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Abstract Bayesian decision making (DM) quantifies information by the probabil-
ity density (pd) of treated variables. Gradual accumulation of information during
acting increases the DM quality reachable by an agent exploiting it. The inspected
accumulation way uses a parametric model forecasting observable DM outcomes and
updates the posterior pd of its unknown parameter. In the thought multi-agent case, a
neighbouring agent, moreover, provides a privately-designed pd forecasting the same
observation. This pdmay notably enrich the information of the focal agent. Bayes’ rule
is a unique deductive tool for a lossless compression of the information brought by the
observations. It does not suit to processing of the forecasting pd. The paper extends
solutions of this case. It: . refines the Bayes’-rule-like use of the neighbour’s forecast-
ing pd . deductively complements former solutions so that the learnable neighbour’s
reliability can be taken into account . specialises the result to the exponential family,
which shows the high potential of this information processing . cares about exploiting
population statistics.

Keywords Kullback-Leibler divergence · distributed data fusion · information
fusion · multi-agent · parameter estimation · decision making · Bayesian paradigm

1 INTRODUCTION

Addressed problem: This work contributes to the primary purpose of information
fusion as stated in [12]: “. . . information fusion is the study of efficient methods for
automatically or semi-automatically transforming information from different sources
and different points in time into a representation that provides effective support for
human or automated decision making”.

TheDMentity supported by this paper is called an agent and referred by “it” unless
we want to stress the human involved. It fuses information about the relation of its

The Czech Academy of Sciences, Institute of Information Theory and Automation, 182 00 Prague 8, Czech
Republic, E-mail: {school,hula}@utia.cas.cz



2 Miroslav Kárný, František Hůla

AGENT a
Ra(aa |Fa , ra)

Fa(oa |Ma ,Pf , aa , ra)
Pa(p |Ma ,Pf ,oa , ra)

ENVIRONMENT
FUSER f

Pf(p |Ma ,Pa ,Fn)

NEIGHBOUR n
Fn(oa |rn)

OTHER INFORMATION SOURCES

aa

oa

Pa ,Ma

Pf

oa Fn

Fig. 1: The agent, a, learns a parameter, p ∈ p, of the parametric model, Ma , of the
observation, oa ∈ oa , for the given regressor, ra ∈ ra . It evaluates the forecasting pd,
Fa , used for opting the action, aa ∈ aa , by the decision rule, Ra . Fa is expectation of
Ma given by the posterior pd, Pf, of p ∈ p. The fuser, f, creates Pf from the model,
Ma , the agent’s posterior pd, Pa , updated by Bayes’ rule, and from the forecasting pd,
Fn , of the observation, oa ∈ oa . Fn is offered by the a’s neighbour, n, that gains Fn by
using the common oa , its regressor, rn ∈ rn , and other private resources.

optional actions to observations. Figure 1 depicts the inspected fusion scenario (moti-
vated below) with a detailed description of involved blocks, mappings and variables.
It serves as a reference point and its individual parts are gradually explained.

The supported agent relies on a parametricmodel of the forecasted observation and
on the posterior probability density1 (pd) expressing the agent’s information about the
unknownmodel parameter. Bayes’ rule [6] updates the posterior pd when the observed
data record is available. The record consists of the observation, the applied action, and
the used regressor made of past observations and actions. The agent also exploits a pd
offered by its neighbour that forecasts the same observation. The neighbour may freely
construct the offered forecasting pd in its private way and use its own information
resources. The paper proposes a fusing algorithm (fuser) that deductively exploits
the offered forecasting pd. The use of parametric models from the exponential family
(EF [5]) provides a directly applicable fuser.

Probabilistic modelling and complexity: Among descriptions of uncertain informa-
tion [22], the DM axiomatisation [41] makes us stay within the Bayesian paradigm,

1 The existence of regular probability densities of inspected probabilistic measures with respect to
Lebesgue’s or counting measures is assumed [39].
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where all variables are taken as random. For them, conditioning by the available in-
formation emerges as the proper information processing. Stochastic filtering [15] and
Bayesian estimation [36] are common conditioning ways.

Complexity strongly limits the use of this prescriptive information processing.
The complexity means an excessive need of resources for: . the design of involved
models . algorithmic processing . storing results; . obtaining a sufficient amount of
informative data; . information-transmission, etc.

Complexity—irrespectively of its nature—makes agents to favourise simple mod-
els as linear regressions. The inevitably approximate expression of relations between
the modelled variables does little harmwhen such models are learnt on-line. The local
modelling then often suffices as the modelled dependencies are mostly smooth. The
quality of such information processing can be notably enhanced by fusing the local
statistic values with those gained in a preliminary off-line processing. On-line data
processing and the statistics’ fusion have to always be done within limited time and
data budgets.

Generally, the complexity can only be counteracted by distributed—temporally,
information-resources-wise or agents-wise—information processing. It surely needs
an information fusion at some solution stage. The paper considers a specific but a
widely applicable scenario outlined in Abstract and shown in Figure 1.

Applications motivating the inspected scenario (the cases we met): The probabilistic
advisory system [18] models a closed loop, formed by a human agent and a world-part
she cares about, by dynamic mixtures of pds. The system advises her on the actions
promising the best forecast observation. Applications of this concept are described
in [37]. The main one concerned rolling mill operators. The advices to them had to be
refreshed on a cheap industrial hardware with clock rates of about 10 Hz while using a
dynamic 2nd order model of more than ten variables. These circumstances limited the
possibility to exploit databases containing around 106 records. Thus, it makes sense
to create a forecasting pd off-line and combine it with a simple parametric model
updated on-line.

The same advisory systemwas tested for advising a therapeutic dose of radioactive
iodine used for curing thyroid-gland cancer. The dose is to be personalised by using 3-4
measurements available for a specific patient. The patient-centric treatment must also
exploit population statistic and physician forecasts. Obviously, any system supporting
personalised medicine, as [21], should be able to combine sparse patient data with
population statistics and experts’ wisdom.

Recommendation systems in e-commerce represent another commonuse case [40].
We dealt with a version close to the advising to rolling mill operators. A customer is
part of a retailer’s loyalty programme that records the history of her shopping. Typi-
cally, her record reflects 3 to 10 shoppings per year in a specific category of goods.
Lower units of years are recorded. The population data, describing past shopping
of all other customers, can be processed off-line. The personalised on-line recom-
mendations during a visit of the e-shop have to rely on the said, very sparse, personal
data records in conjunction with the population model, all in tens of milliseconds.



