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Summary

Any knowledge extraction relies (possibly implicitly) on a hypothesis about the
modelled-data dependence. The extracted knowledge ultimately serves to a decision
making (DM). DM always faces uncertainty and this makes probabilistic modelling
adequate. The inspected black-box modelling deals with “universal” approximators
of the relevant probabilistic model. Finite mixtures with components in the expo-
nential family are often exploited. Their attractiveness stems from their flexibility,
the cluster interpretability of components and the existence of algorithms for pro-
cessing high-dimensional data streams. They are even used in dynamic cases with
mutually dependent data records while regression and auto-regression mixture com-
ponents serve to the dependence modelling. These dynamic models, however, mostly
assume data-independent component weights, i.e. memoryless transitions between
dynamic mixture components. Such mixtures are not universal approximators of
dynamic probabilistic models. Formally, this follows from the fact that the set of
finite probabilistic mixtures is not closed with respect to the conditioning, which
is the key estimation and predictive operation. The paper overcomes this drawback
by using ratios of finite mixtures as universally approximating dynamic parametric
models. The paper motivates them, elaborates their approximate Bayesian recursive
estimation and reveals their application potential.
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1 INTRODUCTION

The paper serves to dynamic decision making (DM) understood as a targeted choice among available actions (options) influenc-
ing dynamically evolving system. DM seen in this way strongly overlaps with machine learning1, signal processing,2, hypothesis
testing3, classification4, knowledge sharing5, reinforcement learning6, control7, adaptive control? , etc. All these areas benefit
from an enrichment of the domain knowledge by that hidden in recorded data. This “data mining” is an extremely broad domain
with many results and applications, e.g.8. Even surveys specialise, for instance, to Internet of Things9, cyber-security10, etc.
Paper Focus: The paper contributes to clustering of data streams11 with dynamically bonded data records12. Importance of

such a processing is well seen on specific applications, for instance in geophysics13 or on a stream clustering of independent
data records14. Our paper provides universal approximators1 of dynamic models and their recursive estimation.

1We adopt this intuitive notion used in connection with neural networks 15. Formally, it means that universal approximators form a dense subset of a set of functions
they approximate. Their rigorous specification in various sets of approximated functions are, for instance, in 16,17,18,19. They contain a range of other common references.
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DM View on Data Stream Processing: A solution of a DM task leads to a strategy, i.e. a collection of decision rules mapping
the evolving knowledge on actions20. A good prescriptive DM theory should provide a strategy, which meets user’s DM aims
in the best possible way. The adopted Bayesian DM21 is such a theory coping with incomplete knowledge, uncertainty and
randomness of the system to which actions relate. Bayesian DM links DM consequences to the acquired knowledge and actions
by conditional distributions. Here, conditional probability densities (pd2) describe them.
Actions are chosen sequentially. This enables to operate on gradually enriched knowledge, to learn better the system model

in a single pass only. Adaptive control? 23 fully relies on this feature. Bayesian data stream processing updates a statistic, ideally
a sufficient one. Thus, it may serve as a knowledge, feature or cluster extractor suitable to all areas mentioned above.
Addressed Modelling Problem: An estimation is possible iff the inspected relations hold during the knowledge accumulation.

The most general case relies on invariant mappings describing stochastic state-space model and leads to stochastic filtering24.
This paper deals with a simpler case3 and uses parametric, black-box, probabilistic models relating a few adjacent data records. It
is a priori unknown, which parameter points to the best model. Bayesian paradigm offers the unambiguous deductive estimation
via Bayes’ rule26. It accumulates the knowledge into the posterior pd and redistributes this belief about the model adequacy27.
The modelling and thus DM quality depend on the model set over which the belief redistributes. For a fixed condition, any

smooth pd, describing data-records dependence, can be arbitrarily-well approximated by a finite mixture of conditional pds
(components)18. Components may have the same functional form, say Gaussian one, but differ in their parameters. Various
versions of this ability to approximate “universally” were proved in neural-network context28. Zero-memory models with a fixed
trivial condition are universally approximable by mixtures with constant component weights29. In the inspected dynamic case
with a non-trivial condition, the component weights should depend on it, too. The common use of the condition-independent
weights of dynamic components goes against the expansion logic and surely violate universal approximation property. Rare
exceptions that considered condition-dependent weight30,31,32 indicate howmuch is lost when using constant component weights.
The paper offers ratios of finite mixtures with components in the exponential family (EF)33 as black-box,34, universally

approximating, dynamic models15. It develops, inevitably approximate, but feasible Bayesian recursive estimation of models
from this extremely rich but yet unconsidered model set. Note that the thesis35 and the conference paper36 consider it but they
are direct predecessors of this paper.
Layout: The paper relies on an approximate Bayesian recursive estimation37. Its recall in Sec. 2 makes the paper self-

containing and prepares notations. Sec. 3 justifies themixture ratiomodels and Sec. 4 elaborates their estimation. Sec. 5 illustrates
the theory. Sec. 6 outlines the gained application potential.
Common Notation: The bold symbolX denotes a set ofXs. It is a subset of either finite-dimensional real space or it consists

of pds. Its exact specification is only given when needed. |X| marks cardinality of X. Random variables, their realisations and
function arguments are undistinguished. The meaning follows from the context. Mappings, marked by san serif fonts, are taken
as different if labels of their arguments differ. Mnemonic symbols prevail:M means a parametric model, J is a joint parametric
pd of data vectors, P is posterior pd, O marks observations, A labels actions, etc. Decoration ̃ marks intermediate objects, ̂
marks estimates and approximations. ≡ means defining equality.

