conservative gain design more suitable
for real use.

Finally, in on-line stage, the designed control actions ac-
cording to (24) or (27) as well as instant increments of control
errors ∆ēk = wk−yk in (25) have to be saturated with respect
to the physically admissible PMSM behavior.

B. Description of Used Control Unit

Control unit, used for MPC algorithm implementation, was
LX RoCoN shown in Fig. 4, [17]. It consists of two boards,
where one board serves for computation and outer communi-
cation and the second board is power board generating power
signals for connected real PMSM:
• LX CPU board (size: 120×80×20 mm) NXP LPC4088
(Cortex-M3/M4F) with CPU Xilinx XC6SLX9 FPGA includes
four IRC sensors interfaces with two phases, index and mark
differential inputs per axis;
• LX PWR board (size: 130×100×40 mm) is isolated power
stage with 16 power outputs/half-bridges up to 30 VDC
and 5 A maximum current, DC/DC converter and helper
supply for bridges with current measuring for each controlled
output/phase.

C. PMSM and its parameters used for experiments

For the real experiments in this paper, three-phase AC
PMSM BLWR233D drive of the Anaheim Automation Co.
is considered. Its catalogue parameters are listed in Ta-
ble I. The parameters were verified by comparative simulation
and experiment for free response on step signals of input
votages uSd and uSq.

Fig. 4. Control Unit LX RoCoN ( [17]) and PMSM.

Fig. 5. Speed ωe and error e3 (first algorithm).

VI. REAL EXPERIMENTS

As mentioned, real experiments were done on the PMSM
BLWR233D with the control unit LX RoCoN, see Fig. 4.
Initially, the experiment of speed control by the first MPC
algorithm is in Fig. 5. It shows zero or zero-symmetric control
error e3 in speed ωe. The used reference signal consists
of zero-order steps only, therefore the first MPC algorithm
with one discrete integrator is sufficient. Noticeable oscillation
is caused by the sensor quantisation and speed estimation (37),
but it does not influence the course of the position ϑe. Further
experiments are focused on the position control. The used
reference signal consists of zero-order step and first-order
ramp segments.

The results for the first MPC algorithm are demonstrated
in Fig. 6. The left part of this figure shows the zero position
error for the step segments of reference signals, but non-
zero steady-state error for the ramp segments. The measured
time histories of currents iSd and iSq (Fig. 6 in the middle)
as well as the designed input voltages uSd and uSq (Fig. 6
on the right) are adequate with respect to step references
and moderate in amplitudes. However, for the ramp signals,
they are weak. Only one involved integrator is insufficient.
Nevertheless, the first MPC algorithm is suitable as the energy
efficient motion control for simple repeated manipulation
operations that do not require accurate trajectory tracking
but several steady positions. The results for the second MPC
algorithm are demonstrated in Fig. 7. The left part of this
figure shows that the position error tends to zero for the whole
time interval of the position control experiment both for step
and ramp segments of the reference signal. The position ϑe
closely follows these segments.

In case of sudden changes in the reference signal (sharp
steps or sharp turns), slight overshoots occur. It is caused
by the forceful effect of two discrete integrators in the control
circuit. Time histories of input voltages uSd and uSq (designed
control actions according to control laws (25) - (27), Fig. 6
and 7 on the right) correspond to this feature of the double
integration. The input voltages are characterized by the sharp
signal edges that can be slightly modified by the parameter
Q∆u in the appropriate cost function. The parameter Q∆u

determines the weight of the control action increment ∆u com-
pared with expected control error and other terms of the cost
function.

From practical point of view, the managing of the mo-
tion control along the first-order ramp segments is sufficient
for the majority of motion control applications, where cou-
pled complex reference trajectories or individual reference
signals of arbitrary order can or are usually approximated
by first-order infinitesimal line segments.

VII. CONCLUSION

The paper introduced the unified state-space model repre-
sentation for speed and position motion control of PMSM
drives by the explicit MPC algorithms. The detail description
of low-cost implementation was addressed. Real experiments
proved the proposed off-line computations and approximations



Fig. 6. Position ϑe and error e3 (left); currents iSd and iSq (middle); and voltages uSd and uSq (right) (first algorithm).

Fig. 7. Position ϑe and error e3 (left); currents iSd and iSq (middle); and voltages uSd and uSq (right) (second algorithm).

TABLE I
PARAMETERS: PMSM BLWR233D-36V-4000

Symbol Description Value

P rated power 95 W (Watt)
RS stator resistance 0.64 Ω (Ohm)
LS stator inductance 0.0021 H (Henry)
ΨM PM rotor magnetic flux 0.0200077 Wb (Weber)
B viscous friction coef. ≈ 0 kg·m2·s−1

p number of pole pairs 4
J moment of inertia 1.1934·10−5 kg·m2

TABLE II
PARAMETERS: FIRST MPC ALGORITHM

Symbol Description Speed Ctrl Position Ctrl

N horizon of prediction 4
Qyw out. penalization diag(8, 4, 8) diag(1, 1, 50)
Q∆y out. incr. penalization diag(80, 600, 10) diag(1, 5, 400)
Q∆u in. incr. penalization diag(100, 250) diag(3, 3)
Ts sampling period 0.000250 s

TABLE III
PARAMETERS: SECOND MPC ALGORITHM

Symbol Description Speed Ctrl Position Ctrl

N horizon of prediction 4
Qyw out. penalization diag(16, 1, 6) diag(1, 1, 60)
Q∆y out. incr. penalization diag(1, 6, 40) diag(1, 4, 600)
Q∆u in. incr. penalization diag(200, 800) diag(3, 3)
Ts sampling period 0.000250 s

of the gains and on-line control by the explicit MPC laws
based on the fast selection of the approximated gains.
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