4 Miroslav Kárný, František Hůla

Other samples fitting the inspected scenario: The fusion of filters’ outcomes has
many solutions and applications, e.g. in navigation [4] or robotics [3]. It has also been
elaborated in the vein of this paper [9]. Fusions fitting our scenario that yield a soft
cooperation of adaptive controllers exist, too [20].

Layout and conventions: Section 2 formalises the thought fusion problem. Section 3
solves it. Section 4 applies the solution to the EF of parametric models. Section 5
extends the gained results to handle the use of population statistics. Section 6 numer-
ically illustrates the theory. Section 7 complements references made on the fly and
contained in survey papers [31,46] on information fusion by a few comments on the
works related to ours.
Throughout:
X boldface x and P denote sets of possible x’s and P’s;
X random variables, their values and realisations are formally undistinguished;
X models are pds described by san serif fonts similarly to other mappings;
X indices a, n, f relate objects to their providers and (mostly implicitly) refer to the

informations, Ia, In and If, used by the agent, a, the neighbour, n, and the fuser, f;
X informations Ia, In, If contain (often implicitly) the agent’s action, aa , and the re-

gressors, ra , rn , rf;
≡ stresses equality by the assignment;
∝ is equality up to the normalising factor;
opt indicates the optimal use of the richest information, If.

2 INFORMATION PROCESSING SCENARIO

A triple of information-handling agents is inspected, see Figure 1. The key one is the
focal agent, a, to which the information processing serves. Its neighbour, n, serves as
an additional information source. The fuser, f, represents the algorithm proposed here
to help a in using the probabilistic information provided by n.
The agent, a, uses its domain knowledge for selecting the parametric model, Ma(oa |p)
≡Ma(oa |p,aa,ra), of an observation, oa ∈ oa . An unknown parameter, p ∈ p, an agent-
opted action, aa , and the regressor, ra , condition the model together with the implicitly
present aa,ra . The agent quantifies its current information about the unknown param-
eter, p ∈ p, by the posterior pd, Pa(p). Even when a new piece of information is
obtained, a preserves the parametric model, Ma(oa |p), but replaces its posterior pd,
Pa(p), by a new one, Pf(p), chosen from a given set of feasible posterior pds, P. Thus,
the information, Ia , inherent to a is

Ia ≡ (Ma,Pa,ra,P). (1)

The assumption that a is unwilling to change the parametric model, Ma(oa |p), prevents
induced, complexity-bringing, changes of the further information accumulation and
of the decision-rule design. The replacement of Pa by Pf ∈ P causes no such problem.
The neighbour, n, provides the agent, a, with extra information about the observation,
oa ∈ oa . n offers the forecasting pd,Fn(oa) ≡ Fn(oa |rn). Thus, the neighbour, n, transfers



Fusion of Probabilistic Indirect Information 5

a part of the information, In , via the fuser, f, (see below) to the agent, a. The neighbour
possesses the information

In ≡ (Fn,rn, . . .). (2)

The neighbour models the agent’s observation in a way that may completely differ
from that used by the agent. n operates on its regressor, rn , which is possibly unknown
to a. The ellipsis in (2) indicates that the neighbour may have access to a richer or
independent database. The neighbour, n, may have no clue about the existence of the
environment model, Ma , and thus about its unknown parameter, p ∈ p.

The processing assumes that the forecasting pd, Fn , models the observation, oa
corresponding to the realised agent’s action, aa , and the regressor, ra . Verifying this
assumption is usually simple. For instance, when the correspondence of aa,ra with rn
follows from their simultaneous observation of the modelled environment.

The fuser, f, is the algorithm designed in the paper. It opts a posterior pd, Pf ∈ P,
according to the fused information, If,

If ≡ (Ma,Pa,Fn,rf,P). (3)

If consists of the environment model, Ma , the agent’s posterior pd, Pa , of its parameter,
p ∈ p, the neighbour’s forecasting pd, Fn , the regressor, rf, that unites ra and rn , and
the set of feasible posterior pds, P.

The information, If (3), does not determine the desired posterior pd, Pf ∈ P,
uniquely. Thus, the fuser is to select such an improved posterior pd, Pf ∈ P, using the
limited information, If. The choice is done by a static randomised DM strategy with
a fusing rule2

Sf(Pf) ≡ Sf(Pf |If) = Sf(Pf |Ma,Pa,Fn,rf,P), Pf ∈ P. (4)

The paper designs the optimal fusing rule, Sopt, of the form (4) for the used
information-processing scenario. The design exploits a deductive, axiomatically jus-
tified, methodology.

3 PROBLEM FORMULATION AND SOLUTION

The agent, a, allows the fuser, f, to modify its posterior pd, Pa – describing the
parameter of the model, Ma – to the posterior pd, Pf, offered by the fuser. The agent
only allows the posterior pds from the set of feasible pds, P. The agent is open to the
replacement of Pa by a posterior pd, Pf, from P. It may even provide its rule, Sa , which
randomly selects a posterior pd from the set P using its limited information, Ia . This
rule serves as a prior ansatz of the constructed fusing rule, Sf, that exploits the richer
fuser’s information, If. The classical work [43] provides axiomatics that recommends
to choose the optimal fusing rule Sopt as the minimiser of the Kullback-Leibler

2 Our manipulations assume discrete-valued modelled variables. The uncertain pds acting on them are
probabilistic vectors and their distributions are then modelled without technicalities of the measure theory.
The found solution is valid without this assumption.
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divergence3 (KLD, [27]) of Sf ∈ Sf to Sa . The work [19] extended this minimum KLD
principle so that it copes with quite general sets of fusing rules, Sf, over which the
optimisation runs. The optimal fusing rule is thus

Sopt ∈ Arg min
Sf ∈Sf

D(Sf | |Sa) ≡ Arg min
Sf ∈Sf

∫
P

Sf(Pf) ln
(

Sf(Pf)
Sa(Pf)

)
dPf . (5)

The specification of the set, Sf, containing suitable fusing rules, Sf (4), determines the
Sopt-choice (5). The proper choice has to reflect the richer information, If, available to
the fuser compared to the agent’s information, Ia . The next construction of Sf forms
the core of our solution.