2 APPROXIMATE BAYESIAN RECURSIVE ESTIMATION

This section summarises the approximate recursive estimation published in37. It serves us for handling of the novel model
proposed in Sec. 3.
The inspected parametric modelM consists of the conditional pds at discrete-time moments labelled by t ∈ t = {1, 2,… , |t|}

M(Ot|At, Dt−1,Θ), Dt ≡ (Ot, At), Dt−1 ≡ (Dt−1,… , D1, D0). (1)

The pd (1) relates the observation Ot ∈ O to the action At ∈ A and to the past data recordsDt−1 extended by a prior knowledge
D0. A time-invariant Θ ∈ � parameterises these pds. The employed decision rules modelled by pds R(At|Dt−1,Θ) are unaware
of the adequate Θ. Thus, these decision rules meet natural conditions of control38

R(At|Dt−1,Θ) = R(At|Dt−1). (2)

2Pd is a common abbreviation covering the usual ones for probability density and mass functions (pdf and pmf). Pds are evaluated with respect to a dominating,
typically Lebesque’s or counting, product measure 22. Lebesque’s notation ∫ …d∙ is mostly used here.

3The results also suit to stochastic state-space models, aka hidden Markov models 25. The addressed universal approximation by mixture ratio, which is closed with
respect to conditioning, is applicable to them. The more complex notation and inevitable technical details related to them would, however, mask the basic modelling idea.
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The posterior pd Pt−1(Θ) ≡ P(Θ|At, Dt−1)

(2)
⏞⏞⏞
= P(Θ|Dt−1) quantifies the knowledge about the parameter Θ ∈ � available at

time t − 1. Bayes’ rule26 updates this knowledge by the data-record realisation Dt ≡ (Ot, At) to the posterior pd

P̃t(Θ) ≡
M(Ot|At, Dt−1,Θ)Pt−1(Θ)

F(Ot|At, Dt−1)
∝ M(Ot|At, Dt−1,Θ)Pt−1(Θ)

F(Ot|At, Dt−1) ≡ ∫
�

M(Ot|At, Dt−1,Θ)Pt−1(Θ)dΘ, (3)

where the value of the forecasting pd F is unexpressed when using the proportionality ∝. The decision rule R cancels due to (2).
With a growing t, the analytic form of the posterior pd P̃t generically becomes an excessively complex function of many

variables Θ ∈ �. Then, Pt ∈ P, with P containing computationally feasible4 pds, has to be evolved. Mostly, the posterior pd
P̃t ∉ P even if the pd Pt−1 ∈ P. To stay feasible, the pd P̃t in (3) is to be projected on P. Works39,40 provide weak, generically
met, conditions under which the minimiser P̂t ∈ P of Kerridge’s inaccuracy41

K(P̃t||P̂t) ≡ −∫
�

P̃t(Θ) ln
(

P̂t(Θ)
)

dΘ (4)

is the adequate Bayesian projection (minimising an adequate expected utility) of the pd P̃t on P̂t ∈ P.
The projection should not serve as the prior pd in a further updating. Its use could cause a divergence of the projected

pds from those projected optimally in the batch mode42. Forgetting, with a data-dependent factor �t ∈ [0, 1], is the adequate
countermeasure37. An application of the minimum expected Kullback-Leibler principle43 shows it. It recommends to select

Pt = argmin
P∈P

[�tD(P||P̂t) + (1 − �t)D(P||Pt−1)] ∝ P̂
�t
t P

1−�t
t−1 . (5)

The Kullback-Leibler divergence44 D(P||P̂)

D(P||P̂) ≡ ∫
�

P(Θ) ln
(

P(Θ)
P̂(Θ)

)

dΘ = ∫
�

P(Θ) ln (P(Θ)) dΘ + K(P||P̂) (6)

is a shifted version of Kerridge’s inaccuracy (4). The weight �t ∈ [0, 1] is the belief that P̂t is the best prior guess of the unknown
Pt and (1 − �t) is the belief into Pt−1. The beliefs are “naturally” proportional to forecasting-pds values

F̂(Ot|At, Dt−1) ≡∫
�

M(Ot|At, Dt−1,Θ)P̂t(Θ)dΘ and F(Ot|At, Dt−1), cf. (3). (7)

A priori there are no reasons to expect P̂t be better than Pt−1 as the knowledge innovation brought by Dt may be spoiled by the
projection of P̃t on P̂t ∈ P. This motivates the used equal prior belief into P̂t and Pt−1.
Bayes’ rule, the projection via Kerridge inaccuracy, minimum expected Kullback-Leibler principle and Bayes’ rule updating

beliefs into P̂t, Pt−1 provide the updating of a feasible posterior pd Pt−1 by Dt = (Ot, At)

P̃t(Θ) ∝ M(Ot|At, Dt−1,Θ)Pt−1(Θ), P̂t ≡ argmin
P̂∈P

K(P̃t||P̂) (8)

Pt(Θ) ∝ P̂
�t
t (Θ)P

1−�t
t−1 (Θ), �t ≡

[

1 + F(Ot|At, Dt−1)∕F̂(Ot|At, Dt−1)
]−1 , cf. (3),(7).

