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ABSTRACT

The paper proposes the way how to assign a proper prior probability to a new, generally
compound, hypothesis. To this purpose, it uses the minimum relative-entropy principle
and a forecaster-based knowledge transfer. Methodologically, it opens a way towards
enriching the standard Bayesian framework by the possibility to extend the set of models
during learning without the need to restart. The presented use scenarios concern: (a)
creating new hypotheses, (b) learning problems with an insufficient amount of data, and
(c) sequential Monte Carlo estimation. They indicate a strong application potential of the
proposed technique. Related interesting open research problems are listed.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The technical problem addressed in this brief paper is a build-
ing block of a broad, quite ambitious, research. This “environ-
ment” is outlined before focusing on the solved problem.

Motivation

The mentioned research tries to create a normative theory
of dynamic decision making applicable by imperfect decision
makers, Guy et al. (2012, 2013, 2015); Kárný (2020). Its aims
are close to the quest for universal artificial intelligence, Hutter
(2005). Both touch of the complex topic of scientific discovery,
Langley et al. (1987). They fight with the world complexity re-
flected in no free lunch theorem, Wolpert and Macready (1997).
The inherent complexity enforces local solutions, known as
adaptive systems, Kárný (1998). They have to rationally drift
within an infinitely complex world. This call for balancing
exploitation with exploration, Črepinšek et al. (2013), transfer
learning, Perrone et al. (2018), care about forgetting, Kulhavý
and Zarrop (1993), etc. All this needs potentially unbounded
sets and systematic ways how to move within them. The in-
spection concern not only parameters, He and Shao (2000), but
also the sets of patterns, Höppner (2001), and models, Sec. 4,
formally, the set of hypotheses. While human beings are well
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able to work in this way, artificial world, Simon (1996), is not
matured in this respect. This paper tries to help.

Addressed Technical Problem
Bayes’ rule deductively modifies probabilities of formulated

hypotheses by data, Berger (1985). It does not guide what prob-
ability is to be assigned to a new hypothesis that has arisen dur-
ing learning progress. A recent deep discussion of this problem
with extensive references is in the paper of Wenmackers and
Romeijn (2016). They, however, provide no constructive solu-
tion. It is offered here. The solution is based on exploitation
of the minimum relative-entropy principle1, Shore and Johnson
(1980), and on a forecaster-based transfer of the knowledge col-
lected under old hypotheses. It refines the knowledge transfer
proposed by Kracı́k and Kárný (2005).

On Related Research
The paper provides a building block fitting to advanced

Bayesian decision making paradigm having its roots in the sem-
inal unification of Savage (1954). It naturally exploits achieve-
ments of Bayesianism and refers to them on the fly. In that
sense the paper belongs to one of major research streams deal-
ing with an information processing and its use. However, to our
best knowledge nobody offered a constructive solution of the

1These authors call it minimum cross-entropy principle. Now, the terms
relative entropy or KL divergence, Kullback and Leibler (1951), are used.
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addressed problem. Sec. 4.1 even recalls the classical refusal of
the possibility to solve this problem. This attitude is generally
(mostly implicitly) adopted. In that sense, the regular compar-
ison with a standard methodology cannot be offered. The use
scenarios, Sec. 4, however, show explicitly, and Sec. 4.2 even
numerically, that the paper offers solutions, which go well be-
yond quality reachable by the state-of-the-art techniques.

Layout and Pattern Recognition Relevance

The paper starts with simple hypotheses and then it deals
with compound ones. The forecaster-based knowledge transfer
then serves us for constructing informative prior of a new com-
pound hypothesis. The use scenarios follow. They, together
with the list of open problems, indicate why the problem and
its solution are relevant when data-based knowledge accumula-
tion copes with a varying set of hypotheses. A varying number
of classes given, say, by the varying number of mixture compo-
nents, Roth et al. (2018), or the considered dimension of data
space (memory length), Arunkumar et al. (2017), provide com-
mon application examples of this type.

2. Priors for New Hypothesis

The case of simple hypotheses is firstly dealt with, Subsec-
tion 2.1. It guides the reader through the addressed problem.
Subsection 2.2 treats the general case of compound hypotheses.
It reveals the need for a knowledge transfer presented in Sec. 3.

