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Abstract

The zero-inflated Poisson regression model is a generalized linear model (GLM) for
non-negative count variables with an excessive number of zeros. This letter proposes its
low-cost distributed sequential inference from streaming data in networks with information
diffusion. The model is viewed as a probabilistic mixture of a Poisson and a zero-located
Dirac component, whose probabilities are estimated using a quasi-Bayesian procedure.
The regression coefficients are inferred by means of a weighted Bayesian update. The
network nodes share their posterior distributions using the diffusion protocol.

1 Introduction

Fully distributed sequential (online) modeling of various stochastic processes from streaming
data in networks with information diffusion is an established discipline in the signal processing
domain [2, 1, 3]. Naturally, the main focus has been given to continuous variables that abound
in practice. This originally gave rise to the diffusion recursive least squares [4], least mean
squares [5, 6, 7], or Kalman filters [8, 9], followed by many variants. The continuous data
models are frequently used for discrete counts data and work well if the values are high
enough. However, for low counts and/or excessive zeros they are doomed to fail and the use
of the generalized linear models (GLMs) is inevitable [10, 11].

In order to reflect the popularity of count models in epidemiology, finance, transporta-
tion, physics, or networking [12], a collaborative method for sequential (online) inference of
the Poisson regression model was recently proposed by the authors [13]. The present paper ex-
tends it to the zero-inflated cases, where the excessive number of zeros cannot be attributed to
the Poisson distribution [14]. There are several novel aspects. First, the problem is formulated
as a mixture estimation task, where the excessive zeros are due to a Dirac distribution located
at 0. The sequential estimation exploits the quasi-Bayesian idea [15], proposed originally for
the linear regression models. Next, the inference of the Poisson component is stabilized for
zero measurements. Finally, a procedure for merging the posterior estimates in a network of
collaborating agents is proposed.

2 The ZIP Model

Let us consider a sequential (online) discrete-time modeling of a streaming stochastic process
{Yt; t = 1, 2, . . .} with observations yt ∈ N0 that are mutually independent. The variables
Yt are determined by the regressors xt ∈ Rn, and a vector of possibly slowly time-varying
unknown regression coefficients βt ∈ Rn. The link between the linear predictor βᵀt xt and
observations yt characterizes the GLM [10]

E[Yt|xt, βt] = exp(βᵀt xt), (1)

where exp(·) – the inverse link function – provides the Poisson regression [10, 11]

Yt|xt, βt ∼ P (exp(βᵀt xt)) . (2)

Recently, we formulated a Bayesian procedure for its sequential estimation from streaming
data [13]. However, in many applications the counts tend to include significantly more zeros



than expected by the Poisson distribution [12]. In this case we need to adopt the zero-inflated
Poisson distribution (ZIP) [14],

Yt ∼ ZIP (exp(βᵀt xt), φt) , φt ∈ [0, 1], (3)

whose probability density function is expressed [14]

f(yt|xt, βt, φt)=

{
φt+(1−φt) exp (− exp(βᵀt xt)) if yt = 0,

(1−φt) exp(β
ᵀ
t xtyt−exp(β

ᵀ
t xt))

yt!
otherwise.

Apparently, it is possible to represent the ZIP distribution (3) by a convex combination (prob-
abilistic mixture) of the Dirac distribution located at the origin, and a Poisson distribution,

Yt|xt, βt, φt ∼ φtDirac(0) + (1− φt)P (exp(βᵀt xt)) . (4)

The probability density then reads

f(yt|xt, βt, φt) = φt δ0 + (1− φt)fP(yt|xt, βt), (5)

where δ0 is the Dirac measure at 0, and fP(·) is the Poisson density

fP(yt|xt, βt) =
exp(βᵀt xtyt − exp(βᵀt xt))

yt!
. (6)

The subscripts D and P will denote the respective distributions in the sequel. The expected
value and the variance are

E[Yt|xt, βt, φt] = (1− φt) exp(βᵀt xt), (7)

var(Yt|xt, βt, φt) = (1− φt) [exp(βᵀt xt) + φt exp(2βᵀt xt)] . (8)

3 Sequential Estimation

The ZIP regression model inference faces two major difficulties. First, with the exception for
the linear regression, the Bayesian inference of (even basic) GLMs cannot be performed with-
out approximations due to the non-existence of convenient conjugate prior distributions. This
issue is particularly pronounced in sequential (online) modeling with limited computational
performance and time, making the otherwise dominant MCMC-based inference of GLMs [11]
inapplicable. Second, the ZIP model is a mixture model, which increases the problem com-
plexity. For the basic Poisson regression model, the method proposed in [13] provides the
solution to the first difficulty.