Remarks

✓ It is worth stressing why the optimisation (4) runs over the second argument while (5) over the first argument. It cor-
responds with two conceptually different tasks. In the first one, an approximation of a known pd P̃t is constructed. The
complementary analyses in39 and40 recommend both the optimised functional and this order of arguments. The optimi-
sation (5) completes a partial knowledge about an unknown pd Pt. Works45,40,43 axiomatically justify that this completion
should be done via minimum (expected) Kullback-Leibler principle that optimises over the first argument.

Note the referred works clarify the relation of the variational Bayes46 and the expectation propagation47 techniques.

✓ The employed log-convex P guarantees that Pt stays in P. Otherwise, an extra projection has to follow the forgetting.

4An intuitive understanding of this notion suffices. Sec. 3 provides example of such pds.
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✓ Kerridge’s inaccuracy K (4) has the same minimiser as Kulback-Leibler divergence but copes with pds P̃ having Dirac’s
constituents.

✓ The unavoidable projection of the pd P̃t on the set P (8) is demanding but feasible, Sec. 3. The extra effort for evaluating
�t is relatively small.

✓ The next implicit choice of the forgetting factor is possible and meaningful

�t =
[

1 + F(Ot|At, Dt−1)∕F�t(Ot|At, D
t−1)

]−1 , F�t(Ot|At, D
t−1) ≡ ∫

�

M(Ot|At, Dt−1,Θ)
P̂
�t
t (Θ)P

1−�t
t−1 (Θ)

∫�̂P
�t
t (Θ̃)P

1−�t
t−1 (Θ̃)dΘ̃

dΘ.

It is here unused to avoid the related high computational costs.

3 RATIO OF FINITE MIXTURES

This core section justifies a universal parametrisation of pds modelling dependent data records. They may be observed in a
closed loop formed by a dynamic system and a randomised strategy that meets (2).
Markovian Modelling of a Joint PD:A joint parametric pd J̃(D|t|

|Θ, D0) of data-records sequencesD|t| = (Dt)t∈t factorises38

J̃(D|t|
|Θ, D0)

(2)
⏞⏞⏞
=

∏

t∈t

parametric model
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M(Ot|At, Dt−1,Θ)

decision rule
⏞⏞⏞⏞⏞⏞⏞⏞⏞
R(At|Dt−1) .

Thus, the parametrisation and estimation only concern the system model.

Assumption 1 (Markov Time-Invariant Parametric Model). The system model is time-invariant, parameterised by a constant
multivariate parameter Θ ∈ �. It is Markov model of an order n <∞. It means

M(Ot|At, Dt−1,Θ) ≡ M(Ot|�t,Θ), with time invariantM. The regression vector, denoted �t,

�t is a known function of �t−1 and of
{

At, Dt−1,… , Dt−n if 1 ≤ n <∞,
At or void for n = 0.

Data entering themodelM at time t ∈ t form the data vector Ψt ≡ (Ot, �t) ∈ 	, extending the regression vector �t.
The knowledge D0 provides themodel structure and the regression vector �0. (9)

The Markov parametric model (9) is ratio of the joint pd J(Ψ|Θ) and its marginal

M(Ot|�t,Θ) =
J(Ot, �t|Θ)

∫O J(Ot, �t|Θ)dOt
=

J(Ψt|Θ)
∫O J(Ot, �t|Θ)dOt

. (10)

It is time invariant iff the joint pd J(Ψt|Θ) is a time-invariant function multiplied by an arbitrary positive function of At, Dt−1,
e.g. any decision rule R(At|Dt−1). Thus, Assumption 1 practically makes the joint pd J(Ψt|Θ) time-invariant.

Remark

✓ The Markov property is inevitable for the targeted feasibility of the recursive estimation. If not met naturally, it must be
enforced via an approximation. The required time invariance can be relaxed by including time into �t or by considering a
time– and data– dependent unknown parameter Θ. The latter case leads to the untreated hidden Markov models25.

Exponential Family: Our model exploits EF members described by the pd

M(Ot|�t,Θ) ≡ exp ⟨B(Ψt),C(Θ)⟩ , Ψt ∈ 	, Θ ∈ �, where (11)

vector-valued functions B(Ψt), C(Θ) have a finite dimension. The real-valued mapping ⟨B(Ψt),C(Θ)⟩ is linear in B(Ψt)-values.
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Under (2), EF members posses conjugated (self-reproducing) pds26,

Pt(Θ) ≡ P(Θ|Dt) = P(Θ|Vt) =
exp ⟨Vt,C(Θ)⟩

N(Vt)
(12)

N(Vt) ≡ ∫
�

exp ⟨Vt,C(Θ)⟩ dΘ. The sufficient statistic Vt evolves

Vt = Vt−1 + B(Ψt) for t ∈ t while V0 determines the prior pd.

Remarks

✓ Definition (11) admits usual factors depending respectively on Ψ and Θ. It suffices to include constant entries into B and
C. The support indicator is dropped for simplicity.

✓ The use of EF converts functional Bayes’ rule into the algebraic evolution of the values of the sufficient statistic Vt.