Throughout, ≡ defines by assignment, boldface fonts mark
sets and sanserif fonts denote mappings.

2.1. Simple Hypotheses

Let us consider hypotheses h ∈ h ≡ {1, . . . , χ}, χ < ∞, with
given probabilities p ≡ {p(h)}h∈h. A new hypothesis χ ≡ χ + 1
extends the set h. A further learning needs probabilities p ≡
{p(h)}h∈h, h ≡ h ∪ {χ}. When selecting them, we require

p(h) = κp(h) with κ ∈ (0, 1) and h ∈ h ⊂ h = h ∪ {χ}. (1)

This preserves the knowledge collected before handling the new
hypothesis h = χ. Other options modify Bayesian factors and
violate the likelihood principle, Berger and Wolpert (1988).

The minimum relative-entropy principle, Shore and Johnson
(1980), implies that the adequate probabilities p minimise their
relative entropy D(p||g) to their prior guess g ≡ {g(h)}h∈h

p ∈ Arg min
{p meeting (1)}

D(p||g) ≡ Arg min
{p meeting (1)}

∑
h∈h

p(h) ln
[
p(h)
g(h)

]
. (2)

Proposition 1 (A New Simple Hypothesis). The solution p of
(2) reads

p(h) = κp(h), h ∈ h, p(χ) = 1 − κ (3)

κ =
1

1 +
g(χ)

1−g(χ) exp
[
D

(
p
∣∣∣∣ ∣∣∣∣g)] , g ≡

(
g(h)

1 − g(χ)

)
h∈h
.

Proof The constraint (1) leaves the single free optimised pa-
rameter κ ∈ (0, 1). With g(h) =

g(h)
1−g(χ) on h (the restriction of g

on h) the relative entropy depends on κ as follows

D (p||g) = κ ln(κ) + (1 − κ) ln(1 − κ)

+ κ ln
[

g(χ)
1 − g(χ)

]
+ κD(p||g) − ln(g(χ)).

Zeroing its derivative with respect to the optional κ and a simple
algebra gives the claimed result (3). 2

Commentary 1 (On Qualitative Properties of (3)).

• If p diverges from the prior guess g (g restricted on h) then

D
(
p
∣∣∣∣ ∣∣∣∣g) is large and makes the probability p(χ) relatively

large. Thus, the new hypothesis is a priori competitive
with well-stratified older hypotheses.

• The gained probabilities p depend on their prior guess
g. This manifests the common danger of infinite regress,
faced, for instance, in games, Insua et al. (2016). It is
resolved here operationally:
? knowledge elicitation, Garthwaite et al. (2005), and

past data, Peterka (1981), are used if possible;
? the minimum relative-entropy principle, Shore and

Johnson (1980), is then applied (done here);
? the prior probability, g, on the discrete-valued ran-

dom variable, h ∈ h, is chosen as uniform; this
choice reflects the principle of insufficient reasons,
attributed to P.S. Laplace. It leads to the special case
of the minimum relative-entropy principle known as
maximum entropy principle, Jaynes (1957).

2.2. Compound Hypotheses
The hypotheses h ∈ h = {1, . . . , χ}, χ < ∞ are generally

compound. Each includes an unknown parameter Θh ∈ Θh. The
setΘh may contain an infinite amount of members. The existing
hypotheses h ∈ h are described by P(Θh)p(h), where the first
factor is probability density (pd). The pd P(Θh) depends on
h ∈ h, i.e. P(Θh) ≡ P(Θh|h).

The further use of the term probability density also for prob-
abilities p(h) takes them as Radon-Nikodým derivatives with
respect to the counting measure (also marked dh), Rao (1987).