The used scenario, Section 2, implies that the parametric model4, Ma(oa |p), is
given. The optional posterior pds, Pf(p), belong to the set of feasible pds, P. The chain
rule for pds [36] provides the joint pd of the observation, oa , and the parameter, p,

Jaf(oa,p|Pf) =Ma(oa |p)Pf(p), (oa,p) ∈ oa ×p. (6)

The opted posterior pd, Pf(p), and the neighbour’s forecasting pd, Fn(oa), also
characterise a joint pd, Jnf(oa,p|Pf), reflecting the neighbour’s contribution to the
fuser information, If. It is known that marginal pds, Fn and Pf, do not determine the
joint pd, Jnf, uniquely [33]. The conditions of the solved tasks make, however, the
next product choice unambiguous

Jnf(oa,p|Pf) = Fn(oa)Pf(p), (oa,p) ∈ oa ×p. (7)

It reflects that the neighbour forecasts the observation without information about the
agent’s parametric model, Ma . Moreover, the fuser models the parameter by the pd,
Pf ∈ P, chosen before seeing the observation, oa . This makes oa,p independent.

The joint pds (of oa,p) Jnf and Jaf, comprise the more rich information, If (3), than
the joint pd, Ja , that only uses the agent’s information, Ia (1),

Ja(oa,p|Pa) =Ma(oa |p)Pa(p), (oa,p) ∈ oa ×p. (8)

Thus, the agent’s joint pd, Ja , at most approximates the joint pds Jaf (6) and Jnf
(7) if they are given by a well-opted posterior pd, Pf ∈ P. The posterior pd is well
opted if it really exploits the fuser information, If (3). The use of this qualitative
observation requires a quantitative expression of proximity of a pds pair. The works [7,
19] have shown that the approximation quality is to be measured by the KLD of the
approximated pd to its approximant (unlike the popular variational Bayes method).
This implies that good fusing rules, Sf (4), make the expected values of D(Jaf | |Ja),
D(Jnf | |Ja) small. This specifies the set, Sf, of prospective fusing rules acting on Pf ∈ P

Sf ≡

{
S(Pf) ≡ S(Pf |If) :

∫
P

S(Pf)D(Jaf | |Ja) dPf ≤ ba <∞ (9)

and
∫

P
S(Pf)D(Jnf | |Ja) dPf ≤ bn <∞

}
,

3 The work [43] calls the same functional “cross-entropy”. The use of this term is often challenged so
we stay with the name “Kulback-Leibler divergence”.
4 The agreed implicit conditioning on the agent’s action, aa , and its regressor, ra , applies.
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and completes the formulation of the optimisation task (5). The optional bounds, ba
and bn , parameterise the set (9) and ensure its non-emptiness. The next proposition
provides the optimal fusing rule (5).

Proposition 1 (Optimal Fusing) The optimal fusing rule, Sopt ∈ Sf , ∅, (5), (9), is5

Sopt(Pf) ∝ Sa(Pf)exp
[
−(λa +λn)D(Pf | |Popt)

]
(10)

Popt(p) ∝ Pa(p)exp
[
w

∫
oa

Fn(oa) ln(Ma(oa |p)) doa
]
, w ≡

λn
λa +λn

∈ [0,1].

Kuhn-Tucker’s multipliers [25], λa ≥ 0, λn ≥ 0, are chosen so that the constraints
determining the set (9) are met.

The bounds ba , bn in (9) are chosen so that at least one is active so that λa+λn > 0.
If the agent a has no prior wish on the fusing rule and identifies Sa = Sf [18] then

the optimal fusing rule is deterministic and concentrates on Popt(p) (10).

Proof:The optimised KLD is a strictly convex functional on the convex set (9). Thus, a
uniqueminimum exists and can be found byminimising the Kuhn-Tucker’s functional.
It is given by the non-negative Kuhn-Tucker’s multipliers, λa, λn , chosen so that the
constraints in (9) are met. In the next expression of this functional, the KLDs of the
involved joint pds Jaf, Jnf, Ja , (6), (7), (8), are explicitly written. Also, the functional
arguments are re-arranged, the normalisation of pds and Fubini’s theorem on multiple
integrations [39] are exploited∫

P
Sf(Pf)

{
ln

( Sf(Pf)
Sa(Pf)

)
+λa

∫
oa×p

Ma(oa |p)Pf(p) ln
( Ma(oa |p)Pf(p)
Ma(oa |p)Pa(p)

)
doadp

+ λn

∫
oa×p

Fn(oa)Pf(p) ln
( Fn(oa)Pf(p)
Ma(oa |p)Pa(p)

)
doadp

}
dPf

=

∫
P

Sf(Pf)

{
ln

( Sf(Pf)
Sa(Pf)

)
+ (λa +λn)

×

∫
p

Pf(p)

[
ln

( Pf(p)
Pa(p)

)
+

λn
λa +λn

∫
oa

Fn(oa) ln
( Fn(oa)
Ma(oa |p)

)
doa︸                               ︷︷                               ︸

−
∫
oa

Fn ln
(

Ma (oa |p)
)

doa+aconstant

]
dp

}
dPf

(10)︷︸︸︷
=

∫
P

Sf(Pf)

{
ln

(
Sf(Pf)
Sa(Pf)

)
+ (λa +λn)

∫
p

Pf(p) ln
(

Pf(p)
Popt(p)

)
dp︸                         ︷︷                         ︸

D(Pf | |Popt)

}
dPf

+ a constant = D(Sf | |Sopt)+ another constant .

5 It uses the implicit conditioning Fn(oa) = Fn(oa |aa , ra), Ma(oa |p) = Ma(oa |p, aa , ra). The assumed
neighbour, see Section 2, implies the relevance of aa , ra in the forecasting pd Fn .
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The last expression gives the optimal fusing rule (10) as the KLD reaches its minimum
for identical arguments. The weight w is w = λn/(λn+λa) ∈ [0,1] for arbitrary λa, λn ≥
0. The assumption that at least one bound in (9) is active implies that λa +λn > 0.

For Sa(Pf) = Sf(Pf), the optimised functional is linear in the optimised fusing rule,
Sf ∈ Sf, and the basic lemma of stochastic control [2] applies. �

Discussion 1
X The weight, w (10), is zero for λn = 0. Then, the information about the neighbour’s

forecasting pd, Fn , does not change the agent’s parameter description, Pa(p).
X The multiplier λn is zero (giving w = 0) if the corresponding proximity bound, bn

(9), is chosen so large that it is not reached. A large bound means that the fuser
assigns a negligible relevance to the forecasting pd offered by the neighbour.

X The weight w→ 1 for large values of λn reflecting tight bound bn . It expresses a
high importance assigned to the neighbour by the fuser.

X Altogether, the weight (10) can be safely interpreted as the reliability assigned by
the fuser to the neighbour.

X The value λa +λn in (10) controls the closeness of the randomly sampled Pf ∼ Sopt

to Popt. Thus, both the relative trust weight, w (10), and the individual values of
Kuhn-Tucker multipliers, λa , λn , play a significant role in the proposed fusion.