✓ V0 in (12) gives the conjugated prior pd, stores a prior knowledgeD0, regularises the estimation and is to makeN(V0) <∞.

✓ EF exhausts parametric models with Θ-independent support, smooth inΘ and having a finite-dimensional suffi-
cient statistic Vt = V(Dt)48.

✓ For truly dynamic parametric models with a non-constant regression vector, EF is quite narrow. It essentially contains
normal linear-in-regression-coefficientmodels, for continuous observations, andMarkov chainmodels, for discrete-valued
observations and discrete-valued regression vectors. Only for them, the marginal pd of the regression vector, proportional
to the normalisation in (10), depends on Θ only (not on the regression vector �). Static models in EF are much richer.

Universal Approximation: Smooth joint pds J(Ψ) = J(O, �) of data vectorsΨ ∈ 	 can be universally approximated by a finite
mixture of normal pds, to an arbitrary precision18. It holds even when the regression vectors � ∈ � are non-void. Thus, the joint
pds of data vectors can be approximated by a finite mixture of pds from EF. This allows us to consider the joint parametric pd
in (10) as the finite weighted sum of EF components, pds (Jc(Ψ|Θc))c∈c on 	,

J(Ψ|Θ) ≡
∑

c∈c
�cJc(Ψ|Θc) ≡

∑

c∈c
�c exp ⟨Bc(Ψ),Cc(Θc)⟩ , c ≡ {1,… , |c|}, � ≡ (�c)c∈c

� ∈ � ≡
{

�c ≥ 0,
∑

c∈c
�c = 1

}

, Θ ≡ (�, (Θc)c∈c) ∈ � ≡
(

�, (�c)c∈c
)

. (13)

The insertion of (13) into (10) gives the non-standard parametric ratio model

M(Ot|�t,Θ) =
∑

c∈c

�c exp
⟨

Bc(Ot, �t),Cc(Θc)
⟩

∑

c̃∈c �c̃ ∫
O

exp ⟨Bc̃(Ot, �t),Cc̃(Θc̃)⟩ dOt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Nc̃ (�t,Θc̃ )

(14)

=
∑

c∈c

�cNc(�t,Θc)
∑

c̃∈c �c̃Nc̃(�t,Θc̃)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

wc (�t,Θ)

exp ⟨Bc(Ψt),Cc(Θc)⟩
Nc(�t,Θc)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mc (Ot|�t,Θc )

=
∑

c∈c
wc(�t,Θ)Mc(Ot|�t,Θc).

Assumption 1 and the universal approximation by finite mixtures for void � imply the quite strong property of the model (14):

The ratio (14) approximates any dynamic, Markov, time-invariantmodel of data.

Remarks

✓ The 2nd row of (14) represents the ratio model as a fully dynamic finite mixture. The component weightswc(�t,Θ) depend
on the regression vector �t in non-ambiguous way, which needs no extra parameter.
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✓ The components Jc(Ψt|Θc) = exp ⟨Bc(Ψt),Cc(Θc)⟩ in (13) are joint pds on the set 	. These pds may contain parameter-
independent factors Gc

Jc(Ψt|Θc) = exp ⟨Bc(Ψt),Cc(Θc)⟩ = exp
⟨

Bc(Ψt;c),Cc(Θc)
⟩

Gc(�t;c). (15)

The parametric factormodels the data vectorΨt;c ≡ (Ot, �t;c), where �t;c is a sub-vector of �t. The pdGc(�t;c) is a parameter-
free pd on the complement �

t;c
of �t;c to �t. This mimics mixtures of principal component analysers49 and diminishes the

dimensionality curse50.

4 ESTIMATION OF MIXTURE RATIOS

This section applies the approximate estimation (8) to the model (14). This yields the universal and feasible probabilistic
clustering of dynamic data streams.
Choice of the Set P of Feasible PDs: The weights � in (13) define the pd M(ct = c|Θ) = �c , c ∈ c, of a thought unobserved

pointer, ct ∈ c, to the active component Jct(Ψt|Θct) (15) “generating” the data vector Ψt. This model is from EF

M(ct|Θ) = exp
[

∑

c∈c
(c, ct), ln(�c)

]

= exp ⟨(ct), ln(�)⟩

(c, ct) ≡
{

1 if c = ct
0 otherwise , (ct) ≡ [(1, ct),… , (|c|, ct)]

ln(�) ≡ [ln(�1),… , ln(�
|c|)], ⟨(ct), ln(�)⟩ =

∑

c∈c
�(c, ct) ln(�c).