A new hypothesis χ = χ + 1 with its parameter Θχ ∈ Θχ
extends h to h = h∪{χ}. A further learning needs pd P(Θh)p(h)
on the extended set of hypotheses, h, and all parameters

Θ ≡ (Θ1, . . . ,Θχ) ∈ Θ ≡ (Θ1, . . . ,Θχ) (4)

within them. The analogy of (1) has to hold

p(h) = κp(h), κ ∈ (0, 1), and P(Θh) = P(Θh) for h ∈ h. (5)

It preserves the learnt relations of hypotheses h ∈ h and the
knowledge about the parameter within each hypothesis. Due to
(5), the prior guesses

g(h) of p(h) on h and G(Θχ) of P(Θχ) on Θχ (6)

suffice for the use of the minimum relative-entropy principle.
The fact that the absolute minimum of the relative-entropy

is reached for equal arguments gives immediately the result al-
most identical with that of Proposition 1.
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Proposition 2 (A New Compound Hypothesis). For the con-
straint (5) and the given pds (6), the minimum cross-entropy
principle provides the same p as Proposition 1. The optimal
choice of p is given by (3) and the remaining free pd P(Θχ) is

P(Θχ) = G(Θχ), Θχ ∈ Θχ. (7)

The result depends on the prior guess g acting on the ex-
tended set of hypotheses h and on the pd G(Θχ). Laplace’s in-
sufficient reasons prefer uniform g. The choice of the pd G(Θχ)
(7) is more peculiar. It is well seen when the volume of Θχ is
infinite and the uniform pd does not exist. It is always possible
to select a flat proper pd. However, to make the new hypothesis
competitive such a non-informative prior, cf. Berger and Per-
icchi (1996), is to be corrected by transferring the knowledge
accumulated in connection with older hypotheses. This is done
in Sec. 3. Note that the need to avoid non-informative prior
applies also to transfer learning understood in a more narrow
sense, Perrone et al. (2018).

3. Knowledge Transfer Between Hypotheses

This section uses data forecasters, gained under older hy-
potheses, to transfer the knowledge into the proper, possi-
bly almost non-informative, prior pd G(Θχ) of the parameter
Θχ ∈ Θχ within the new hypothesis χ.

The adopted type of the knowledge transfer was heuristically
proposed by Kracı́k and Kárný (2005). It was refined in sev-
eral papers up to the advanced deductive version, Quinn et al.
(2017). The presentation below slightly extends these results
but it primarily meets our key wish: to gain as informative de-
scription of the parameter Θχ as possible.

The transfer exploits that any testable hypothesis h ∈ h pro-
vides a parametric model m(d|Θh), the parameterised pd of the
potentially observable data d ∈ d. The modelled data d ∈ d is
assumed to be the only common part of models m(d|Θh), h ∈ h,
with the new model, m(d|Θχ). This is a generic case.

Data complements the treated random variables to (d,Θ, h) ∈
(d,Θ,h), see (4). Their joint prior pd is

J(d,Θ, h) = J(d|Θ, h)J(Θ|h)J(h)

= m(d|Θh)P(Θh)
∏

h̃∈h\{h}

J(Θh̃)p(h) (8)

= m(d|Θh)
∏
h̃∈h

P(Θh̃)G(Θχ)p(h).

There, the chain rule for pds, Peterka (1981), provides the 1st

equality in (8). The unambiguous 2nd row reflects that:

(a) data d depends on Θh only via the model J(d|Θ, h) =

m(d|Θh), for each hypothesis h ∈ h;

(b) the hypothesis h only considers the parameter Θh;

(c) the respective parameters Θh are unrelated and thus mod-
elled as independent.

The final formula in 3rd row of (8) just re-arranges 2nd row and
uses the already adopted names of respective pds on parameters.

Formula (8) shows that the “joint” parameter Θ ∈ Θ (4) is in
fact treated as independent of the specific hypothesis,

J(Θ|h) = J(Θ) =
∏
h̃∈h

P(Θh̃)G(Θχ).