X The individual multipliers reflect the individual tightness of bounds ba , bn in the
set (9). We assumed that at least one is tight, so that λa +λn > 0.

X The used formulation of the fusion task provides the top randomisation level that
enriches the solution space. Indeed, the randomisation of the fusing rules Sf (4)
adds no flexibility [1].

4 APPLICATION TO EXPONENTIAL FAMILY

The complexity curse is the main reason for the information processing requiring a
fusion, see Section 1. The same reason motivates the wide-spread use of parametric
models from the EF. The EF includes the vast majority of models that admit a
sufficient statistic of a fixed finite dimension [23]. This property allows to convert
the functional Bayes’ rule into the algebraic recursion exactly. This motivates the
presented specialisation of Proposition 1 to parametric models from the EF.

A member of the EF forecasts observation oa ∈ oa by the parametric model

Ma(oa |p) =Ma(oa |p,aa,ra) ≡ exp 〈A(oa,aa,ra),B(p)〉 . (11)

There, 〈A,B〉 is the scalar product of finite-dimensional, real values of the known func-
tions, A(oa,aa,ra) and B(p). Here, the finite-dimensional action, aa , and the regressor,
ra , forming a part of information Ia (1), are explicitly referred to. The EF members
have the conjugated (self-reproducing) prior pd [6]

Pa(p) ≡ Pa(p|Va) ∝ exp 〈Va,B(p)〉 , p ∈ p. (12)

It is given by a finite-dimensional real array,Va , for which the scalar product 〈Va,B(p)〉
makes sense and for which the function (12) is normalisable to a pd.

The next proposition just specialises Proposition 1 to the EF.
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Proposition 2 (Optimal Fusing in EF) Let the parametricmodelMa(oa |p,aa,ra) (11)
be given. Let the agent, a, employ the conjugated prior pd, Pa(p|Va) (12). Then, the
optimal fusing rule (5) within the set (9) has the general form (10) given by the
conjugated pd, Popt(p|Vopt) ∝ exp

〈
Vopt,B(p)

〉
, with

Vopt = Va +w
∫
oa

Fn(oa |aa,ra)A(oa,aa,ra) doa, w ∈ [0,1]. (13)

Discussion 2

X Bayes’ rule updating the conjugated pd (12) by the data record, oa,aa,ra , provides
the posterior pd of this functional form with Va replaced by the statistic value

Vopt = Va +A(oa,aa,ra). (14)

This offers an insight into our information fusion. The conjugated pd, Popt(p|V),
delimiting the optimal fuser of the functional form (12), is given by the statistic
(13). Thus, instead of incrementing Va by the value of A in the yet unavailable
observation, the fuser incrementsVa by the expectation of A(oa,aa,ra) with respect
to the forecasting pd, Fn(oa |aa,ra). The expected value is weighted by the trust
weight, w ∈ [0,1], assigned by the fuser to the information-offering neighbour.

X If the neighbour supplies an Fn(oa |aa,ra), which is fully concentrated on a crisp
observation, then the standard Bayesian updating recovers whenever the fuser
fully trusts the neighbour and sets w = 1.

X A crisp observation and w < 1 provide a weighted Bayes’ rule handling an unre-
liable likelihood arising due to, for instance, its approximate evaluation.

Example 1 (Fusion Supports Markov Decision Processes) AMarkov, action-depen-
dent, environment model is a key ingredient of widely-usedMarkov decision processes
[32]. This example shows that our theory may enhance its learning.

The parametric Markov model with discrete-valued observable state, oa ∈ oa ,
and action, a ∈ a, is the key EF member. It is parameterised by an array of transition
probabilities, p. Its entry po |a,r is the probability of the next environment state, o ∈ oa ,
if the action a ∈ aa is chosen and the environment is in a state defining its regressor
r ∈ ra = oa . Formally,

Ma(oa |p) = M(oa |p,aa,ra) ≡ poa |aa ,ra =
∏

(o,a,r)∈(oa ,aa ,ra )

pδ[(o,a,r),(oa ,aa ,ra )]
o |a,r

= exp
[ ∑
(o,a,r)∈(oa ,aa ,ra )

δ[(o,a,r),(oa,aa,ra)] ln(po |a,r )
]
, (15)

where δ[•,?] ≡ 1 if • =?, δ[•,?] ≡ 0 if • ,? is Kronecker’s delta.
The last form in (15) shows that Ma is from the EF with Ao |a,r (oa,aa,ra) ≡

δ[(o,a,r),(oa,aa,ra)], Bo |a,r (p) ≡ ln(po |a,r ), and 〈A,B〉 ≡
∑
(o,a,r)Ao |a,rBo |a,r .

The conjugated prior pd has the finite-dimensional sufficient statistic with entries
Va,o |a,r > 0, o ∈ oa , a ∈ aa , r ∈ ra . This conjugated prior is Dirichlet’s pd [18]

Pa(p|Va) ∝
∏

(o,a,r)∈(oa ,aa ,ra )

pVa ,o |a ,r−1
o |a,r

. (16)
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The Bayesian updating (14) with an observed triple oa,aa,ra reduces to counting

Va,oa |aa ,ra = Va,oa |aa ,ra +1. (17)

The optimal fusing (13) for the given aa , ra reduces to the updating

Vopt
o |aa ,ra

= Va,o |aa ,ra +wFn(o |aa,ra), ∀o ∈ oa . (18)

Discussion 3

X If the neighbour supplies a crisp observation oa with Fn(oa |aa,ra) = 1 then (18)
reduces to (17) if the fuser fully trusts the neighbour and sets w = 1.

X The standard Bayesian estimation and fusion of the neighbour’s information may
run whenever the data record (oa,aa,ra) or the forecasting pd Fn(o|aa,ra), o ∈ oa ,
are available. No prior updating schedule is needed.

X The estimation and fusion provide the values,Vx, x ∈ {a,n,f}. They allow to forecast
the observation oa ∈ oa for any action aa ∈ aa and any regressor ra ∈ ra = oa , [18],

Fx(oa |aa,ra,Vx) =
Vx,oa |aa ,ra∑
o∈oa Vx,o |aa ,ra

, x ∈ {a,n,f}. (19)

X The formula (19) provides away in which the neighbourmay obtain the forecasting
pd Fn . It simply collects its statistic Vn on an other data set than the processed
one and uses its version of (19). For instance, it processes the data set concerning
the whole population of modelled environments. The neighbour’s array, Vn,o |a,r ,
(o,a,r) ∈ (oa,aa,ra), may be a sub-array of an off-line-collected Vn,o |a,r with
o ∈ on ⊇ oa , a ∈ an ⊇ aa , r ∈ rn ⊇ ra .