For the observed pointer ct ∈ c to the active component, Dirichlet’s pd51 determined by a |c|-vector statistic vt, is the self-
reproducing pd

Pt(�) ≡ P(�|vt) ≡
exp ⟨vt − 1, ln(�)⟩

Be(vt)
with vt = vt−1 + (ct), v0 > 0

Be(v) ≡
∏

c∈c (vc)


(
∑

c∈c vc
) , (v) ≡

∞

∫
0

zv−1 exp(−z)dz, v > 0. (16)

For normal and Markov chain components or independent data vectors with components (15), the conjugate pds Pt(Θc) =
P(Θc|Dt, ct,… , c1), c ∈ c, are

Pt(Θc) =
exp

⟨

Vt;c ,Cc(Θc)
⟩

Nc(Vt;c)
, Nc(Vt;c) = ∫

�c

exp
⟨

Vt;c ,Cc(Θc)
⟩

dΘc . (17)

They are “natural” candidates for creating the set P of feasible pds used in (8). They have to be given by statistic (vt, (Vt;c)c∈c)
with values dependent on the observed data, not on the unobserved (ct,… , c1).
The pds Pt(�) (16), (Pt(Θc))c∈c (17) do not determine the joint pd Pt(Θ), Θ ≡ (�, (Θc)c∈c), unambiguously52. Their product

coupling is, however, preferable as it models the faced lack of information about mutual relations of the component parameters
and their weights. This motivates the choice

P ≡
{

Pt(Θ) ∶ Pt(Θ) = Pt(�)
∏

c∈c
Pt(Θc) with factors given by (16), (17),

which are given by the optional statistics values
(

vt,Vt ≡ (Vt;c)c∈c
)

}

. (18)

Evaluations of Kerridge’s Inaccuracy (4): With the chosen P (18), it remains to map (8) onto the updating of vt−1,Vt−1 ≡
(Vt−1;c)c∈c to vt,Vt ≡ (Vt;c)c∈c .
Kerridge’s inaccuracy of the pd P̃t (3) to a pd P̂t ∈ P (18), given by the statistic V̂t ≡

(

v̂t, (V̂t;c)c∈c
)

, reads

K(P̃t||P̂t) = ln(Be(v̂t)) +
∑

c∈c
ln(Nc(V̂t;c)) (19)

−

⟨

v̂t − 1,∫
�

ln(�)P̃t(Θ)dΘ

⟩

−
∑

c∈c

⟨

V̂t;c ,∫
�

Cc(Θc)P̃t(Θ)dΘ

⟩

.
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Bayes’ rule (3) for the mixture ratio (14) with EF components (15) and a prior pd Pt−1 ∈ P (18), gives

P̃t(Θ)∝
∑

c∈c

�c exp ⟨Bc(Ψt),Cc(Θc)⟩ exp ⟨vt−1−1, ln(�)⟩
∏

c̃∈c exp
⟨

Vt−1;c̃ ,Cc̃(Θc̃)
⟩

∑

c̃∈c �c̃Nc̃(�t,Θc̃)

=
∑

c∈c

exp ⟨vt−1 + (c) − 1, ln(�)⟩
∑

c̃∈c �c̃Nc̃(�t,Θc̃)

×
∏

c̃∈c
exp

⟨

Vt−1;c̃ + (c, c̃)Bc(Ψt;c),Cc̃(Θc)
⟩

Gc(�t;c). (20)

Further evaluations exploit auxiliary pds arising from summands in (20), cf. (16), (17), via an appropriate normalisation

Q̃t;c(Θ) ≡
exp ⟨vt−1 + (c) − 1, ln(�)⟩

�t;c

∏

c̃∈c
exp

⟨

Vt−1;c̃ + (c, c̃)Bc(Ψt;c),Cc̃(Θc̃)
⟩

�t;c ≡ Be(vt−1 + (c))
∏

c̃∈c
N(Vt−1;c̃ + (c, c̃)Bc(Ψt;c))∕Gc(�t;c). (21)

They independently model � and (Θc)c∈c . The dependency enters P̃t via

H(�t,Θ) ≡
1

∑

c̃∈c �c̃Nc̃(�t,Θ)
because P̃t(Θ) =

H(�t,Θ)
∑

c∈c �t;cQ̃t;c(Θ)
I−1(Ψt, vt−1,Vt−1)

with I−1(Ψt, vt−1,Vt−1) ≡ ∫
�

H(�t,Θ)
∑

c∈c
�t;cQ̃t;c(Θ)dΘ. (22)

The determination of Kerridge’s inaccuracy (19) needs to evaluate the integrals

I0c(Ψt, vt−1,Vt−1) ≡ ∫
�

ln(�c)H(�t,Θ)
∑

c̃∈c
�t;c̃Q̃t;c̃(Θ)dΘ, I0 ≡ (I0c)c∈c ,

Ic(Ψt, vt−1,Vt−1) ≡ ∫
�

Cc(Θ)H(�t,Θ)
∑

c̃∈c
�t;c̃Q̃t;c̃(Θ)dΘ, c ∈ c. (23)

Their insertion into Kerridge’s inaccuracy (19) gives the best-projection statistic

[

v̂t, (V̂t;c)c∈c
]

∈ Arg min
v̂∈v̂,(V̂c∈V̂c )c∈c

(

ln(Be(v̂)) +
∑

c∈c
ln(Nc(V̂c))

−
⟨

v̂ − 1,
I0(Ψt, vt−1,Vt−1)
I−1(Ψt, vt−1,Vt−1)

⟩

−
∑

c∈c

⟨

V̂c ,
Ic(Ψt, vt−1,Vt−1)
I−1(Ψt, vt−1,Vt−1)

⟩

)

=
[

Argmin
v̂∈v̂

(

ln(Be(v̂)) −
⟨

v̂ − 1,
I0(Ψt, vt−1,Vt−1)
I−1(Ψt, vt−1,Vt−1)

⟩)