3.1 Estimation of φt

We assume that at each time instant t = 1, 2, . . . the measurement yt is generated by a single
active component kt ∈ {D,P}. With probability φt it is the Dirac component, and with
probability 1 − φt it is the Poisson component, cf. Formula (5). The joint density of (yt, kt)
thus reads

f(yt, kt|xt, βt, φt) = [φt δ0]
1D(kt)

× [(1− φt)fP(yt|xt, βt)]1P (kt) , (9)



where 1D(kt) and 1P(kt) are the indicators of the Dirac and Poisson component, respectively.
They are equal to 1 if the component is active at time t, and 0 otherwise. The sequential
Bayesian estimation of regression coefficients βt and component probabilities φt relies on the
joint prior density

π(βt, φt|Xt−1, Yt−1,Kt−1) = π(βt|Xt−1, Yt−1,Kt−1)

× π(φt|Xt−1, Yt−1,Kt−1), (10)

where Xt−1 = {x0, . . . , xt−1}, Yt−1 = {y0, . . . , yt−1}, and Kt−1 = {k0, . . . , kt−1} symbolize the
past regressors, measurements, and active components. The values x0, y0, and k0 stand for
the initial knowledge.

Recall, that the component probability φt ∈ [0, 1]. This advocates the use of the beta
distribution as the convenient prior distribution for its estimation. We denote its hyperpa-
rameters κD,t−1 and κP,t−1. The density then has the form

π(φt|Xt−1, Yt−1,Kt−1) ∝ φ
κD,t−1−1
t (1− φt)κP,t−1−1, (11)

where ∝ stands for equality up to the normalizing constant. The prior distribution (10) for
βt and φt is sequentially updated by new data yt and xt by virtue of the Bayes’ theorem,

π(βt, φt|Xt, Yt,Kt)

∝ p(yt, kt|xt, βt, φt)π(βt, φt|Xt−1, Yt−1,Kt−1)

∝ [φt δ0]
1D(kt) · [(1− φt)fP(yt|xt, βt)]1P (kt)

× φκD,t−1−1
t (1− φt)κP,t−1−1

× π(βt|Xt−1, Yt−1,Kt−1). (12)

A careful inspection of (12) reveals that there are two separate updates. First, the values
1D(kt) and 1P(kt) enter the beta distribution hyperparameters κD,t−1 and κP,t−1. Second,
the pair xt and yt updates the prior distribution for βt.

Since the active components indicators are not available, we take advantage of the quasi-
Bayesian procedure [15] and replace them by their point estimates. For the moment, assume
both φt and βt constant – their time-varying nature will be solved in Sec. 3.3. The prior
expected value of φt from the beta distribution then reads

E[φt|Xt−1, Yt−1,Kt−1] =
κD,t−1

κD,t−1 + κP,t−1
. (13)

Now, using the Poisson component prior predictive likelihood fP(yt|xt, Xt−1, Yt−1,Kt−1) we
have

1̂P(kt) ∝ (1− E[φt|Xt−1, Yt−1,Kt−1])

× fP(yt|xt, Xt−1, Yt−1,Kt−1), (14)

1̂D(kt) = 1− 1̂P(kt), (15)

where

fP(yt|xt, Xt−1, Yt−1,Kt−1)

=

∫
fP(yt|xt, βt)π(βt|Xt−1, Yt−1,Kt−1)dβt. (16)



This prior predictive likelihood is not analytically tractable, but since the Dirac distribution
is concentrated at a single point, we can proceed with the plug-in principle and substitute
the prior point estimate β̂t directly into the Poisson model,

fP(yt|xt, Xt−1, Yt−1,Kt−1) ≈ fP(yt|xt, β̂t). (17)

The same process applies to the Dirac component where the situation is trivial as it covers
only the cases yt = 0. From (12), (14) and (15),

κD,t = κD,t−1 + 1̂D(kt) and κP,t = κP,t−1 + 1̂P(kt). (18)

3.2 Approximate estimation of βt

From (12) and (14), the posterior distribution of the regression coefficients βt is given by the
weighted Bayesian update

π(βt|Xt, Yt,Kt) ∝ [fP(yt|xt, βt)]1̂P (kt)

× π(βt|Xt−1, Yt−1,Kt−1). (19)

The Poisson component fP(yt|xt, βt) defined in (6) does not admit any convenient conjugate
prior. However, it can be written [16]

fP(yt|xt, βt) =
exp(βᵀt xt(yt + c)− exp(βᵀt xt))

yt!

