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Abstract A decision-making (DM) agent models its environment and quantifies its
DM preferences. An adaptive agent models them locally nearby the realisation of
the behaviour of the closed DM loop. Due to this, a simple tool set often suffices for
solving complex dynamic DM tasks. The inspected Bayesian agent relies on a unified
learning and optimisation framework, which works well when tailored by making a
range of case-specific options. Many of them can be made off-line. These options
concern the sets of involved variables, the knowledge and preference elicitation,
structure estimation, etc. Still, some meta-parameters need an on-line choice. This
concerns, for instance, a weight balancing exploration with exploitation, a weight
reflecting agent’s willingness to cooperate, a discounting factor, etc. Such options
influence, often vitally, DM quality and their adaptive tuning is needed. Specific
ways exist, for instance, a data-dependent choice of a forgetting factor serving to
tracking of parameter changes. A general methodology is, however, missing. The
paper opens a pathway to it. The solution uses a hierarchical feedback exploiting a
generic, DM-related, observable, mismodelling indicator. The paper presents and
justifies the theoretical concept, outlines and illustrates its use.

Keywords Bayesian learning · Adaptive agent · Meta-parameter tuning · Fully
probabilistic design · Kullback-Leibler divergence · Dynamic decision making

1 Introduction

The paper concerns a prescriptive tuning of meta-parameters1 of adaptive agents
solving dynamic DM tasks. The survey, Hospedales et al. (2020), confirms that meta-
tuning is a hot topic in machine learning and recalls how much were done. This
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1 The prefix “meta” marks a task about a task, DM about DM, an option about an option, etc. Note that
all abbreviations are summarised in Table 2 at the paper end.
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induces natural reader’s questions: Q1: Why should I go through another paper on
this topic? Q2: What I will gain? Q3: What is novel in it? Q4: What is useful in it?

The possible answers are:

Q1 The paper approaches the common meta-parameter choice in a non-standard
way. It proposes an on-line tuning that exploits a novel, generic, predictable and
observable quality indicator of the closed DM loop. It aligns with the spreading
awareness that machine learning ultimately serves to a DM, Schweighofer and
Doya (2003), Ghavamzadeh et al. (2015). Many insightful experts shift accordingly
their attention. For instance, they combine the stream and on-line processing with
the quest for a balanced exploration and exploitation, Klenske and Hennig (2016),
or a care about the closed-loop stability, Beckenbach et al. (2020), etc. All need
DM-tailored meta-tuning.

Q2 The offered meta-tuning relies on the axiomatic DM theory called fully probabilis-
tic design of decision strategies (FDP), Kárný and Kroupa (2012), Kárný (2020a).
It is worth to be aware of FPD as it strictly extends the usual maximisation of
an expected reward, Savage (1954), Puterman (2005). FPD unifies probabilistic
modelling of environments, decision strategies, and, unusually, DM preferences.
This provides a new way to meta-tuning and other tasks too, e.g. Quinn et al.
(2016).

Q3 The key novelties are: a) a meta-parameter tuning based on the minimisation of a
mismodelling indicator that respects the solved DM problem; b) a refined analysis
of Bayesian-estimation asymptotic; c) a use of the novel preference-elicitation
principle, Kárný and Guy (2019), stoping an infinite regress of hierarchies needing
to tune a meta-meta-parameter of the meta-level DM, etc.

Q4 Users of advanced algorithms in machine learning, control, computational statistics,
and other domains know how hard the choice of proper parameters can be. The
problem is repeatedly addressed, usually, in a domain-dependent way or for a
specific algorithmic class, Duvenaud (2014). No universal solution exists. No free
lunch theorem, Wolpert and Macready (1997), confirms that it cannot exist. It does
not preclude a search for quite general solution ways. The paper offers one. It uses
weak assumptions and a generic methodology that does not rely on big informative
data. Its narrowing down to a specific case follows from the solved DM problem.

The outlined gains, hopefully, make the effort spent on non-standard notions and
notations worthwhile. The paper could be quite attractive to readers searching for
interesting research problems worth of their inventive abilities.

2 Technical Introduction

Agents are building blocks of distributed artificial intelligence, Sandholm (1999), of
cyber-physical systems, Bogdan and Pedram (2018), of industry 4.0, Liao et al. (2017),
etc. Their demanding tuning makes attractive the adaptive-control concept, Åström
and Wittenmark (1994). The dreamt generic, feasible, self-tuning controller, however,
never materialised. Almost always an important (multivariate) meta-parameter has
to be chosen. Numerous ways exist but they are case-dependent and they demand a
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substantial deliberation effort, Ishii et al. (2002). The paper contributes to a change of
this state. It adds a relatively universal hierarchical feedback to an adaptive agent, Fig.
1. This feedback selects the meta-parameter so that the influence of the DM-specific
mismodelling error, inherent to the local modelling, is adaptively minimised.
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Fig. 1: The addressed task and its solution via a meta-level feedback.
The bold (blue) arrows and “Feedback to be designed” reflect the solved meta-DM.

2.1 Guide

Sec. 3.1 recalls the used theory of dynamic DM. Sec. 3.2 provides examples of tuned
meta-parameters. They motivate the meta-tuning assumptions adopted in Sec. 3.3. Sec.
3.4 splits the DM optimality criterion into an E -term, influenced by estimation, and
an M -term, reflecting mismodelling. Sec. 4 proofs that Bayesian estimation cares
about the E -term. The analysis refines known results. The M -term reflects observable
mismodelling effects on DM quality. It enables the feedback design sketched in Fig.
1. It is proposed in Sec. 5 by: a) interpreting the tuned parameter as meta-action,
Sec. 5.1; b) a black-box modelling at meta-level, Sec. 5.2; and c) quantifying meta-
preferences for diminishing the mismodelling impact, Sec. 5.3. Sec. 6 offers an
illustrative experiment. Sec. 7 adds closing remarks. The text focuses on the addressed
problem. It gives up generality, just samples related works, and tries to be concise.
Comments and examples, Sec. 3.2, primarily point to challenging research tasks.

2.2 Notation, Agreements and Assumptions

{x} denotes a set of x’s. Its detailed description is given only if needed. ≡ is defining
equality, ∝ marks proportionality and ′ denotes transposition. Sanserif fonts denote
mappings. They are mostly probability densities (pd), their existence is assumed, Rao
(1987). The time index is dropped if mapping arguments have it. The dependence
on the decision horizon is made explicit only when needed. Mnemonic labels are
preferred. The agents deal with the observed closed-DM-loop behaviours. Those using
stochastic filtering, Jazwinski (1970), are left aside to focus on the key paper ideas.
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3 Preliminaries

The recall of the used DM theory makes the paper self-reliant. The meta-parameter
examples lead to the assumptions of our on-line tuning. The section also reveals the
mismodelling impact on DM quality. It is of an independent interest.