,

(

Arg min
V̂c∈V̂c

(

ln(Nc(V̂c)) −
⟨

V̂c ,
Ic(Ψt, vt−1,Vt−1)
I−1(Ψt, vt−1,Vt−1)

⟩))

c∈c

]

. (24)

It needs (|c| + 1) independent minimisations. They are numerically simple. Parts of them have analytical solutions for normal
and Markov chain models.
Numerical Evaluations of I’s: The function H(�t,Θ) (22) depends on all involved parameters. It combines influences of

respective components. A brute force evaluation of I−1, I0 and Ic , c ∈ c, say by Monte Carlo (MC), is mostly too demanding
in a typical stream processing. At the same time, the averaged functions in (22), (23) are smooth due to their construction.
Moreover, their growth over their domains is well suppressed by generally light tails of the pds Q̃t;c (21). Thus, we conjecture
(and experiments support this conjecture) that the simplest approximation based on the first order Taylor expansion of H(�,Θ)
around expected values

∫
�

�c̃Q̃t;c(Θ)dΘ, ∫
�

Θc̃Q̃t;c(Θ)dΘ, c̃, c ∈ c, (25)
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suffices. In addition to (25), the approximation requires to evaluate ∀c̃, c ∈ c

∫
�

� ln(�c̃)Q̃t;c(Θ)dΘ, ∫
�

Cc̃(Θc̃)Q̃t;c(Θ)dΘ, ∫
�

Θc̃Cc̃(Θc̃)Q̃t;c(Θ)dΘ. (26)

Remarks

✓ The normalising constants Be, N (16), (17) of factors forming Q̃t;c (21) can be analytically expressed for Normal-inverse-
Wishart and Dirichlet’s pds, which are conjugated to normal and Markov chain components35.

✓ c̃th entries of expectations (25), (26) at time t coincide with those gained at time t− 1 if c̃ ≠ c. This significantly reduces
the computational load.

✓ The used approximation could be refined but often suffices. Its use allowed us to focus on the ratio model, on the key
novelty brought.

✓ This estimation applied to standard mixtures reduces to the projection-based algorithm37, which is still the state-of-the-art
recursive Bayesian estimator.

Forgetting Handling: It consists of the choice of the forgetting factor and its use. The formula for �t in (8) depends on the
ratio of the forecasting pd divided by the forecasting pd constructed from the already updated posterior pd (both in the data
realisation). Independent studies53 imply that the forgetting should be applied component-wise. The overall forecasting quality
then influences only the forgetting of component weights. It gives the forgetting factors �t, (�t;c)c∈c , (8),

�−1t = 1 +
Be(v̂t)

∏

c̃∈c N(V̂t;c̃)
Be(vt−1)

∏

c̃∈c N(Vt−1;c̃)
I−1(Ψt, vt−1,Vt−1)
I−1(Ψt, v̂t, V̂t)

�−1t;c = 1 +
N(Vt−1;c + Bc(Ψt;c))N(V̂t;c)

N(Vt−1;c)N(V̂t;c + Bc(Ψt;c))

Nc(�t, Θ̃t;c)

Nc(�t, Θ̃t−1;c)
, c ∈ c.

There I−1(Ψt, vt−1,Vt−1) is approximately evaluated using an expansion around (25). The denominator I−1(Ψt, v̂t, V̂t) is computed
according to the same formulae with v̂t, V̂t (24) replacing vt−1,Vt−1. Θ̃t−1;c , Θ̃t;c are the expected values of the component
parameter Θc computed as the cth part of (25) with the component statistics Vt−1;c and V̂t;c , respectively (14). The forgetting
completes the updating (8) for the proposed mixture ratio model (14), (15)

vt = �tv̂t + (1 − �t)vt−1, Vt;c = �t;cV̂t;c + (1 − �t;c)Vt−1;c , t ∈ t, c ∈ c.

5 ILLUSTRATIVE EXAMPLES

This section deals both with the modelling and the stream estimation. The used toy examples serve to the aimed illustration
of the theory. A systematic simulation and real-life studies are out of scope of this paper and will be published independently.
Some experiments, including real-data application to commodity futures54 are already available in35,36.
The first example illustrates the modelling potential of mixture ratios. The second one shows that the standard mixture model

is not good when the mixture ratio model is adequate while the mixture ratio is competitive even when the standard mixture
model is adequate.
On Mixture-Ratio Modelling Strength: The simulated system E generates real scalar observations Ot with no actions and the
regression vector �t = Ot−1. E is the mixture of the joint normal pds Ψ(�c , !0.5c ), Ψt ≡ (Ot, Ot−1), with expectations �c and
square roots !0.5c of precision matrices, c ∈ c ≡ {1, 2},

E(Ψt) =
1
2
Ψt

(

[

1
1

]

⏟⏟⏟
�1

,
[

1 3
0 0.5

]

⏟⏞⏟⏞⏟
!0.51

)

+ 1
2
Ψt

(

[

−1
−1

]

⏟⏟⏟
�2

,
[

1 −2
0 0.5

]

⏟⏞⏟⏞⏟
!0.52

)

. (27)

The typical simulation results were sampled from E(Ot|Ot−1) while differing only in initial values O0 ∈ {−0.8, 0, 3}, are in Fig.
1. For comparison, the same mixture was simulated as the conditional one, i.e. with fixed component weights.