As data is the only common part of models, just forecasters

f (d|h) ≡


∫
Θh

m(d|Θh)P(Θh)dΘh for h ∈ h∫
Θχ

m(d|Θχ)G(Θχ)dΘχ for h = χ
(9)

provide a ground for a knowledge transfer. They can enrich the
prior pd G(Θχ) of the unknown parameter Θχ ∈ Θχ to a pd
P̃(Θχ). The restricted modelling of data by forecasters (9) in-
duces an alternative joint pd J̃(d,Θ, h) of the discussed random
variables. For any opted P̃(Θχ), the joint pd has the form

J̃(d,Θ, h) = J̃(d|Θ, h)J̃(Θ|h)J̃(h) = f(d|h)
∏
h̃∈h

P(Θh̃)P̃(Θχ)p(h),

where the 1st equality is again the chain rule for pds. The un-
ambiguous 2nd equality reflects that:

• only forecasters of common data, independent of the un-
known parameter Θ, are used, i.e. J̃(d|Θ, h) = f(d|h);

• the above arguments (b), (c) apply with

J̃(Θ|h) = J̃(Θ) =
∏
h̃∈h

P(Θh̃)P̃(Θχ).

The minimum relative-entropy principle recommends the opti-
mal choice P(Θχ) of P̃(Θχ) on Θχ.

Proposition 3 (Correction of G(Θχ) by Forecasters). Let us
search for a joint pd J̃(d,Θ, h) on (d,Θ,h) in the set J (10)
below. Its members are determined by the given the fixed fore-
casters (f(d|h))h∈h (9), the pds of hypotheses (p(h))h∈h (3) and
the pd

∏
h̃∈h P(Θh̃)P̃(Θχ) with the optional P̃(Θχ)

J ≡

J̃(d,Θ, h) ≡ f(d|h)
∏
h∈h

P(Θh)P̃(Θχ)p(h), P̃(Θχ) free

 . (10)

Let the prior guess of the optimal joint pd on (d,Θ,h) be
J(d,Θ, h) = m(d|Θh)

∏
h∈h P(Θh)G(Θχ)p(h), see (8).

Then, the optimal factor P(Θχ) = P̃(Θχ), giving minimum of
[D(J̃||J)] over J (10), is

P(Θχ) ∝ G(Θχ) exp
[ ∫

d
f(d) ln[m(d|Θχ)]dd

]
f(d) ≡

∑
h∈h

f(d|h)p(h), see (9). (11)

Proof Using Fubini’s theorem on multiple integration, Rao
(1987), and forms of J̃, J, the relative-entropy re-arranges

D(J̃||J) =

∫
d,Θχ,h

f(d|h)P̃(Θχ)p(h) ln
 f(d|h)P̃(Θχ)
m(d|Θχ)G(Θχ)

 ddΘχddh + γ

=

∫
Θχ

P̃(Θχ)
ln  P̃(Θχ)

G(Θχ)

 − ∫
d
f(d) ln[m(d|Θχ)]dd

 dΘχ + γ̃

= D(P̃||P) + ˜̃γ,
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where γ, γ̃, ˜̃γ are constants independent of P̃ and the pd P is
given by (11). The minimum of D(J̃||J) over the optional P̃ is
thus reached for P̃ = P. 2

Commentary 2 (On Proposition 3).

• The use of the implicitly defined forecaster f(d|χ) =∫
Θχ

m(d|Θχ)P(Θχ)dΘ instead f(d|χ) =
∫
Θχ

m(d|Θχ)G(Θχ)dΘ

offers a further improvement. Also, the knowledge transfer
exploits only the jointly modelled d. The same treatment is
possible if the parameter spaces Θh, h ∈ h, have a com-
mon part. None of them is done to keep the text simple.

• In our context, it is important to stress that Bayesian esti-
mation accumulates knowledge by conditioning or, when
impossible, via the minimum relative-entropy principle,
Campenhout and Cover (1981). The gained knowledge is
then used to DM, e.g. to the point or interval estimation,
acceptance or rejection hypotheses etc., Wald (1950).

• The described results give the overall processing algo-
rithm bellow. It accumulates the knowledge and adds a
single compound hypothesis and discards some. The read-
ing ease motivates this. An extension to several hypotheses
is straightforward.

Algorithm 1 (Processing with New Compound Hypothesis).

(a) The pds of old hypotheses P(Θh), p(h) are updated by ob-
served data d ∈ d via Bayes’ rule with the models m(d|Θh),
h ∈ h. The forecasting pds f(d|h), h ∈ h, (9) arise as
a byproduct. Hypotheses with small values of the updated
probabilities can be discarded. If no new hypothesis arises
this step repeats. Otherwise, the next step applies.