X The result (18) has a great appeal. Probabilities Fn(o|aa,ra), ∀o ∈ oa and given
aa,ra , replace the values of δ[(o,aa,ra),(oa,aa,ra)] (15) that are unknown when the
observation oa is yet unavailable. This replacement coincides with the heuristic
called quasi-Bayes estimation [14,44].

Example 2 (Fusion forLinearGaussian Models) A linear-in-regression coefficients,
θ, Gaussian model of a real vector, oa , with a constant conditional covariance, ρ, is
another prominent example of the (dynamic) EF parameterised by p ≡ (θ, ρ). If . the
action and regressor fill a column vector with unity at its end . I is a unit matrix of
the size of oa . ′ is transposition, then the form (11) of an EF member is gained with

〈A,B〉 = tr[A′B], A(oa,aa,ra) =


oa
aa
ra

 [o′a,a′a,r ′a]
p = (θ, ρ), B(p) = −0.5

[
−I θ
0 1

] ′ [
ρ−1 0
0 ln(|ρ|)

] [
−I θ
0 1

]
.

The sufficient statistic is a positive-definite, extended information matrix Va . It de-
termines the conjugated Gauss-inverse-Wishart pd of the unknown parameter. The
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Bayesian updating (14) reduces to the recursive least squares, for details see [36].
The optimal fusing (13) reads

Vopt = Va +w
∫
oa

Fn(oa |aa,ra)


oa
aa
ra

 [o′a,a′a,r ′a] doa (20)

= Va +w



ōn
aa
ra

 [ō′n,a′a,r ′a]+


covn(oa |aa,ra) 0 0
0 0 0
0 0 0


 .

Thus, the fuser updates Va by the dyad with the unavailable oa replaced by its expec-
tation ōn =

∫
oa

oaFn(oa |aa,ra) doa . The corresponding sub-matrix of Va is, moreover,
increased by the covariance covn(oa |aa,ra) given by Fn(oa |aa,ra). This result appeared
in [38] with the heuristically motivated weight, w.

If n supplies a crisp observation oa with covn(oa |aa,ra) = 0 then ōn = oa and
the formula (20) reduces to the standard Bayesian updating with the processed data
record weighted by

√
w.

5 AN EXTENDED FORMULATION AND ITS SOLUTION

The proposed fusing treats Fn as a single data record. It is obvious when considering
Propositions 1, 2 with this forecasting pd concentrated on a crisp observation. At
the same time, it is clear that information contents of a few and many data records
may differ substantially even if they lead to the same forecasting pd. In other words,
the sufficient statistic representing the data records is their sample pd F̃n and their
(effective) number νn .

This section respects the recalled fact under an additional assumption: the neigh-
bour, n, provides the forecasting pd, Fn(oa |aa,ra), relevant for the realised action,
aa , and the realised regressor, ra , together with the effective number, νn ≥ 1, of data
records dn = (ok,aa,ra)

νn
k=1 that led to the forecasting pd Fn(oa |aa,ra).

The effective number νn may coincide with the real number of processed data
records or may be lower due to the use of a weighted Bayes’ rule, see [26] and
Discussion 2. It can also be quite subjective to express the number of fictitious data
records the neighbour used for the construction of the forecasting pd, Fn .

Let us imagine that νn data records dn with common aa,ra were fed into Bayes’
rule with the agent’s parametric model Ma(oa |p) =Ma(oa |p,aa,ra) and the pd Pa(p). It
gives [24]

P̃n(p|dn) ∝ Pa(p)exp
[
νn

∫
oa

F̃n(oa |aa,ra) ln(Ma(oa |p)) doa
]

(21)

F̃n(oa |aa,ra) ≡
1
νn

νn∑
k=1

δ[oa,ok].

A fair neighbour believes that its forecasting pd Fn models reality well and is close to
the sample pd F̃n in (21) obtained from νn data records. This motivates us to assign6

6 Let us stress that the neighbour, n, is generally unaware of the model, Ma , and its parameter, p.
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to the neighbour’s information, In = (Fn,νn), the posterior pd

Pn(p) ∝ Pa(p)exp
[
νn

∫
oa

Fn(oa) ln(Ma(oa |p)) doa
]
. (22)

The assignment (22) leads to the alternative, comparing to (9), specification of the set
of prospective fusing rules7

Sf =
{
S(Pf) = S(Pf |If) :

∫
Pf

S(Pf)D(Pf | |Pa) dPf ≤ ba <∞ (23)

and
∫

Pf
S(Pf)D(Pf | |Pn) dPf ≤ bn <∞

}
.

The choice (23) gives the next solution of the task (5).

Proposition 3 (Optimal Fusing with νn ≥ 1) The optimal fusing rule, Sopt ∈ Sf , ∅,
(5), (22), (23), has the form

Sopt(Pf) ∝ Sa(Pf)exp
[
−(λa +λn)D(Pf | |Popt)

]
(24)

Popt(p) ∝ Pa(p)exp
[
wνn

∫
oa

Fn(oa) ln(Ma(oa |p))doa
]
, w =

λn
λa +λn

∈ [0,1]

Fn(oa) = Fn(oa |aa,ra), Ma(oa |p) =Ma(oa |p,aa,ra).

Kuhn-Tucker’s multipliers [25], λa ≥ 0, λn ≥ 0, ensure that the constraints determining
the set (23) are met. They fully replace the Sf-parametrisation by bounds ba, bn .

If the agent has no prior wish on the fusing rule and identifies Sa = Sf, [18] then
the optimal fusing rule is deterministic and concentrates on Popt(p) (24).

Proof: It is omitted as it in fact copies that of Proposition 1. �

Discussion 4

X Proposition 1 is the special case of Proposition 3 for νn = 1. It confirms the claim
introducing and motivating this section.

X If Fn(oa) = Fn(oa |aa,ra) is indeed the sample pd gained from νn realised data
records then Popt(p) corrects Pa(p) by Bayes’ rule with the likelihood flattened by
the trust weight w ∈ [0,1].

X Proposition 3 specialises to the EF by using wνn instead of w ∈ [0,1] in Proposi-
tion 2. The weight w remains to be the learnable trust weight. It may counteract a
too high self-confidence of the neighbour expressed by a high offered value of νn .

6 SIMULATION EXAMPLES

This section illustrates the theory forming the core of the paper. The desirable real-life
tests will be published independently.