M. Kárný, M. Ruman 9

Discussion: The simulation results demonstrate the dynamic dependence of the components weight on the data realisation.
This is the key feature of the truly dynamic model. It allows to model non-linear dynamic effects and unbalanced activations of
respective components. The standard mixture model lacks both mentioned features of the mixture ratio model.
On Performance of the Standard and Ratio Mixture Models:
Simulation Conditions: Scalar discrete observations Ot ∈ O = {1,… , |O|}, |O| = 5, and 2nd order regression with �t =

(Ot−1, Ot−2) are used. This defines data vectors (9) t = (Ot, Ot−1, Ot−2). The learnt (estimated) models L and the simulated
system models E are either the mixture ratio modelM or the standard mixture S, both with |c| = 2,

E,L ∈ {M, S} = {mixture ratio, standard mixture}. (28)
This gives four combinations of the simulated and learnt models.
The structure of the joint pd J(t|Θ) defining the mixture ratio modelM is

J(t|ΘM) = �MJ1(Ot, Ot−1|ΘM1)G1(Ot−2) + (1 − �M)J2(Ot, Ot−2|ΘM2)G2(Ot−1).
The joint pds J1(Ot, Ot−1|ΘM1) and J2(Ot, Ot−2|ΘM2) are parameterised by their values ΘM1, ΘM2 assigned to possible pairs
(Ot, Ot−1), (Ot, Ot−2). The model parameter isΘM = (�M,ΘM1,ΘM2). The parameter-free factorsG1(Ot−2),G2(Ot−2) are uniform
on O. They cancel in the mixture ratioM, which gets the form

M(Ot|�t,ΘM) =
�MJ1(Ot, Ot−1|ΘM1) + (1 − �M)J2(Ot, Ot−2|ΘM2)

∑

Ot∈O
�MJ1(Ot, Ot−1|ΘM1) + (1 − �M)J2(Ot, Ot−2|ΘM2)

.

The standard model S(Ot|�t,ΘS) = �SS1(Ot|Ot−1,ΘS1) + (1 − �S)S2(Ot|Ot−2.ΘS2) is parameterised by ΘS = (�S,ΘS1,ΘS2). Its
components S1(Ot|Ot−1,ΘS1) and S2(Ot|Ot−2,ΘS2) are parameterised by probabilitiesΘS1,ΘS2 assigned toOt when conditioned
on Ot−1 and Ot−2, respectively.
MC Study over E: It consists of 200 runs for t ∈ t, |t| = 500, with randomly generated parameters ΘE for both considered

simulated model structures E ∈ {M, S} (28). In both cases, the mixture ratio M model and the standard mixture S model are
learnt on the same observation sequences.
MC Study with a Fixed E = M: The fixed system being the mixture ratio model M given by the fixed parameter Θ

M
having

truly dynamic weights wc(�t) (14) is simulated. Its 200 runs differ in the noise realisations.
Performance Evaluation: At the time t ∈ t, the simulation and estimation dealt with the underlying model E,L ∈ {M, S} and

assigned the following probabilities to observations

Et(Ot) =
{

Mt(Ot) = M(Ot|�t,ΘM) if E = M with a fixed Θ
M

St(Ot) = S(Ot|�t,ΘS) if E = S with a fixed Θ
S

(29)

Lt(Ot) = Lt(Ot|Ot−1,… , O0) = ∫
�L

L(Ot|�t,ΘL)P(ΘL|Ot−1,… , O0)dΘL.

The corresponding Kullback-Leibler divergences were sequentially evaluated

Dt(E||L) =
t

∑

�=1
D(E� ||L�), with D(E� ||L�) =

∑

O�∈O
E�(O�) ln

(

E�(O�)
L�(Ot)

)

D(E||L) ≡ D
|t|(E||L), and their differences  = D(E||M) − D(E||S). (30)

They quantified estimation quality within the comparable observation space.
Results: The simulation results are in Fig. 2. The left hand column contains histogram values D(E||L) = D

|t|(E||L), L ∈
{M, S}, at final time |t| = 500. The right hand column shows the corresponding sample cumulative distributions. The better
outcomes have them shifted to the left. Fig. 3 shows the course of Dt(E||L), t ∈ t, L ∈ {M, S} for: (a) E = M, given by a fixed
Θ
M
; (b) E = S, given by a fixed Θ

S
; (c) E = M with Θ

M
giving the dynamic weights wc(�t) (14). Tab. 1 shows sample statistics

of increments  (30). Negative values of sample means and medians reflect the dominance of the mixture ratio model.
Discussion: Tab. 1 and Figs. 2, 3 confirm the expectation that the mixture ratio M outperforms the standard mixture if the

mixture ratioM is simulated. The improvement can be significant. The learnt mixture ratio copies the performance of the standard
mixture S when S is simulated. It is even slightly better as it copes better with errors caused by the approximate estimation (8).
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TABLE 1 Sample statistics of differences of Kullback-Leibler divergences  = D(E||M) − D(E||S) (30), where E is the pre-
dictor corresponding to the simulated system, to the learnt predictor with M, which corresponds to the mixture ratio, and S
corresponding to the standard mixture. The 1st column shows statistics for the simulated system E = M with ΘM varied in 200
MC runs; the 2nd column shows results for the simulated system E = S with ΘS varied in 200 MC runs; the 3rd column reflects
the case with the simulated E = M with a fixed Θ

M
causing the truly dynamic weights wc(�t) (14) (MC runs differ in noise).