3.1 Decision Making Under Uncertainty in Nutshell

The agent selects and uses a sequence of DM rules (rt)t∈{t}. It does it up to a horizon
h ≤ ∞ at discrete time moments labelled by t ∈ {t} ≡ {1, . . . ,h}. The DM rule rt
(randomly) maps the agent’s knowledge kt−1 ∈ {kt−1} about the closed DM loop
on the opted action at ∈ {a}. The closed DM loop consists of the agent and its
environment. An observation ot ∈ {o}, made after applying the action at , enriches the
agent’s knowledge2. The knowledge kt at time t ∈ {t} is

kt ≡ ((oτ ,aτ)
t
τ=1,k

0) = (ot ,at ,kt−1) ∈ {kt}
k0 ≡ the used prior knowledge. (1)

The agent has only a partial information about the impact of its actions on the closed
DM loop. It selects them using its belief about their influence. The agent has to model
the final knowledge kh as a multivariate random variable and to express its belief via
a joint pd j≡ (j(kh))kh∈{kh}, Savage (1954). The pd j serves as the closed-DM-loop
model, Ullrich (1964). It depends on the environment model and the used DM rules.

The agent specifies the desired behaviour of the closed DM loop. The employed
fully probabilistic design of decision strategies (FPD), Kárný and Kroupa (2012),
uses the ideal pd ji ≡ (ji(kh))kh∈{kh} as the desiderata descriptor. The agent sets high
values ji(kh) of the ideal pd ji to the desired kh ∈ {kh} and low values to the undesired
ones. The FPD-optimal DM rules ro minimise Kullback-Leibler divergence (KLD3),
Kullback and Leibler (1951), D(j||ji) of the joint pd j to the ideal pd ji

ro ∈ Arg min
r∈{r}

D(j||ji)

D(j||ji) ≡
∫
{kh}
j(kh) ln

(
j(kh)

ji(kh)

)
dkh ≡ E

[
ln
(

j

ji

)]
. (2)

The chain rule for pds, Peterka (1981), and (1) explicate the dependence of the closed-
DM-loop model j(kh) on the environment model m(kh)≡∏t∈{t}m(ot |at ,kt−1) and
on the DM rules r(ah,kh−1)≡∏t∈{t} r(at |kt−1). It holds

j(kh) = ∏
t∈{t}

j(ot |at ,kt−1)j(at |kt−1)

≡ ∏
t∈{t}

m(ot |at ,kt−1)× ∏
t∈{t}

r(at |kt−1)≡m(kh)× r(ah,kh−1). (3)

2 The agent’s prior knowledge k0 implicitly conditions all pds involved. The knowledge kt is also called
information state. (ot ,at)t∈{t} is often referred as (closed DM loop) trajectory or the observed behaviour.

3 KLD, formerly called cross-entropy, Shore and Johnson (1980), now relative entropy, is the DM-rules-
dependent expectation of the loss ln(j/ji).
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Formula (3): a) renames factors of the chain-rule factorisation in mnemonic way; b)
assumes that actions influence the environment response irrespectively of the rules
generating them. The ideal closed-DM-loop model ji = ji(kh) factorises similarly

ji(kh) ≡ ∏
t∈{t}

mi(ot |at ,kt−1)× ∏
t∈{t}

ri(at |kt−1)≡mi(kh)× ri(ah,kh−1). (4)

The next proposition, proved, for instance, in Kárný et al. (2006), yields the FPD-
optimal DM rules. It also relates FPD to the standard minimisation of expected loss.

Proposition 1 (FPD-Optimal DM Rules) The backward functional recursion, per-
formed on functions acting on kt ∈ {kt}, run for t = h, . . . ,1 and initiated by d(kh) = 1,
provides the unique FPD-optimal DM rules ro (2)

n(at ,kt−1) ≡
∫
{o}

m(ot |at ,kt−1) ln
(

m(ot |at ,kt−1)

d(ot ,at ,kt−1)mi(ot |at ,kt−1)

)
dot

d(kt−1) ≡
∫
{a}

ri(at |kt−1)exp(−n(at ,kt−1))dat

ro(at |kt−1) = ri(at |kt−1)
exp(−n(at ,kt−1))

d(kt−1)
.

When equating the ideal DM rules ri (4) to the opted DM rules r (leave-to-the fate
option, Kárný et al. (2006)), the optimisation reduces to the stochastic dynamic
programming, Bertsekas (2017), for the additive loss with the tth summand, t ∈ {t},

L(ot ,at ,kt−1) ≡ ln
(

m(ot |at ,kt−1)

mi(ot |at ,kt−1)

)
. (5)

The dynamic programming is the functional recursion for value functions on {kt}, run
for t = h, . . . ,1 and initiated by v(kh) = 0. The optimal value function v meets

v(kt−1) = min
at∈{a}

∫
{o}

m(ot |at ,kt−1)[L(ot ,at ,kt−1)+v(kt)]dot . (6)

The deterministic optimal DM rules choose a minimiser in (6).

On Prop. 1:

X Markov decision process (MDP), Puterman (2005), is a frequent DM framework. It
is covered by FPD with the leave-to-the-fate option for: a) the Markov environment
model m(ot |at ,kt−1) =m(ot |at ,ot−1); and b) the ideal environment, see (5)

mi(ot |at ,ot−1) ∝ m(ot |at ,ot−1)exp[−L(ot ,at ,ot−1)], (7)

where L(ot ,at ,ot−1) is the loss supplied by the agent4.
X KLD regularisation of the loss in MDP, Guan et al. (2014), Kárný and Kroupa

(2012), Larsson et al. (2017), leads to the randomised optimal decision rules

ro ∈ Arg min
r∈{r}

E
[

∑
t∈{t}

L(ot ,at ,ot−1)+A ln
( r(at |ot−1)

ri(at |ot−1)

)]
. (8)

4 The usual MDP deals with the reward −L and maximises its expectation.
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There E is the expectation with respect to decision-rules-dependent joint pd (3).
The optimisation (8) exploits a given reference (ideal) decision rule ri with its
support including the set of possible actions {a}. The optional regularisation
weight A is positive. The solution of (8) coincides with the FPD-optimal DM rules
for the ideal pd given by the chosen ri and by

mi(ot |at ,ot−1) ∝ m(ot |at ,ot−1)exp[−L(ot ,at ,ot−1)/A].