7 It uses the KLDs of posterior pds not the KLDs of joint pds.
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6.1 Monte Carlo study with static environments

The example is intentionally simple to meet its illustrative purpose. Its description
follows the basic blocks in Figure 1 and uses the next auxiliary vectors

va = [1,2,9,3,1,1,1,1,1], vn = [1,1,1,1,1,3,9,2,1]. (25)

Simulated environments generated sequences of observations ota in the set

oa = {1,2, . . . ,9} at time moments t ∈ t = {1,2, . . . ,10}. (26)

The observations were independent and influenced neither by actions, aa , nor by
regressors, ra,rn . The static environments were described by the next pds, see (25),

poa |aa ,ra ,rn ,α = poa |α = α
vnoa∑

o∈oa vno
+ (1−α)

vaoa∑
o∈oa vao

(27)

α ∈ α = {0,0.2,0.4,0.6,0.8,1}.

The agent, a, was aware that observations are mutually independent and independent
of its actions and of any regressor. It implied no need to generate actions and gave the
parametric model (15)

Ma(oa |p,aa,ra) =Ma(oa |p) = poa ≥ 0,
∑
o∈oa

po = 1.

Dirichlet’s conjugated pd (16) Pa(p|Va) was used. In each experiment, the statistic
determining it was set Va ≡ va (25) and updated according to the algebraic version of
Bayes’ rule (17) by 10 observations ota ∈ oa , see (26).
The neighbour, n, provided the fixed forecasting pd, Fn(oa) ∝ vnoa (25), together with
the effective number of data records, νn = 200, see Section 5. This reflects a high
self-confidence of the neighbour in its forecasting pd.
The fuser, f, used the forecasting pd, Fn , and the effective number of data records, νn ,
see Proposition 3. Thus, it increased the initial statistic to

Va,oa ≡ Va,oa +wνnFn(o), o ∈ oa = {1, . . . ,9}, (28)

for a fixed trust weight
w ∈w ≡ {0,0.02, . . . ,0.98,1}. (29)

The evaluation used Monte Carlo with 105 runs for each (α,w) ∈ α×w, (27), 29),
determining the simulated environment (27) and the trust weight allocated to the
neighbour’s information. The runs differed in realised samples distributed according
to (27). Bayes’ rule processed the observed 10 samples. The KLD’s of the pd of the
simulated environment to their final point estimates, based on the realised observa-
tions, (ota)10

t=1, and the fuser information, If (3), were evaluated. They were averaged
over the Monte Carlo runs. Note that in this case the point estimate coincides with the
forecasting pd.
The results in Figure 2 have a direct interpretation. If a trust weight is properly
chosen then the proposed fusion increases the estimation rate so vital for the short
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data sequences. The observable deterioration of the estimation quality when the fused
information is inadequate and w is improperly chosen supports the interpretation of
w as the trust weight. It also confirms that a proper trust weight is learnable.

To accept these claims, it suffices to recall that the zero trust case into the neigh-
bour’s forecasting pd (w = 0, blue dashed line in Figure 2) gives the standard Bayesian
estimation. Thus, the fusion results (red full line in Figure 2) above/below this base
level indicate deterioration/improvement due to the fusion with a positive trust weight
of the neighbour’s information, In (2).

Sub-figures in Figure 2 indicate: . if the simulated environment, given by α ∈ α
(27), differs much from the information (2) offered by the neighbour, it is better not
to take the offer seriously . if the reliable information is taken with the full trust
then it helps significantly. The transition between these extremes is smooth. Its almost
deterministic nature is due to: . the deterministic contribution of the neighbour to the
fused statistics (28) . the volatility suppression by the number of Monte Carlo runs.

6.2 A case with dynamic environment

This example provides an additional insight into the proposed knowledge fusion. It
deals with: . the simulated dynamic environment . the under-modelled parametric
model . the forecaster based on another under-modelled parametric model.

The example shows that even under these conditions the information brought by
the forecaster notably improves the agent’s forecasting ability.
Simulated environments generated sequences of observations ot in the set

o ≡ {1,2} at time moments t ∈ t ≡ {1,2, . . . ,10}. (30)

The observations were generated by the second order Markov chain uninfluenced by
agent’s actions. The presented cases simulated the transition probabilities pot |rt−1

Case 1 Case 2
po=1 |r=[1,1] ≡ 0.0 po=1 |r=[1,1] ≡ 0.2
po=1 |r=[1,2] ≡ 0.5 po=1 |r=[1,2] ≡ 0.4
po=1 |r=[2,1] ≡ 0.5 po=1 |r=[2,1] ≡ 0.4
po=1 |r=[2,2] ≡ 1.0 po=1 |r=[2,2] ≡ 0.9

with rt−1 ≡ [ot−1,ot−2].

In all runs, initial regressor was r0 ≡ [o0,o−1] = [2,1]. The random seed generator was
reset to a common value when a new trust weight was inspected.
The agent, a, was aware that its observations, oa ≡ o ∈ o = {1,2}, are independent of
its actions, aa . The agent underestimated the environment dynamics. It used the first-
order parametric model (15) Ma(oa |p,aa,ra) = poa |ra with r(t−1)a ≡ o(t−1)a . Dirichlet’s
conjugated pd (16) Pa(p|Va)was used. In each experiment, the prior statistics were set

Case 1 Case 2

Va ≡ [Va,o |ra ]o,ra ∈o ≡
[

10−6 1
1 10−6

]
Va ≡

[
2 1
1 3

]
.
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(a) α = 0.0 (b) α = 0.2

(c) α = 0.4 (d) α = 0.6

(e) α = 0.8 (f) α = 1.0

Fig. 2: The averaged KLD of simulated environment models to the estimated ones for
different simulated environments given by values of parameter α (27). The red full
line corresponds to the agent, a, that uses both (17) and (18) with various trust weights
w. The blue dashed line corresponds to the agent, a, that just uses Bayes’ rule (17).

The statistics were sequentially updated via the algebraic version of Bayes’ rule (17)
by 10 observations.

The neighbour, n, provided the forecasters gained by sequentially learning the ap-
proximate parametric model Mn(oa |pn,aa,rn) = pnoa |rn of the observation ota with the
regressor r(t−1)n ≡ o(t−2)a , which gave Fn(oa |rn) ∝ Vnoa |rn .

The initial statistics were set

Case 1 Case 2

Vn ≡ [Vn,o |rn ]o,rn ∈o ≡
[

10−6 1
1 10−6

]
Vn ≡

[
1 2
1 1

]
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but unlike Va , which was updated by the observed pairs ota,o(t−1)a , Vn was updated
by the pairs ota,o(t−2)a . The effective number of processed data records in each time
step was νn = 1, cf. Section 5.