Simulated Case MC over E = M MC over E = S Fixed E = M

Mean -0.7001 -0.5729 -9.1191
Median -0.7818 -0.5957 -9.0598
Minimum -3.2138 -4.0519 -16.1047
Maximum 4.9534 1.9341 -4.5774
Standard Deviation 1.0583 0.9377 2.0317

6 POTENTIAL OF THE MIXTURE RATIO MODEL

The paper brings an important message that the ratios of finite mixtures model well dynamically related data. The next list
explicates our gains.

✓ The mixture ratios universally approximate non-linear dynamic stochastic relations.

✓ The mixture ratios handle cases in which rare visits of active components are significant, cf. Fig. 1. This is vital in fault
detection55, detection of non-standard fraud behaviours needed56, or in cyber-security applications10; everywhere, where
outlier detection is faced57. These cases are hard dynamic versions of estimation with unbalanced data58.

✓ The mixture ratios suit to modelling of mixed (discrete and continuous valued) data. The components are the joint pds
factorable into pds of continuous valued data, possibly conditioned on discrete ones, and pds relating discrete data.

✓ The mixture ratios may serve as a relatively universal dynamic feature extractor. Indeed, the approximately sufficient
statistic collected during estimation, see Sec. 4, are the relevant features. It suffices to use Bayesian structure estimation
on mixture ratios with low-dimensional components.

✓ The estimation of the mixture ratios provides the stationary joint pd of the data vector (13), which can directly serve for
the design of adaptive decision strategies for an infinite decision horizon59. The estimated joint pd of data vector can be
appropriately factorised and the current model of the stationary decision rule replaced by the rule, which makes the joint
pd close to a desired stationary joint pd60.

In future, it is desirable:

✓ to elaborate numerically robust (factorised) procedures for normal models, sparse Markov-chains and mixed cases in the
way mimic to50;35 has made definite steps in this respect;

✓ to refine the data-dependent choice of forgetting factors;

✓ to tailor Bayesian structure estimation, ready for mixtures both with respect to suitable regression vectors �c and the
number of mixture components51 to the mixture-ratio model;

✓ to perform real-life tests confirming that the theoretically higher approximating strength of the discussed mixture ratios,
see Sec. 3, is mostly undiminished by the approximate estimation; the experiments with commodity futures trading, made
in35, as well as other (yet unpublished) real-data processing, are more than promising.

The theoretical insight, experience from simulations, preliminary processing of real data, width and importance of the outlined
contributions to estimation dynamic data relations make this effort worthwhile.

Data Availability The paper deals just with simulations. Authors will provide the experimental code upon a request.
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FIGURE 1 Simulation of the system E (27). Its joint pd is shown in the middle. Trajectories in respective columns differ in
the initial value of the regression vector �1 = O0 ∈ {−0.8, 0, 3}, respectively, while pseudo-random noise realisation is the
same in all cases. The 1st row of figures shows the realised observations Ot, t ∈ t ≡ {1,… , 300}. It demonstrates the strong
dependence of the observed trajectories on the initial condition �1 = O0. The 2nd row shows realised observations when the
same components as in (27) are used as the conditional pds, i.e. when the standard mixture with constant component weights
is simulated. The respective trajectories are almost identical. It has allowed us to replace the case corresponding �1 = O0 = 0
by the simulated joint pd (27). The 3rd row shows evolution of dynamic weights (wt;1(�t))t∈t (14) corresponding to the realised
observations shown in the 1st row of figures. Again, the strong dependence on the initial �1 = O0 is clearly seen.
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HISTOGRAMS: L=M blue, L=S red
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FIGURE 2 Evaluation of Kullback-Leibler divergences D(E||L) of the observation predictors corresponding to the simulated
systems E to the learnt predictors, see (30), in the Monte Carlo study. The left column shows histograms, the right one shows
the empirical distribution functions on which the favourable shift to smaller divergence values is better seen. Colors distinguish
the inspected learnt predictor L ∈ {M, S} = {mixture ratio, standard mixture} = {blue, red}. The 1st row deals with the
simulated system E = M = mixture ratio, with its parameter ΘM varied in 200 MC runs; the 2nd row shows the results with
the simulated system E = S = standard mixture, with its parameter ΘS varied in 200 MC runs; the 3rd row shows results for
E = M = mixture ratio, with a fixed parameter Θ

M
causing truly dynamic evaluation of the weights wc(�t) (14), there the MC

study runs over 200 different noise realisations.
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FIGURE 3 Time evolutions of the Kullback-Leibler divergences Dt(E||L) (30) od predictors corresponding to the simulated
system E and learnt predictors L ∈ {M, S} = {full blue, dashed red} = (mixture ratio, standard mixture). The respec-
tive figures from left to right correspond to: E = M = simulated mixture ratio with a randomly chosen Θ

M
; E = S =

mboxsimulatedstandardmixturewith a randomly chosenΘ
S
; E = M = simulated mixture ratio with with the fixedΘ

M
causing

a truly dynamic weighting wc(�t) of respective components (14).
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