X The rules ro (8) concentrate on the deterministic optima of MDP when relaxing the
regularisation, when A→ 0+. The meta-parameter A determines a sort of soft-min
operation. Sec. 3.2 touches its role in exploitation-exploration dichotomy.

X Bayesian paradigm deals with pds and its key learning mechanism, Bayes’ rule, is
a functional recursion. This causes its complexity. It is counteracted by the use of
local models converting (approximately) Bayes’ rule into an algebraic update. The
purposeful DM-driven local modelling pays back in this respect.

X The complexity of decision-rules design stems (mainly) from the functional nature
of dynamic programming that evolves value function. FPD is also described by
the functional recursion, which is (surprisingly?) simpler. Instead of repetitive
(minimisation, expectation) of dynamic programming, it deals with a sequence of
expectations only. Thus, the approximate dynamic programming, Si et al. (2004),
or neurodynamic programming, Bertsekas (2017), are expected to be simpler
within the FPD set-up.

X FPD operates on solely pds. It is a version of Bayesian optimisation. The orien-
tation of FPD on dynamic DM extends usual Bayesian optimisations that mostly
deal with complex but static tasks, e.g. Kandasamy et al. (2015).

3.2 DM Tasks Motivating Meta-Tuning Assumptions

This part outlines DM tasks with an optional meta-parameter, generically denoted5

A. The examples are biased to the instances we dealt with. They allowed us to ex-
tract desirable properties of a “universal” opting mechanism and tailor assumptions
accordingly. The other numerous published cases are just sampled at the section end.

Exploration in FPD The second part of Prop. 1 makes FPD equivalent to MDP

ro ∈ Arg min
r∈{r}

∫
{kh}

j(kh) ∑
t∈{t}

L(ot ,at ,kt−1)dkh

with a real-valued loss L. Adaptive agents combine DM with parameter estimation.
A qualitative inspection implies that the optimal infeasible DM rules have dual
exploitation-exploration nature, Feldbaum (1961). Certainty-equivalent DM rules,
Jacobs and Patchell (1972), Åström and Wittenmark (1994), mostly serve as an ap-
proximation of the infeasible optimal rules. MDP’s certainty-equivalent deterministic
DM rules are not explorative and fail with a positive probability, Kumar (1985). On
the other hand, certainty-equivalent FPD rules are explorative, Lee et al. (2019).

5 This reflects its interpretation as a meta-action at the upper-level feedback, cf. Fig. 1 and Sec. 5.
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As said, the non-explorative MDP is a limiting case of FPD with the loss-related
ideal joint pd ji given by the meta-parameter A > 0. The paper, Kárný and Hůla (2019),
focuses on the FPD duality. It uses another ideal pd connecting FPD and MDP

ji(kh) = ∏
t∈{t}

exp [−L(ot ,at ,ot−1)/A]∫
{o,a} exp [−L(ot ,at ,ot−1)/A]dotdat

. (9)

The opted A in (9) balances exploitation and exploration efforts of the certainty-
equivalent version of FPD. It is a non-trivial example of the tuned meta-parameter6.

The certainty-equivalent FPD with the ideal pd ji (9) mimics the optimal design
giving the dual DM rules. This supports the conjecture that an optimal value Ao

exists. The meta-parameter A > 0 in (9), resembling the temperature in simulating
annealing, Tanner (1993), guarantees that for A→ 0+ the FPD-optimal DM rules
provide the MDP-optimal actions. Thus, the FPD-focused meta-tuning also cares
about the exploration-exploitation balance of the MDP-based adaptive agents.

Discounting Factor MDP often uses the discounted loss ∑t∈{t} AtL(ot ,at ,ot−1). The
discounting factor A ∈ (0,1) makes the loss in a distant future less important. It corre-
sponds with a monetary interpretation of the factor A. Even in the economical domain,
its systematic choice is still questionable, Doyle (2013). Generally, the discounting
factor A reflects doubts about persistency of the employed belief and aim descriptions.
Notably, the effective shortening of the design horizon brought by discounting may
cause instability of the closed DM loop, Gaitsgory et al. (2018). The need to adapt A
thus arises. An optimal compromise Ao between too short-sighted optimisation and
the damaging uncertainty level surely exists.

Meta-Parameter in Tracking Loss In tracking, the observation ot is to follow a given
ideal trajectory ot;i, t ∈ {t}, Tao (2014). An elimination of abrupt action changes, that
may destabilise the closed DM loop by exciting modelling errors, Rohrs et al. (1982),
is the key requirement. The next loss quantifies this

L(kh)≡ ∑
t∈{t}

distance of ot to ot;i+A2× norm of (at −at−1). (10)

The loss (10) depends on the weight A2 ≥ 0. The distance of the observation ot and
its ideal (desired) value ot;i can be parameterised. Entries of the action increments
(at−at−1) may be individually weighted in multivariate cases. Then, the open problem
of the choice of weighting matrices in linear-quadratic tracking is faced, Kumar et al.
(2014). Again, the existence of a fixed optimal meta-parameter Ao is expected.

Trust in Predictive Pd Serving to Estimation7 Bayesian estimation operates on para-
metric models

mθ (kh)≡ ∏
t∈{t}

mθ (ot |at ,kt−1), θ ∈ {θ}.

6 The same choice is faced when dealing with usual exploration techniques, Ouyang et al. (2017).
7 The term trust has narrower meaning than numerous studies focused on it, Li and Song (2016).
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Bayes’ rule8 updates the posterior pd pt
θ
≡ p(θ |kt) of an unknown parameter θ ∈ {θ}

pt
θ ∝ mθ (ot |at ,kt−1)pt−1

θ
(11)

starting from a prior pd p0
θ
≡ p(θ |k0).

The predictive pd m(ot |at ,kt−1) then serves as the environment model. It reads

m(ot |at ,kt−1) =
∫
{θ}

mθ (ot |at ,kt−1)pt−1
θ

dθ . (12)

Kracı́k and Kárný (2005) and Quinn et al. (2016) generalised Bayes’ rule. They assume
that an external predictive pd e(ot |at ,kt−1) is at disposal instead of an observed pair
(ot ,at). The predictive pd e(ot |at ,kt−1) updates the posterior pd via the recipe

pt
θ ∝ exp

[
A
∫
{o}

e(ot |at ,kt−1) ln(mθ (ot |at ,kt−1))dot

]
pt−1

θ
, A ∈ [0,1]. (13)

The formula (13) reduces to Bayes’ rule (11) if the weight A = 1 and the external
predictive pd e(ot |at ,kt−1) shrinks on an observed ot .