1

exp(cβᵀt xt)
(20)

where c > 0. It was shown in [17] that the densities proportional to the first fraction can be
approximated by the Gaussian densities. In our paper [13] we modified this approximation
(first used for static Poisson regression in [18]) by a linear regression-based calibration that
improves the approximation quality for low counts. The results corresponds to N (µt, σ

2
t )

where

µt = log(yt + c)− 0.5574

yt + c
,

σt =
1√
yt + c

+
0.0724

yt + c
+

0.2121

(yt + c)2
. (21)

The role of c becomes evident from (21): while zero measurements yt = 0 are rare in the
‘pure’ Poisson regression presented in [13] and can be safely discarded, the ZIP model admits
excessive zeros that should be appropriately processed. This stabilization idea is due to Chan
and Vasconcelos [16] who also suggest that the value c = 1 yields best results.

Now, if we use a convenient distribution N (bt−1, Pt−1) with bt−1 ∈ Rn and Pt−1 ∈ Rn×n
as the prior for βt, then the update (19) has the form

π(βt|Xt, Yt,Kt)

∝ exp

(
−1

2
(βᵀt xt − µt)2σ

−2
t − cβ

ᵀ
t xt

)
1̂P (kt)

× exp

(
−1

2
(βt − bt−1)ᵀP−1t−1(βt − bt−1)

)
= exp

(
−1

2

[
−1
βt

]ᵀ
1̂P(kt)T (xt, yt)

[
−1
βt

])
× exp

(
−1

2

[
−1
βt

]ᵀ [
bᵀt−1
I

]
P−1t−1

[
bᵀt−1
I

]ᵀ [−1
βt

])
, (22)



where the T (xt, yt) is the sufficient statistic

T (xt, yt) = σ−2t

[
µ2t (µt − cσ2t )x

ᵀ
t

xt(µt − cσ2t ) xtx
ᵀ
t

]
. (23)

From the multiplication of the last two rows in (22) it follows that the weighted Bayesian
update approximately results in N (bt, Pt) where

Pt =
(
P−1t−1 + 1̂P(kt)σ

−2
t xtx

ᵀ
t

)−1
,

bt = Pt

(
P−1t−1bt−1 + 1̂P(kt)σ

−2
t xt(µt − cσ2t )

)
. (24)

A similar result for the static Poisson regression without calibration is derived in [16].

3.3 Time-varying parameters βt and φt

In a majority of real-world cases, the model parameters are not constant. If they vary suffi-
ciently slowly, the idea of gradual discounting of older data from the last posterior distribution
from time t− 1 by exponential forgetting can be used [19, 20]. For βt it amounts to exponen-
tiation by αβ ∈ [0, 1],

π(βt|Xt−1, Yt−1,Kt−1) = [π(βt−1|Xt−1, Yt−1,Kt−1]
αβ , (25)

which obviously inflates the prior covariance matrix,

Pt−1 ← αβPt−1. (26)

Analogously, the evolution φt−1 → φt is facilitated by exponentiation by αφ ∈ [0, 1],

π(φt|Xt−1, Yt−1,Kt−1) = [π(φt−1|Xt−1, Yt−1,Kt−1)]
αφ , (27)

which results in the prior hyperparameters at time t

κD,t−1 ← αφκD,t−1 and κP,t−1 ← αφκP,t−1. (28)

The hyperparameters of the respective distributions are then updated as described in the
previous sections.

4 Diffusion estimation

Now suppose that we have a network consisting of a set I of agents that independently

observe the process Y
(i)
t ∼ ZIP (exp(βᵀt x

(i)
t ), φt), where βt and φt are global, i.e., identical for

all i ∈ I, while the observations y
(i)
t and the regressors x

(i)
t are local. Next, suppose that at

each time instant t, all agents may perform one mutual exchange of their posterior densities
π(i)(βt, φt|·) with all their adjacent neighbors within 1 network hop distance. That is, the ith
node can access posterior densities of its closed neighborhood I(i).

The goal of the distributed estimation is to merge the available posterior densities in
a way consistent with the Bayesian information processing. Let us first focus on π(j)(φt|·)
of neighbors j ∈ I(i). They are beta densities (11), whose hyperparameters κ

(j)
D,t and κ

(j)
P,t



accumulate the information about the expected components activity, see (18). The merging
rule

κ̄
(i)
D,t =

1

|I(i)|
∑
j∈I(i)

κ
(j)
D,t, κ̄

(i)
P,t =

1

|I(i)|
∑
j∈I(i)

κ
(j)
P,t, (29)

where |I(i)| denotes the cardinality of I(i) thus corresponds to an averaged – uniformly
weighted – Bayesian update by the data of the neighbors j ∈ I(i).