(b) A new hypothesis giving m(d|Θχ), χ = χ + 1, arises with a
flat proper prior pd G(Θχ). The pd f(d|χ) (9) is evaluated.

(c) A prior pd g(h) on h = h ∪ {χ} is chosen, generically,
uniform one. The pd p(h) on h is computed according to
(3). The pd f(d) on d is now at disposal and the prior
G(Θχ) is corrected to P(Θχ), both see (11).

(d) The pds P(Θh), p(h), h ∈ h, become the prior pds on the
extended set h of compound hypotheses. The processing
repeats from (a) while taking them as old hypotheses.

4. Use Scenarios

This part samples tasks to which our solution may contribute.

4.1. Problem of Something Else

A classical view on novel hypotheses, explicitly expressed
by Lindley (2006) on p. 188, states: “. . . it makes no sense to
include [. . . ] another branch in your tree, corresponding to ‘do
something else’. Nor, when the uncertain events are listed, does
it make sense to include ‘something else happens’.”

Our results shift this to: [. . . ] always keep a branch in your
tree, corresponding to ‘do something else’. When new hypothe-
ses arise the theory guides you how to assign them probabilities
using the knowledge collected before formulating them.

4.2. Problem of Initial Data
The title, adopted from Peterka (1981), concerns common

cases in which the amount of available data is insufficient for
evaluating the likelihood of the desirable complex model given
by h ∈ h \ h. The model falls into “something else” class, see
Subsection 4.1. The belief that this model describes reality bet-
ter than the already learnt ones can be assigned after collecting
enough additional data. Often, this is impossible and Algorithm
1 helps. The next case of this type is widely met. It is simple
enough to be presented in this brief paper.

A real-valued series dt ≡ (dτ)t
τ=1, t ∈ t ≡ {1, 2, . . .} are mod-

elled. The hypothesis h ∈ h uses Gaussian auto-regression
of the order h with the unknown parameter Θh made of auto-
regression coefficients θh and variance rh

m(dt |dt−1,Θh) = (2πrh)−0.5 exp
− (dt − θ

′
hψt−1;h)2

2rh

 (12)

Θh ≡ (θh, rh), ψt−1;h ≡ [dt−1 . . . dt−h]′, ′ is transposition.

Each model (12) has a conjugated (self-reproducing) prior pd,
Berger (1985). It is Gauss-inverse-gamma pd, Peterka (1981).
Its sufficient statistic coincides with the well-know recursive
least-squares (RLS) objects. At time t − 1, it consists of the
RLS point estimate θ̂t−1;h of θh, the RLS parameter covari-
ance Ct−1;h > 0 (Ct−1;h is positive definite), the RLS remain-
der λt−1;h > 0 giving, together with the degrees of freedom
νt−1;h > 2, the point estimate λt−1;h

νt−1;h−2 of rh. The self-reproducing
posterior pd of θh, rh conditioned on dt−1 is proportional to

r−
νt−1;h+h+2

2
h exp

− (θh − θ̂t−1;h)′C−1
t−1;h(θh − θ̂t−1;h) + λt−1;h

2rh

 .
The Bayesian updating, Algorithm 1.(a), applicable for all or-
ders h smaller than the number of observations t, h < t, reads

θ̂t;h ≡ θ̂t−1;h +
Ct−1;hψt−1;h

ωt−1;h
êt;h, êt;h ≡ dt − θ̂

′
t−1;hψt−1;h

λt;h ≡ λt−1;h +
ê2

t;h

ωt−1;h
, ωt−1;h ≡ 1 + ψ′t−1;hCt−1;hψt−1;h,

C−1
t;h ≡ C−1

t−1;h + ψt−1;hψ
′
t−1;h, νt;h ≡ νt−1;h + 1 (13)

f(dt |h) ≡ f(dt |h, dt−1) ∝
√

νt−1;h

λt−1;hωt−1;h

(
1 +

ê2
t;h

λt−1;hωt−1;h

) −νt−1;h
2

p(h) ≡ p(h|dt) ∝ f(dt |h, dt−1)p(h|dt−1).