The meta-parameter A ∈ [0,1] expresses the tunable trust into the external pre-
dictive pd e(ot |at ,kt−1). The trust choice strongly influences the processing (13).
This makes its tuning desirable. The trust level to the source providing the external
predictive pd e(ot |at ,kt−1) is usually stable. Then, a fixed, optimal trust-weight Ao

exists.

Mixing Weight Within a soft cooperation of FPD-agents, an agent α combines its
ideal pd jαi with the ideal pd j

β

i of an agent β . The convex combination

jAi = Ajαi +(1−A)jβi , A ∈ [0,1], (14)

serves the agent α to the design of the FPD-optimal rules rAo . This may respect, possibly
opposite, aims of the agent β . The mixing meta-parameter A in (14) quantifies the
degree of this respect. It strongly influences the achieved DM quality. The agent α

selfishly measures it by the KLD D(jAo||jαi ). The case-dependent, on-line tuning of the
mixing weight A converts this academic solution into a quite practical cooperation
way. The cooperation of heaters in adjacent rooms, taken as a working example in
Kárný and Alizadeh (2019)9, indicates this well. It also supports the hypothesis on the
generic existence of the optimal weight Ao.

8 This form of Bayes’ rule is valid for the considered DM rules for which the parameter pointing to the
“best” model, Berec and Kárný (1997), is unknown, cf. natural conditions of control in Peterka (1981).

9 Extensive references on the whole approach can be found in the cited paper. The chapter, Dietrich and
List (2016), is a good starting point to pooling problems that are in the core of such a cooperation.
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Action Period Continuous-time signals exploited in DM are periodically sampled.
The action at holds in the real-time interval [At,A(t +1)) given by a period A > 0.

Technology (sampling and computing rates, capacity of the involved information
channels, time constants of actuators, etc.) determines a lower bound A on the period
A. The smaller A is the richer is the knowledge kt−1 available for the at choice. At
the same time, the period shortening calls for more complex models. It increases
computational costs. The information gain of a short sampling is finally erased by the
impact of modelling errors. This reveals the known fact that the DM-optimal action
period10 Ao > A exists.

To our best knowledge no algorithmic choice of the vital action period exists.
Attempts like, Kárný (1991), are unsatisfactory and just rules-of-the-thumb are applied.

The action period enters the environment model unlike other discussed meta-
parameters. In fact, this dependence is avoidable. It suffices to sample data with the
smallest technically feasible period and optimise under the constraint that actions
may change only with a larger optional period A, Peterka (1991). The meta-parameter
then enters DM rules and the model operates on observations “averaged” over the
action period. A sort of local data filter, say based on spline modelling of underlying
observations, Guy and Kárný (2000), becomes relevant.

The said is important as we shall assume that no meta-parameter enters the envi-
ronment model in on-line mode and Bayes’ rule suffices to its parameter estimation.

Other Samples Multitude of meta-options include:
X the optional rates that drive Hebbian’s learning, Hebb (2005);
X the step size within numerical optimisation, Yang et al. (2019);
X the receding horizon that influences DM quality, Mayne (2014);
X a meta-parameter controlling reinforcement learning, Schweighofer and Doya

(2003), say related to emotions, Moerland et al. (2018), or a meta-parameter in its
parametric version, Kober and Peters (2011);

X a multivariate meta-parameter in Gaussian-process-based learning, Duvenaud
(2014);

X the regularisation weight in LASSO-type learning Diebold and Shin (2019);
X . . .

3.3 Adopted Meta-Tuning Assumptions

The assumptions, supported by examples of the previous section, which are respected
by our generic solution, are:
X the meta-parameter A may enter the ideal environment model mi, the ideal decision

rule ri and indirectly the decision rule r but not the environment model m;
X the influence of the meta-parameter A on closed DM loop is significant;
X the optimal meta-parameter value Ao exists;
X the optimal meta-parameter value Ao may vary at most slowly;
X the influence of the A-choice on the closed DM loop is smooth but too complex to

be described in a detail.
10 In this context, Shannon’s sampling theorem, Shannon (1948), provides no guide.
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3.4 Mismodelling

This part recognises an observable, DM-related, mismodelling indicator that suits to
the feedback, which tunes the meta-parameter, see Fig. 1.

The discussion deals with a factual counterpart f(kh)≡∏t∈{t} f(ot |at ,kt−1) of the
environment model, m(kh). The factual pd f objectively describes the environment. It
means that it serves to all agents operating on the same set {kh}, Kárný and Kroupa
(2012). The joint pd

c(kh) ≡ f(kh)× r(ah,kh−1) = ∏
t∈{t}

f(ot |at ,kt−1)× ∏
t∈{t}

r(at |kt−1) (15)

models the closed DM loop formed by the unknown factual environment model and
by the used DM rules. With it, the KLD expressing the truly reached DM quality
algebraically decomposes

D(c||ji) = D(c||j)+
∫
{kh}

c(kh) ln
(

j(kh)

ji(kh)

)
dkh ≡ E +M . (16)

The first non-negative summand E measures the proximity of the factual closed-
DM-loop model c (15) to the closed-DM-loop model j (3). It is called E -term. The
second summand M uses the environment model m gained by Bayesian learning and
employed in the design of the optimal DM rules. Both the pd c and the pd j contain
the same DM rules r. Sec. 4 indicates that the E -term depends on the set {mθ}θ∈{θ}
of the parametric environment models but not on the tuned meta-parameter. The used
DM rules influence it only weakly via their exploration and stabilisation abilities.

The second summand M in (16) expresses how well the DM aims are achieved
on the data objectively described by the factual environment model and by the used
decision rules. The M -term is strongly influenced by the opted meta-parameter A and
serves us for its tuning, see Sec. 5.

4 Bayesian Estimation Minimises the E -Term

As said in Sec. 3.2, the environment model is the predictive pd (12) resulting from
Bayesian estimation. It gradually updates a prior pd p0

θ
= p(θ |k0) to the posterior

pd ph
θ
= p(θ |kh) given by the knowledge kh = ((ot ,at)

h
t=1,k

0) collected up to the
horizon11 h. Bayes’ rule (11) provides the posterior pd ph

θ
∝ mθ (kh)r(ah,kh−1)p0

θ
∝

mθ (kh)p0
θ

. Its analysis shows how the E -term in (16) behaves for h→ ∞.