The same reasoning applies to merging of the posterior densities π(j)(βt|·). Since they are
normal, the result is known as the covariance intersection,

P̄
(i)
t =

 1

|I(i)|
∑
j∈I(i)

P
−1,(j)
t

−1 ,
b̄
(i)
t = P̄

(i)
t

 1

|I(i)|
∑
j∈I(i)

P
−1,(j)
t b

ᵀ,(j)
t

 . (30)

The hyperparameters (29) and (30) serve as the local prior hyperparameters at the next time
step. We emphasize that these results are Kullback-Leibler-optimal [21]. Due to page limits,
more details and analyses are postponed to future publication.

Algorithm 1 Diffusion ZIP Regression

For each agent i ∈ I set the initial hyperparameters κ
(i)
D,0, κ

(i)
P,0 and the prior distribution

N (b
(i)
0 , P

(i)
0 ). Set the forgetting factors ακ, αβ. For t = 1, 2, . . . and each node i ∈ I do:

Local estimation:

1. Gather observations x
(i)
t , y

(i)
t .

2. Flatten the prior distributions, Eqs. (26) and (28).

3. Calculate the component membership indicators 1̂D(k
(i)
t ), 1̂P(k

(i)
t ), Eqs. (14) and (15).

4. Update the prior of φt, Eq. (18).

5. Update the prior of βt, Eq. (24).

Combination:

1. Get posterior densities π(j)(φt|·) and π(j)(βt|·) of neighbors j ∈ I(i).

2. Combine the posterior hyperparameters of φt, Eq. (29).

3. Combine the posterior hyperparameters of βt, Eq. (30).

5 Illustrative examples

Two simulation examples follow. Since to the authors’ best knowledge no sequential ZIP
regression algorithms exist, the examples study the convergence to the true parameter values.
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Figure 1: Example 1: The evolution of the real and estimated values of β (top) and φ
(bottom).

The first example demonstrates the performance of the estimation method proposed in
Sec. 3, i.e., without any network and collaboration. The simulated observations follow the
ZIP regression process with the time-invariant parameters β = [0.5, 1.1]ᵀ, φ = 0.4, and
regressors xt ∼ U ([0.9, 2.0]× [0.1, 1.6]) , t = 1, . . . , 500. The forgetting factors αβ = αφ = 1,
and the additive constant c = 1. The initial prior distribution for β is normal with the mean
b0 = [0, 0]ᵀ and the covariance matrix P0 = 100 · I where I ∈ R2×2 is the identity matrix.
The prior for φ is beta with κD,0 = κP,0 = 1. Fig. 1 depicts the evolution of estimates of β
and φ. Apparently, the estimates quickly converge to the true parameter values.

The second example demonstrates the performance of the proposed method in the coop-
erative mode. Two scenarios are compared: (i) the ‘combination’ scenario using Algorithm
1, and (ii) the isolated ‘no combination’ scenario without any collaboration among nodes.
Fig. 2 depicts the randomly generated diffusion network of 50 nodes. Each node i observes
independently generated outcomes of a ZIP regression process simulated with the parameters

φt = 0.4 + 0.03 · sin
(
π · t

500

)
,

βt =

 0.5 + 0.1 · sin
(
π · t

500

)
0.1 + 0.05 · cos

(
2π · t

500

)
−0.2 + 0.02 · sin

(
3π · t

500

)
 , t = 1, . . . , 500,

and randomly generated regressors x
(i)
t ∼ U ([0, 5]3). The initial setting is identical for all

i ∈ I: βt is modeled as normal with b
(i)
0 = [0, 0, 0]ᵀ and P

(i)
0 = 100·I; φt is modeled as beta with

κD,0 = κP,0 = 1. The additive constant c = 1 and the forgetting factors αβ = 0.98, αφ = 0.99.
The results are averaged over 100 independent runs and all network nodes.



Figure 2: Example 2: Network topology used in the simulation.

Fig. 3 depicts the evolution of ARMSE – RMSE averaged over all elements of βt, and
RMSE for the estimates of φt. The collaborative estimation clearly improves the overall
quality of estimates. Fig. 4 shows the evolution of raw estimates at a randomly selected node.
Apparently, collaboration significantly improves estimation of time-varying parameters.

6 Conclusion

The proposed method allows reliable sequential estimation of parameters of the zero-inflated
Poisson regression model from streaming data. The analytically tractable solution and the
adopted communication protocol make the computational, memory, and communication re-
quirements very low. The future work will focus on the ZIP models with multiple Poisson
components, where the predictive likelihood (16) needs to be reasonably approximated. The
full adapt-then-combine (ATC) strategy [2] will be adopted and properties of the whole frame-
work will be thoroughly analyzed.
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Figure 3: Example 2: Evolution of the ARMSE of the estimates of βt (top) and RMSE of the
estimates of φt (bottom) averaged over all network nodes and 100 independent experiment
runs.
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