The last two definitions relate the conditional forecasters and
the conditional order probabilities to (9) and (5).

The prior values initiating this recursion are θ̂0;h, λ0;h > 0,
C0;h > 0, ν0;h > 0 and the order priors p(h|d0), h ∈ h.

The initial-data problem arises if t ≤ h and the regression
vector ψt−1;h (12) is unavailable. This is critical if the usage
does not allow to wait. Adaptive forecasters, classifiers and
controllers are typical examples of this type.

The classical Bayesian solution requires the specification and
use of the prior pd also over the unknown regression vector.
Even if its reliable version is available, the estimation becomes
a hard nonlinear task as the product of the unknown regression
coefficients with the unknown regression vector is to be learnt.
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Thus, it makes sense to start with low-order models and to
extend them with time, cf. He and Shao (2000). Just before
time t + 1, the models of the orders h ≤ χ = t are updated by
RLS. The regression vectors ψt;h are available and thus also pds
f(dt+1|h), h ∈ h, cf. Algorithm 1.(a) and (13).

The model of the order χ = χ+1 arises, Algorithm 1.(b). The
prior pd G(Θχ) is gained by the extension λt;χ = λt;χ, νt;χ = νt;χ,

C−1
t;χ =

[
C−1

t;χ 0
0 β−1

t;χ

]
, θ̂t;χ =

[
θ̂t;χ

0

]
with βt;χ > 0 chosen so that the auto-regression remains stable
with a high probability. This specifies the magnitude of βt;χ > 0.

The pd f(dt+1) (11) based on orders h ≤ t = χ has the
expectation d̂ =

∑
h∈h θ̂

′
h;tψt;hp(h|dt) and the variance r̂ =∑

h∈h p(h|dt)
[
λt;h

νt;h−2ωt;h + (θ̂′h;tψt;h)2
]
− d̂2. There, the pd p(h|dt),

h ∈ h, evaluates according to Proposition 1 with the uniform g.
The correction of G(Θχ) to P(Θχ), Algorithm 1.(c), reduces

to RLS processing d̂t+1 and ψt. The use of the regressand d̂t+1
instead of the unavailable dt+1 is paid by the increased influence
of the forecast error on the RLS remainder. It must be set equal
to λt;h=t = r̂(νt;h − 2). This completes Algorithm 1.(c).
Numerical Experiment: Figure 1 illustrates the contribution of
the proposed processing. It presents averaged results of 500
runs of the model-order estimation. The simulated system is
the auto-regression of the 6th order with the multiple root equal
to 0.8. The upper bound on the compared orders was 15 and
150 data items were processed in each Monte Carlo run. Thus,
the usual waiting for enough data cannot use 10% of data. The
results are presented as sample means of the cumulative order
(hypothesis) probability and of individual order probabilities.
They confirm that this omission is paid by a much higher un-
certainty about the order. The situation is naturally much more
critical for shorter runs (say 50 data items).

The example confirmed the observation that the well initiated
Bayesian learning provides a good order estimate much faster
than a parameter estimate. In our case, the point parameter es-
timate approached the true one after 20 000 samples.

Commentary 3 (On the Solution of Initial-Data Problem).

• The processing generates the nested sufficient statistics
so advantageous in efficient implementations including
signal-processing hardware, Pohl et al. (2008).

• The controlled case is even more sensitive to the prior pd
as an insufficiently exciting feedback, Ljung (1987), may
create an almost unidentifiable situation. Good priors de-
crease demands on the inevitable exploration effort.

• The solution of the initial-data problem is urgent if the
number of potential features, to be used as regressors, ex-
ceeds the number of available data records. This is typical
in genomic, where an insufficient care about priors (often)
makes estimates of the data-model structure quite unreli-
able, e.g. see Hlaváčková-Schindler et al. (2016).