Proposition 2 (Bayesian Estimation Asymptotics, h→ ∞) Let12, for all h

/0 6= {θ}∩ ≡ supp[p0
θ ]∩

{
θ ∈ {θ} : mh

θ r
h = 0 ⇒ ch = fhrh = 0 on {kh}

}
. (17)

Then, supp[p∞
θ ]⊆ Arg inf

θ∈{θ}∩
[D∞

θ ]≡ Arg inf
θ∈{θ}∩

[
lim
h→∞

1
h
D
(
ch
∣∣∣ ∣∣∣mh

θ r
h
)]

. (18)

11 The dependence of pds on the horizon h is made explicit here.
12 For a pd s on {x}, its support supp[s]≡ {x ∈ {x} : s(x)> 0}.
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Proof13 Let us take a fixed value θ ∈ {θ}∩ (17) and define, on the set {kh}, the ratio

gh
θ ≡ gθ (kh)≡ mθ (kh)r(ah,kh−1)

c(kh)
=

mθ (kh)

f(kh)
=

h

∏
t=1

mθ (ot |at ,kt−1)

f(ot |at ,kt−1)
. (19)

The ratio (19) is the integrable non-negative martingale, Doob (1953), with respect to
(sigma algebra generated by) the knowledge kh. The integrability is directly seen

E[gh
θ ] ≡

∫
{kh}

mθ (kh)r(ah,kh−1)

c(kh)
c(kh)dkh =

∫
{kh}

mθ (kh)r(ah,kh−1)dkh = 1.

The martingale property also demonstrates directly

E[gh
θ |kh−1,θ ]≡

∫
{oh,ah}

h

∏
t=1

mθ (ot |at ,kt−1)

f(ot |at ,kt−1)
f(oh|ah,kh−1)r(ah|kh−1)dohdah

=
∫
{oh,ah}

mθ (oh|ah,kh−1)r(ah|kh−1)dohdah×
h−1

∏
t=1

mθ (ot |at ,kt−1)

f(ot |at ,kt−1)
= 1×gh−1

θ
.

This guarantees, Doob (1953), Prop. 4.1 (i), that limh→∞ gh
θ
= g∞

θ
exists with c-

probability 1 on the set {k∞}. Moreover, with the same probability, it exists

lim
h→∞

1
h

ln(gθ (kh)) =−D∞
θ ≤ 0. (20)

Indeed, the proved convergence gh
θ

implies that a limit of a smooth function of gh
θ

exists. Let us select arbitrary ε > 0 and inspect the probabilities

Probh
θε ≡

∫
{kh: 1

h ln(gθ (kh))≥ε}
c(kh)dkh ≤

∫
{kh:gθ (kh)exp(−hε)≥1}

c(kh)gθ (kh)exp(−hε)dkh

≤
∫
{kh}

c(kh)
mθ (kh)r(ah,kh−1)

c(kh)
dkh× exp(−hε) = exp(−hε).

Thus, probabilities Probh
θε of the sets {kh : 1

h ln(gθ (kh))≥ ε} converge to zero for the
extending horizon h→ ∞. Arbitrariness of ε > 0 implies non-positivity of the limit
limh→∞

1
h ln(gθ (kh)). It coincides with its expectation −D∞

θ
.

The proved limit (20) implies that the deviations ρh
θ
≡ D∞

θ
− 1

h ln(gh
θ
) converge to

zero for the horizon h→∞ with c-probability 1. This together with the meaning of the
proportionally ∝ allows the next expression of the pd ph

θ
at any fixed value θ ∈ {θ}

ph
θ ∝ p0

θ exp

[
−h

(
−

ln(gh
θ
)

h
)

)]
∝ p0

θ exp
{
−h [(

≡γθ︷ ︸︸ ︷
D∞

θ − inf
θ∈{θ}∩

[D∞
θ ])+ρ

h
θ ]︸ ︷︷ ︸

≡δ h
θ

}
. (21)

For a value θ /∈ Arginfθ∈{θ}∩ [D
∞
θ
], the 1st summand γθ in the exponent of (21) is

positive. Let us take any such θ and define ε = γθ/2. Then, an hθ ∈ (0,∞) exists

13 The proof tailors and refines results in Algoet and Cover (1988), Berec and Kárný (1997).
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such that ∀h > hθ it holds abs(ρh
θ
) < ε and thus δ h

θ
> 0 in the exponent of (21)

∀h > hθ . This implies exp
{
−hδ h

θ

}
→ 0 for θ /∈ Arginfθ∈{θ}∩ [D

∞
θ
], which gives (18).

Assumption (17) excludes singularity D∞
θ
= ∞, ∀θ ∈ supp[p0

θ
]∩{θ}. �

On Prop. 2:

X Informally, Prop. 2 states that the posterior pd asymptotically concentrates on
models, which are nearest to the factual pd describing data-generating environ-
ment. KLD is the “adequate” proximity measure, cf. with Bernardo (1979) and
Kárný and Guy (2012). These best projections of reality on the considered model
set are equivalent. The equivalence set contains a single model if the chosen
parametrisation is identifiable under the realised experimental conditions.

X A general discussion Prop. 2 that enlightens general properties of Bayesian esti-
mation is in Berec and Kárný (1997). Among others, Prop. 2 implies:

– if there is a “true” parameter value θT ∈ {θ}∩ such that the factual pd f =mθT

then the value θT is in the support of the asymptotic posterior pd p∞
θ

;
– if, moreover, the model is identifiable with the used DM rules, i.e. if the

asymptotic support contains a single parameter value, then the posterior pd
concentrates on the “true” parameter value θT.

X Formally, the existence of the “true” parameter θT means that is a function of
k∞. It implies: if a consistent estimator of θT exists then Bayesian estimation is
consistent. Thus, the useful (in)consistency studies as, Grünwald and Langford
(2007), in fact do not blame Bayesian framework but mismodelling.

X Prop. 2 and the predictive-pd form (12) imply that Bayesian estimation asymptoti-
cally minimises the E -term.

X The same DM rules r enter the factual closed DM loop and the closed DM loop
considered for their optimisation. The DM rules influence closed-loop stability
and the rate with which the posterior pd delimits the best models (18).