The fuser, f, used the forecasting pd, Fn , and the effective number of data records,
νn = 1, Proposition 3 reduced to Proposition 2. Thus, it increased the updated statistic

Vopt
o |ra
= Va,o |ra +wFn(o|rn), o ∈ o,

for a fixed trust weight w ∈w (29).
The evaluation usedMonteCarlowith 105 runs for eachw ∈w, (29). The runs differed
in realised samples. The under-modelling made comparison in parameter spaces
meaning-less. The quality of individual forecasters F ∈ {Fa,Fn,Ff} was evaluated by
the accuracy defined as

Accuracy =
number of [argmaxo∈o(Ft (o)) = ota]t∈t

10
×100 [%].

The results in Figure 3 have a direct interpretation in Case 1. If a trust weight is
properly chosen then the proposed fusion increases the agent’s forecasting quality even
when both the agent and its neighbour learn parametric models of wrong structures.
Again, it confirms that a proper trust weight is learnable.

Case 2 represents the configuration inwhich the properlyweighted forecaster again
improves forecasting abilities of the agent but it does not guarantee that the gained
quality will cross that reached by the neighbour. This is the cost for the considered
unwillingness (inability) of the agent to employ another parametric model. The agent
can see the price paid for the unwillingness and modify its parametric model if other
circumstances allow this change.

Fig. 3: The averaged forecast accuracy. Blue dashed line reflects the agent’s accuracy,
green dots characterise the neighbour’s accuracy and red full line corresponds with
the fuser’s outcomes. The left panel concerns Case 1, the right panel reflects Case 2.
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7 REMARKS ON RELATEDWORKS AND OPEN PROBLEMS

The presented scenario of information fusion complements the existing rich set of
tools [31,46]. To our best knowledge the incorporation of the information brought
by the forecasting pd into the posterior pd of an unknown parameter has only been
developed by us and by our colleagues. This explains why self-citations dominate
our discussion. At the same time, we hope that this paper will contribute to a further
development of our approach that has an extreme use range. We have used it, for
instance, for knowledge elicitation [17] or distributed control [20]. The foreseen
direct applications are discussed in Section 1. They concernmainly but not exclusively
advisory and recommendation systems.

Mathematically, the inspected fusion is a case of combining pds [11]. The com-
bination of pds operating on non-identical domains is the specificity of the proposed
fusion. It primarily serves the targeted DM. The adopted Bayes’ framework is im-
portant even when no specific DM objective is set but learning faces a lack of data.
In the big-data era, it is a surprisingly frequent case. For instance, analysis of gene
regulatory networks [13] or structure estimation of Bayesian networks [42] suffer
from the data lack. Other learning problems like fraud detection [30] or building of
sparse models [10] and many others are difficult due to the lack of informative data.

Methodologically, extensional or intensional combinations of partial probabilistic
information exist. The insightful paper [35] favourises the intensional, top-down
approach and supports Bayesian networks [16]. Fuzzy methodology [48] represents
clever extensional, bottom-up approaches. Our approach lies between these extremes.
It steps out from the preferable intensional way in order to respect the limited agent’s
abilities. Still, it meets some challenges inherent to extensional technique, cf. [47].

On the other hand, comparing to our nearest predecessor [38], the proposed way
derives the trust weight intensionally. It uses KLD “balls” when defining the sets (9),
(23) of the suitable fusing rules. The choice of these balls is justified in [7,19].

A survey of fusion techniques clearly shows two aspects relevant to our work:
. a lot of excellent work was done, e.g. [29] . too much was done without clear
guidelines, which makes a selection of an appropriate method for a specific problem
error-prone [28]. A similar situation arises in artificial intelligence and surely in other
areas as well. The deductive solutions as ours diminish this problem.

Technically, the proposed fusion can be simply extended to more neighbours,
to more information sources. Importantly, the fusion can jointly use forecasting pds
obtained by the objective-data-based estimation [36] and subjective experts’ judge-
ment [34]. It also processes a crisp data record in a way, which coincides with Bayes’
rule whenever the observation source is qualified as reliable.

A closer inspection of the proposed information fusion way reveals a range of
small open technical problems and surely-solvable problems like Bayesian learning
of the trust weight. Open, conceptually hard, problems include the analysis of emergent
behaviours of extensive networks sharing the information in the proposed way.

Even under the current research state, the proposed fusion can already be applied in
the advisory and recommendation systems as well as within the internet of things [45]
or cyber-physical-social systems [8]. They often need the fusion sketched in Figure 1.



18 Miroslav Kárný, František Hůla

Declaration

Acknowledgement:The paperwas notably influenced by discussionswithDr. T.V.Guy.
Funding: The reported research has been supported by MŠMT ČR LTC18075 and
EU-COST Action CA16228.
Conflict of interests:The authors have no affiliation with any organization with a direct
or indirect financial interest in the subject matter discussed in the manuscript. This
manuscript has not been submitted to, nor is under review at, another journal or other
publishing venue.
Availability of data and material: Not applicable
Code availability:The code of examples is available at https://gitlab.com/hula-phd/bks.
Authors’ contributions: Both authors tightly cooperated on the paper. MK dominated
in writing the text and FH in experiments.

References

1. Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.
The Annals of Statistics 2(6), 1152–1174 (1974)

2. Åström, K.: Introduction to Stochastic Control. Acad. Press, N.Y. (1970)
3. Bader, K., Lussier, B., Schon, W.: A fault tolerant architecture for data fusion: A real application of

Kalman filters for mobile robot localization. Robotics and Autonomous Systems 88, 11 – 23 (2017)
4. Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation.

Wiley (2003)
5. Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. Wiley, N.Y. (1978)
6. Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer (1985)
7. Bernardo, J.: Expected information as expected utility. The An. of Stat. 7, 686–690 (1979)
8. Bogdan, P., Pedram, M.: Toward enabling automated cognition and decision-making in complex

cyber-physical systems. In: 2018 IEEE ISCAS, pp. 1–4 (2018)
9. Foley, C., Quinn, A.: Fully probabilistic design for knowledge transfer in a pair of Kalman filters. IEEE

Signal Proc. Letters 25(4), 487–490 (2018)
10. Galeano, P., Pena, D.: Data science, big data and statistics. Test 28, 289–325 (2019)
11. Genest, C., Zidek, J.: Combining probability distributions: A critique and annotated bibliography. Stat.