4.3. Sequential Monte Carlo Estimation
Monte Carlo (MC) methods exploiting the cheap compu-

tational power become standard tool in non-linear filtering,
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Fig. 1. Top: the mean of cumulative order probability for the usual RLS
(blue circle) and our processing (red box). Bottom: the mean of order
probability for the usual RLS (blue circle) and our processing (red box).

Doucet and Johansen (2011), and particularly in parameter es-
timation. They exploit that Bayes’ rule on a fixed grid of un-
knowns is trivial. It well discards improbable values. The latter
fact, however, makes the parameter-estimation problem suscep-
tible to degeneracy: a few grid points get non-negligible prob-
ability. Then, new candidates (hypotheses) must be chosen and
qualified by prior probabilities. The lack of a (relatively) uni-
versal way motivates various countermeasures, see e.g. Green
and Maskell (2017); Song et al. (2019). The presented theory
may help. In our terms, the sequential MC runs as follows.

• A finite number of hypotheses (samples) h ∈ h and their
pds Ph(Θ), p(h), Θh ∈ Θ, h ∈ h, are given. They concern
data models m(d|Θ) and provide forecasters f(d|h). The use
of Dirac’s delta δ(Θ) embeds Θ-samples into our scheme.

• An easily sample-able prior (proposal) pd G(Θ) is defined
onΘ and modified to Pχ(Θ), χ = χ+ 1, according to Prop.
3 and possibly reduced by sampling it Θχ ∼ Pχ(Θ) →
Pχ(Θ) = δ(Θ − Θχ).

• Prop. 1 guides us how to modify the pds (p(h))h∈h and (uni-
form) (g(h))h∈h to (p(h))h∈h with h = h ∪ {χ}. As said, the
extension to more samples is straightforward.

• Hypotheses with small p(h) are discarded. The new pd
p(h) on h arises.

• New data and Bayes’ rule are used to update pds p(h), pos-
sibly together with non-Dirac Ph(Θ) (Rao-Blackwell’s ver-
sion, Doucet and Johansen (2011)), and all repeats.

This outline indicates that the proposed way avoids the de-
generacy, the bottleneck of the sequential MC estimation. The
way surely helps by handling well pds p on h and by making
the choice of G(Θ) less critical due to the knowledge brought
by forecasters based on old samples.
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5. Concluding Remarks

The formulation and solution of the addressed problem are
simple. Their significance is primarily methodological as it en-
riches Bayesian paradigm by the technique for extending the
set of learnt models. This ability is one of the key features,
which distinguishes human and artificial worlds. The outlined
use scenarios indicate immediate practical consequences to the
order and feature selections as well as to non-linear estimation
based on sequential Monte Carlo technique. Generally, it con-
tributes to knowledge transfer and also to transfer learning, Per-
rone et al. (2018), when the methodology is applied to extend-
ing data set (as it is typical in processing of data streams).

Naturally, it calls for a range of research activities:
(a) the inspection of an alternative to (1) by formulating the

preservation of the accumulated knowledge as the close-
ness of the involved pds in relative-entropy terms;

(b) addressing the generally non-trivial evaluation of∫
d f(d) ln[m(d|Θχ)]dd, see Prop. 3;

(c) the projection of the constructed posterior pd to a more
feasible class, Kárný (2014);

(d) selecting and re-solving other non-trivial and useful sce-
narios like Bayesian optimisation, Shahriari et al. (2016);

(e) elaborating options mentioned in Commentary 2;
(f) performing extensive simulation and real-life tests.

We shall take this paper as useful one if it will stimulate readers’
interest in any of the open problems.

In the era dominated by “big data”, we would especially like
to turn the research attention to “small data” problems like in
Ku and Fine (2006). In fact, always desirable refinements of
the set of hypotheses, Harlé et al. (2016), and the possibility to
widen the feature set can make almost any data set small.
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Kracı́k, J., Kárný, M., 2005. Merging of data knowledge in Bayesian estima-
tion, in: Filipe, J., et al (Eds.), Proc. of the 2nd Int. Conf. on Informatics in
Control, Automation and Robotics, Barcelona. pp. 229–232.

Ku, C., Fine, T., 2006. A Bayesian independence test for small datasets. IEEE
Tran. on Signal Processing 54, 4026–4031.
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