X The FPD-optimal rules ro, which are by their construction optimally explorative,
Feldbaum (1961), Wu et al. (2017), are mostly infeasible. It is important that
their used certainty-equivalent approximators, Klenske and Hennig (2016), are
explorative too, Kárný and Hůla (2019). This guarantees a high learning rate and
the smallness of the support supp[p∞

θ
].

X The value infθ∈{θ}∩ [D
∞
θ
] is generically positive as the factual closed loop c is out

of the convex hull of the modelled closed loops (mθ r)θ∈{θ}. The value depends on
the model set (mθ )θ∈{θ}. Its members have to meet (17), i.e. to assign a positive
probability to factually probable data.

X The individual values D∞
θ
, θ ∈ {θ}, are unavailable as the factual pd f is unknown.

They depend on the position of the factual pd f and of the off-line-chosen set of
parametric models. This formally underlines importance of this choice, i.e. the
importance of modelling.

X In summary, the E -term is unsuitable for tuning of the optional meta-parameter
A ∈ {A}. Importantly, ignoring E -term in the meta-tuning makes no harm as the
meta-parameter enters it via DM rules. The explorativeness and the (in)ability to
stabilise the factual closed DM loop of DM rules only influence the E -term.
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5 Hierarchical Feedback Based on the M -term

This section proposes the hierarchical feedback promised in Fig. 1. It tries to minimise
mismodelling error as then the meta-parameter is appropriately tuned.

The feedback design relies on the adaptive framework by using a simple model
estimated on-line via Bayes’ rule. It avoids the trap of infinite regress, i.e. the need
to select a meta-meta-parameter of the hierarchical feedback. In harmony with no-
free-lunch theorem, Wolpert and Macready (1997), the solution exploits the specific
structure of the addressed problem, see below. It relies on:

X the minimum cross-entropy principle, Shore and Johnson (1980), which serves to
a justified construction of the meta-parametric model;

X an extension of this principle to preference elicitation, Kárný and Guy (2019),
which provides the relevant ideal pd to FPD at the inspected hierarchical level.

To distinguish elements of DM at the meta-level of the hierarchy, they are denoted
by capital counterparts of those used at the basic level. For instance, O∈{O}, A∈{A},
Θ ∈ {Θ} denote observations, actions and parameters at the meta-level.

5.1 Meta-Parameter as a Meta-Action

Mismodelling means that the factual pd f is out of the convex hull of the parametric
model (mθ )θ∈{θ}. This makes the factual closed loop different from the modelled
one, c 6= j. Consequently, the FPD-optimal rules, ro, computed for the learnt model, m,
are not optimal for the factual model, f. The KLD value D(c||ji) (16) grows with the
mismodelling-reflecting M -term. The deterioration depends on the meta-parameter
At ∈ {A} that is used in the design of the optimal DM rules ro.

The meta-parameter At is opted at time t ∈ {t}, and may enter the ideal environ-
ment model mi and the ideal decision rules ri, see Sec. 3.3. As seen in Sec. 3.2, their
dependencies on the meta-parameter At at time t ∈ {t} may have the known functional
forms. Their dependence on At may also be given numerically. This is the case of the
roughly optimal DM decision rules, which use mi, ri depending on At . By adopted
assumptions, Sec. 3.3, the meta-parameter At does not enter the parametric model. The
notation At ∈ {A} stresses that it is in fact the additional agent’s (meta-)action. It has
to be chosen by a causal randomised decision rule Rt , which realises the hierarchical
feedback shown in Fig. 1.

In the used adaptive context, with the on-line-estimated environment model, the
(sub)optimal DM rules ro are designed in the receding-horizon mode, Mayne (2014),
Mesbah (2018). They freeze the knowledge about the unknown parameter θ ∈ {θ}.
This naturally applies to the meta-parameter, too.

Thus, the agent optimises the rules ro, prescribing the actions aτ ∈ {a}, τ ∈
[t, t +h]. The rules are designed for the environment model m, being the predictive pd
given by the fixed posterior pd pt−1

θ
, and for the fixed meta-parameter sample At ∼ Rt .

The (meta-)rule Rt is designed by FPD using a model M. The agent applies the action
generated by the rule ro(at |At ,kt−1) and the environment responds. Bayes’ rule (11)
and the related parametric pds fed into (12) provide the new models m,M. Then, the
procedure repeats.
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The choice of the meta-parameter At is made under the assumption that there is an
optimal, at most slowly varying, value Ao ∈ {A} for which the mismodelling error
is the smallest one, Sec. 3.3. The on-line option At is thus a guess of the optimal
meta-parameter Ao. Ao is often low-dimensional and {A} is partially bounded, cf. Sec.
3.2.

5.2 Modelling and Estimation at the Meta-Level

The M -term (16) offers itself as the operational mean for checking the DM quality
even under mismodelling. The M -term is the factual expected value of the sum of

η(Aτ ,kτ)≡ ln
(

m(oτ |aτ ,kτ−1)ro(aτ |Aτ ,kτ−1)

mi(oτ |aτ ,Aτ ,kτ−1)ri(aτ |Aτ ,kτ−1)

)
(22)

and its smallest, factually expected, value is desirable.
The used receding-horizon design is to select h so that the dominant dynamic

changes of the closed DM loop are covered, Mayne (2014). This implies that it suffices
to select the action At , which only cares about the expectation of

Ot ≡
1

h+1

t

∑
τ=t−h

η(Aτ ,kτ) with Aτ = At . (23)

The design needs to model how the (meta-)observation Ot depends on the (meta-)action
At , and the accumulated knowledge kt−1. The use of:

X zero-mean innovations Ot − E[Ot |At ,kt−1] uncorrelated with At ,kt−1, Peterka
(1981), and

X the local linear expansion around the unknown time-invariant Ao, see Sec. 3.3,
leads to the simple regression model for the scalar observation Ot (23)

Ot = Θ0{A}At +Θ1{A}At−1 +Θ{O}Ot−1 +Θ1 +Et ≡ΘΨt +Et , where (24)

Θ ≡ [Θ0{A},Θ1{A},Θ{O},Θ1] is the row vector of regression coefficients,

Ψt ≡


At
At−1
Ot−1
1

 is the regression vector with the column-wise ordered At .

Et in (24) includes innovations, expansion errors and deviations caused by the fact
that the observation Ot is evaluated for evolving actions Aτ 6= At in (23).

Θ 1 is the important offset that preserves zero mean of Et .
Θ 1{A}At−1, Θ{O}Ot−1 are delayed terms that compensate the correlations caused

by the expansion. The first order auto-regression suffices to cope with the slow
modelled dynamics, again see Sec. 3.3.