Sci. 1(1), 114–148 (1986)
12. Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proc. of the IEEE 85(1), 6–23 (1997)
13. Hlaváčková-Schindler, K., Naumova, V., Pereverzyev, S.: Granger causality for ill-posed problems:

Ideas, methods, and application in life sciences. In: W. Wiedermann, A. von Eye (eds.) Statistics and
Causality: Methods for Applied Empirical Research, pp. 249–276. Wiley (2016)

14. Hoshino, T., Igari, R.: Quasi-Bayesian Inference for Latent VariableModels with External Information:
Application to generalized linear mixed models for biased data. Keio-IES Discussion Paper Series
2017-014, Institute for Economics Studies, Keio University (2017)

15. Jazwinski, A.: Stochastic Processes and Filtering Theory. Ac. Press (1970)
16. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, N.Y. (2001)
17. Kárný, M., Bodini, A., Guy, T., Kracík, J., Nedoma, P., Ruggeri, F.: Fully probabilistic knowledge

expression and incorporation. Statistics and Its Interface 7(4), 503–515 (2014)
18. Kárný, M., Böhm, J., Guy, T., Jirsa, L., Nagy, I., Nedoma, P., Tesař, L.: Optimized Bayesian Dynamic

Advising: Theory and Algorithms. Springer, London, UK (2006)
19. Kárný, M., Guy, T.: On support of imperfect Bayesian participants. In: T. Guy, et al (eds.) Decision

Making with Imperfect Decision Makers, vol. 28, pp. 29–56. Springer, Int. Syst. Ref. Lib. (2012)
20. Kárný,M., Herzallah, R.: Scalable harmonization of complex networks with local adaptive controllers.

IEEE Trans. on SMC: Systems 47(3), 394–404 (2017)
21. Kasabov, N., Hu, Y.: Integrated optimisation method for personalised modelling and case studies for

medical decision support. Int. J. Functional Informatics and Personalised Medicine 3(3) (2010)



Fusion of Probabilistic Indirect Information 19

22. Kern-Isberner, G., Lukasiewicz, T.: Special issue on challenges for reasoning under uncertainty,
inconsistency, vagueness, and preferences. Künstl. Intell. 31, 5–8 (2017). DOI https://doi.org/10.
1007/s13218-016-0479-z

23. Koopman, R.: On distributions admitting a sufficient statistic. Trans. of Am. Math. Society 39, 399
(1936)

24. Kracík, J., Kárný,M.:Merging of data knowledge in Bayesian estimation. In: J. Filipe, et al (eds.) Proc.
of the 2nd Int. Conf. on Informatics in Control, Automation and Robotics, pp. 229–232. Barcelona
(2005)

25. Kuhn, H., Tucker, A.: Nonlinear programming. In: Proc. of 2nd Berkeley Symp., pp. 481–492. Univ.
of California Press (1951)

26. Kulhavý, R., Zarrop, M.B.: On a general concept of forgetting. Int. J. of Control 58(4), 905–924 (1993)
27. Kullback, S., Leibler, R.: On information and sufficiency. Ann Math Stat 22, 79–87 (1951)
28. van Laere, J.: Challenges for IF performance evaluation in practice. In: 12th Intern. Conf. on Infor-

mation Fusion, pp. 866 – 873. IEEE, Seattle, WA (2009)
29. Lee, H., Lee, B., Park, K., Elmasri, R.: Fusion techniques for reliable information: A survey. Intern.

Journal of Digital Content Technology and its Applications 4(2), 74–88 (2010)
30. Leevy, J., Khoshgoftaar, T., Bauder, R., Seliya, N.: A survey on addressing high-class imbalance in

big data. Journal of Big Data 5(42) (2018)
31. Meng, T., Jing, X., Yan, Z., Pedrycz, W.: A survey on machine learning for data fusion. Information

Fusion (2019). DOI https://doi.org/10.1016/j.inffus.2019.12.001
32. Mine, H., Osaki, S.: Markovian Decision Processes. Elsevier (1970)
33. Nelsen, R.: An Introduction to Copulas. Springer, N.Y. (1999)
34. O’Hagan, A., et al: Uncertain Judgement: Eliciting Experts’ Probabilities. J. Wiley (2006)
35. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufman (1988)
36. Peterka, V.: Bayesian system identification. In: P. Eykhoff (ed.) Trends and Progress in System

Identification, pp. 239–304. Perg. Press (1981)
37. Quinn, A., Ettler, P., Jirsa, L., Nagy, I., Nedoma, P.: Probabilistic advisory systems for data-intensive

applications. Int. J. of Adapt. Control & Signal Proc. 17(2), 133–148 (2003)
38. Quinn, A., Kárný, M., Guy, T.: Optimal design of priors constrained by external predictors. Int. J.

Approximate Reasoning 84, 150–158 (2017)
39. Rao, M.: Measure Theory and Integration. J. Wiley (1987)
40. Sassani, B.,Alahmadi,A., Sharifzadeh,H.:A cluster based collaborative filteringmethod for improving

the performance of recommender systems in e-commerce. In: K. Arai, et al (eds.) Proceedings of the
Future Technologies Conference (FTC) 2018, Advances in Intelligent Systems and Computing, vol.
881. Springer, Cham (2019)

41. Savage, L.: Foundations of Statistics. Wiley (1954)
42. Scanagatta, M., et al: A survey on Bayesian network structure learning from data. Progress in AI 8,

425–439 (2019)
43. Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy & the principle of

minimum cross-entropy. IEEETran. on Inf. Th. 26(1), 26–37 (1980)
44. Smith, A., Makov, U.: A quasi-Bayes sequential procedures for mixtures. J. of the Royal Statistical

Society 40(1), 106–112 (1978)
45. Tsai, C., Lai, C., Chiang, M., Yang, L.: Data mining for internet of things: A survey. IEEE Communi-

cations Surveys & Tutorials 16(1), 77–95 (2014)
46. Wang, P., Yang, L., Li, J., Chen, J., Hu, S.: Data fusion in cyber-physical-social systems: State-of-the-art

and perspectives. Information Fusion 51, 42 – 57 (2019)
47. Xu, Z., He, Y., Wang, X.: An overview of probabilistic-based expressions for qualitative decision-

making: techniques, comparisons and developments. International Journal of Machine Learning and
Cybernetics 1513–1528, 10 (2019)

48. Zadeh, L.: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Systems
Theory in the Social Sciences pp. 202–282 (1976)


	INTRODUCTION
	INFORMATION PROCESSING SCENARIO
	PROBLEM FORMULATION AND SOLUTION 
	APPLICATION TO EXPONENTIAL FAMILY
	AN EXTENDED FORMULATION AND ITS SOLUTION
	SIMULATION EXAMPLES
	REMARKS ON RELATED WORKS AND OPEN PROBLEMS