Et is thus zero mean sequence, uncorrelated with At ,kt−1. Moreover, its variance
Ω ∈ (0,∞) is (approximately) constant.
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Bayesian learning of the unknown Θ and Ω needs to specify the pd of Et . With
the listed properties, the minimum cross-entropy principle, Shore and Johnson (1980),
leads to the Gaussian model of Et . This gives the parametric (meta-)model

MΘ ,Ω (Ot |At ,kt−1) = GOt (ΘΨt ,Ω)≡
exp
[
− (Ot−ΘΨt )

2

2Ω

]
√

2πΩ
. (25)

The model (25) has the conjugated Gauss inverse-Gamma prior pd P0
Θ ,Ω =P(Θ ,Ω |k0),

Berger (1985). Bayes’ rule reproduces its form. This reduces Bayesian learning to the
algebraic updating of values of the finite-dimensional sufficient statistic.

The updating coincides with recursive least squares (RLS) initiated by values given
by the prior pd. The statistic consist of degrees of freedom ν , the a priori increased
amount of the used pairs (O,A), Peterka (1981), Kárný et al. (2006), and of

Θ̂ ≡ E[Θ |k] = least-squares estimate of Θ

Ω̂ ≡ E[Ω |k] = least-squares reminder
ν−2

(26)

C ≡ covariance[Θ |k]
Ω̂

= least-squares covariance factor.

The predictive pd M(Ot |At ,kt−1) has Student’s form. The adopted certainty-equivalent
design approximates it by the Gaussian pd to get a simple model. The approximation
principle, Bernardo (1979), reduces to the moment fitting in this case. The approx-
imation is known to be tight for ν ≈ 10. This gives the (meta-)environment model
M(Ot |At ,kt−1) = GOt

(
Θ̂Ψt ,Ω̂), cf. (23), (26).

Comments on Meta-Learning:

X The value of the prior sufficient statistic initiating RLS is a meta-meta-parameter.
It can be well chosen in off-line mode, Kárný et al. (2014). Other options are fixed
using the arguments outlined above. Thus, the infinite regress (each hierarchical
level needs its meta-parameter) is avoided in the meta-estimation part.

X For the treated scalar observation Ot and for the action At of at most mild-
dimension, RLS algorithm is computationally cheap. One step of robust, square-
root version of RLS needs a small multiple of [length(Ψ)]2 elementary operations
Peterka (1975).

X RLS can robustly track slow variations of the estimated parameters Θ and Ω

via forgetting, Kulhavý and Zarrop (1993). Even non-informativeness and abrupt
changes can be well counteracted, Kárný (2020b).

5.3 Choice of the Ideal Pd and FPD Solution

The formulated aim, to choose the actions At ∈ {A} so that E[Ot ] = 0, t ∈ {t},
incompletely determines the ideal pd Ji =MiRi needed for the intended use of FPD.
Recently, its optimal choice has been proposed, Kárný and Guy (2019). The solution
is an analogy of the minimum cross-entropy principle, Shore and Johnson (1980). It
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states that having a set {Ji} of ideal pds compatible with the agent’s aim, the optimal
ideal joint pd Jio minimises the minimum found by FPD

Jio ∈ Arg min
Ji∈{Ji}

min
{R}

D(J||Ji). (27)

The example presented in Kárný and Guy (2019) covers exactly the situation faced
here. For the Gaussian environment model and the wish E[Ot ] = 0, the optimal ideal
environment model, implied by (26) and (27), reads

Mio(Ot |At ,kt−1) = GOt (0,Ω̂). (28)

The optimal ideal DM rule has the intuitively appealing form

Rio(At |kt−1) ∝ M(Ot = 0|At ,kt−1) ∝ GOt=0(Θ̂Ψt ,Ω̂). (29)

The paper Kárný (1996), applying Prop. 1 to this linear-Gaussian case, shown that
FPD provides the optimal DM rule

Ro(At |kt−1) = GAt (−L[At−1,Ot−1,1]′,Ω{a}). (30)

The vector L and variance Ω{a} are obtained by an algebraic evaluation of Riccati
equation, known from the classical linear-quadratic (LQ) control, Meditch (1969).

Algorithmic Summary Algorithm 1 below describes the adaptive agent with the
gained hierarchical feedback. It just summarises the derived relations that are cross-
referred at its individual steps.

Comments on Meta-Design:

X The adopted preference-elicitation principle, Kárný and Guy (2019), allows us to
avoid infinite regress also in the meta-design.

X Maximiser of the optimal decision rule Ro (30) coincides with the action of LQ
controller, Meditch (1969). This MDP-type minimiser of the expected quadratic
loss realises deterministic linear feedback. FPD-implied sampling around it cares
about exploration. A cautious version, Peterka and Astrom (1973), can be also
used. It respects uncertainty of point estimates replacing the unknown parameters.

X Complexity of a single step of robust square-root solution of Riccati equation
coincides with that of RLS. A very small number of such steps is needed. Even
one step per one estimation period may suffice with the strategy called iterations-
spread-in time, Kárný et al. (1985).

X The tuning is elaborated for continuous-valued meta parameter A. Discrete-valued
cases can be addressed quite similarly using a logistic or Markov-chain model M.

X In summary, the meta-feedback requires a small multiple of [length(Ψ)]2 opera-
tions and practically avoids infinite regress.



On-Line Tuning of Multivariate Meta-Parameter 17

Algorithm 1 Conceptual Implementation of Scheme of Fig. 1
Inputs:
• Initial set-up of the solved DM problem:
X the environment-describing parametric model mθ and prior pd p0

θ
(11) with observation {o}, action

{a}, parameter {θ} and meta-parameter {A} sets
X the DM-aims describing ideal pd ji (4)
• Prior knowledge of the meta-design at time t = 1:
X a guess of the horizon h (23) covering environment dynamics
X prior statistic of the meta-model, ν , Θ̂ , Ω̂ , C (26)
X the filled register [ηt−1, . . . ,ηt−h], (22),
X the regression vector Ψ ′t = [A′t ,A

′
t−1,Ot−1,1] filled by prior guesses of meta-parameter A1,A0 ∈ {A}

of the meta-parameter to be tuned and of the scalar meta-observation O0 (23)
Time (on-line) cycle:
• Perform h-step-ahead certainty-equivalent FPD (at basic level) with the frozen posterior pd pt−1

θ
and

the frozen action At , i.e. apply Prop. 1
• Apply action at ∼ ro(at |At ,kt−1) and observe ot on the environment
• Update the posterior pd pt−1

θ
to the pd pt

θ
via Bayes’ rule (11)

• Evaluate the mismodelling indicator ηt ≡ ln
(

m(ot |at ,kt−1)ro(at |At ,kt−1)

mi(ot |at ,kt−1)ri(at |At ,kt−1)

)
(22)

• Set observation Ot (23) equal to sample mean of h+1 newest ητ , (22).
• Update (meta-)posterior pd Pt−1

Θ
by data (Ot ,At) to the pd Pt

Θ
, i.e. perform RLS step with the scalar

observation Ot , and the regression vector Ψ ′t ≡ [A′t ,A
′
t−1,Ot−1,1]′; this updates statistics (26)

• Increment time t ≡ t +1
• Perform the certainty equivalent meta-level LQ design corresponding to the ideal environment model
Mio (28) and the ideal (meta-)rule Rio(At |kt−1) (29)
• Sample the meta-action (meta-parameter) A from the optimal (meta-)rule Ro (30)

end of time cycle
Outputs:
• observations ot , actions at , observations Ot , meta-parameters At , t ∈ {t}, learning and design results

at both hierarchical levels

6 Illustrative Experiment

The experiment indicates contribution of the proposed meta-parameter tuning. It deals
with the FDP version of meta-parameter in tracking loss, Sec. 3.2. It deliberately
introduces a structural modelling error.

The simulated non-minimum-phase environment (31) cannot be well-handled by
myoptic (greedy) decision rule Peterka (1972). Its high static gain make it sensitive to
action amplitudes.

Simulation Set Up

The 2nd order linear Gaussian environment was simulated with observations

ot ∼ Got ([1,1.1,0,1.8,−0.81,0][at ,at−1,at−2,ot−1,ot−2,1]′,1), t ∈ {t}. (31)

It is non-minimum phase linear system with the static gain 210 and the double real pole
0.9. The regulation problem, the tracking with the constant ideal trajectory ot;i = 0
(10), was solved. The results were gained for the receding horizon h = 10, which
safely covers the environment dynamics.

The basic DM loop, Fig. 1, learnt the 1st order model in order to see the mismod-
elling influence. Algorithmically, the estimation run RLS, Sec. 5.2, Peterka (1981).
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The regulation aim was given by the ideal joint pd ji. It consisted of the product
of time-invariant ideal models mi(ot |at ,kt−1) = Got (0, ω̂), Kárný (1996); Kárný and
Guy (2019). The used estimate ω̂ of the observation variance ω{o} = 1 was gained
when running RLS.

The product of time-invariant ideal DM rules

ri(at |kt−1) = Gat (at−1,A2) (32)

expressed the wish to limit action changes, cf. (10). The optional variance A2 was the
DM meta-parameter. The meta-level feedback solved the same problem but without a
meta-meta-parameter. It run RLS and LQ, operating on Ot , At , see Algorithm 1.

Simulation Results

The obvious contribution of the meta-level tuning is expressed numerically in Table 1,
which contains sample statistics of the realised data.

Table 1: Sample statistics of observations ot and actions at without and with the
meta-level feedback. A fixed seed of the random generator makes the comparison fair.

case variable mean median minimum maximum 2-norm
without ot -8.677 -5.956 -282.710 255.030 1.734
meta-level at -0.011 -0.036 -20.000 20.000 0.274
with ot 2.434 1.843 -12.373 38.490 0.238
meta-level at 0.028 -0.012 -20.000 20.000 0.125

Fig. 2 complements these numbers and shows typical simulation results without
the hierarchical feedback. The meta-parameter in (32) was A2 = 1.

Fig. 3 shows the results with the proposed hierarchical feedback. Its contribution
is obvious when noticing rather different observation scale comparing to Fig. 2.

Fig. 4 provides an additional insight by showing time course of the meta-observation
Ot (23). It is positive as expected. The course of the meta-parameter At demonstrates
sensitivity of the problem to the proper choice of the ideal variance A2 in (32). It
suffices to notice that the tested fixed option A2 = 1 is mostly not too distant from the
varying values of A2

t but it produced much worse closed-DM-loop behaviour.

7 Concluding Remarks

The paper proposes a unified methodology of the meta-parameter tuning. It is applica-
ble to a range of disparate DM tasks. It relies on a meta-feedback, Fig. 1, that tries to
counteract mismodelling error while practically avoiding an infinite regress.

Sec. 1 already advertised the reported achievements. Thus, it remains to comment
the preposition “Towards” in the title. It indicates that an open-ended research is
presented. While the adopted conceptual building blocks — FPD, minimum cross-
entropy principle and its preference elicitation counterpart — have firm theoretical
bases, the full solution relies on heuristics steps. It uses certainty-equivalent, receding-
horizon design of DM rules. The feeling that the theory is advanced enough and the
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Fig. 2: Observed ot , left, opted at , right, without a meta-level feedback. The observa-
tions and action increments should be ideally zero mean and have unit variance.
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Fig. 3: Observed ot , left, opted at , right, with the meta-level feedback. The observations
should be ideally zero mean with unit variance. The action increments should be zero
mean and have the variance tuned to counteract mismodelling.

wish to stimulate its thorough development and real-life tests have made us to present
the solution as it is. Definitely, it is not panacea but it may help in a range up to now
unsolved problems.

Implementation as well as evaluation costs connected with the additional feedback
are low. Preliminary experience, represented by the illustrative example, confirms that
the adopted approach is worth of further elaborating, ideally, by readers of this paper.
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Fig. 4: Meta-observed Ot (23) reflecting mismodelling, left, meta-opted ideal standard
deviation of action increments At , right.
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Table 2: Used Abbreviations

abbreviation meaning reference
DM decision making Berger (1985)
pd probability density, Radon-Nikodým derivative Rao (1987)

FPD fully probabilistic design of DM strategies Kárný and Kroupa (2012)
KLD Kullback-Leibler divergence, Kullback and Leibler (1951)

also cross or relative entropy Shore and Johnson (1980)
MDP Markov decision process Puterman (2005)

LASSO least absolute shrinkage and selection operator Diebold and Shin (2019)
RLS recursive least squares Peterka (1981)
LQ linear-quadratic control (design) Meditch (1969)
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Berec L, Kárný M (1997) Identification of reality in Bayesian context. In: Warwick
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