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Abstract. Inference and decision making (DM) are ultimate goals of the artificial-
intelligence use. Complexity of DM tasks is the main barrier of their efficient
solutions. Complex tasks are solved by dividing them among cooperating agents.
This requires a knowledge fusion at a solution stage. It always has to cope with
uncertainty. The used Bayesianism quantifies the uncertain knowledge by a prob-
ability density (pd) of modelled variables. The knowledge accumulation evolves
the posterior pd of a parameter in the parametric model of observations. Bayes’
rule updates the posterior pd. It provides a lossless compression of the knowl-
edge in the observed data. An extended Bayes’ rule enables the use of knowl-
edge coded in a forecaster of the modelled observations supplied by an agent’s
neighbour. This rule exploits a weight expressing the trust into the forecaster. The
paper offers yet-missing, algorithmic, data-based choice of this weight. It applies
Bayesian estimation while assuming an invariant trust weight. Simulated exam-
ples illustrate behaviour of the resulting algorithm. They inspect its sensitivity
to violation of the assumed credibility invariance. This prepares solutions coping
with volatile knowledge sources.

Keywords: Trust · Knowledge sharing · Forecasting · Fusion · Decision making
· Bayesianism.

1 INTRODUCTION

Complex decision-making (DM) tasks are solved by dividing them among cooperating
agents1, [7]. This requires a knowledge fusion at a solution stage, [33]. An agent locally
models its environment. It selects its actions according to its local — in information
space and time — aims. The efficiency of such an adaptive agent is enhanced (if not
enabled at all) by sharing a knowledge with its neighbours in the information space.
The neighbours are imperfect and may even act as adversaries. This makes the use
of the shared knowledge strongly dependent on the trust assigned to neighbours. The
trust quantification is actively studied in various contexts, [8,11,34], but it is far from
being matured. The paper contributes to an improvement of this state. It deals with
a specific, but well-applicable, knowledge-sharing scenario. The sharing supports an
agent estimating a parametric model by using observations and Bayes’ rule, [24]. Its

? Supported by MŠMT LTC18075 and EU-COST Action CA16228
1 They are humans, technical tools and their mixed groups. The agent is referred by “it”.
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neighbour irregularly offers a forecaster of the same observation. It adds the number
indicating how many data items the forecaster reflects. The agent processes them by the
extended Bayes’ rule. This rule has its origin in [15]. Its advanced, formally derived,
versions are in [14,26]. They use a trust weight assigned to the neighbour.

The vital, but yet-unsolved, choice of the trust weight is addressed here.

Layout: Sec. 2 makes the paper self-reliant by recalling the used theory. Sec. 3 solves
the addressed problem. Simulations in Sec. 4 illustrate the solution and inspect its sen-
sitivity to the adopted invariance assumption. Sec. 5 touches the case of volatile credi-
bility of the neighbour. Concluding remarks are in Sec. 6.

Notation: The text applies the next agreements:
{{x}} is a set of x’s, its nature is only revealed if need be; x is cardinality of {{x}};
:= defines by assigning; ∝ is equality up to the normalisation; t marks discrete time;
X random variables, their values and realisations are formally undistinguished;
X models are probability densities (pds2) marked by sansmath fonts as all mappings;
X functions with different arguments are different; the text prefers mnemonic labels;
g(xt, yt−1) := gt(xt, yt−1): the time index of a function g drops if it is at its argument;
pt−1(p) is the posterior pd of an unknown parameter p ∈ {{p}}, entering the parametric

model; it is conditioned on the knowledge processed up to time t− 1;
p(p|w, f t) enriches the condition of pt−1(p) by the forecaster f t with the trust weight w.

2 Preliminaries

An agent uses a parametric model mt(o|r, p). This conditional pd relates the observa-
tion o ∈ {{o}} to the regressors r ∈ {{r}} and to an unknown parameter p ∈ {{p}}. The
relation depends on time t ∈ {{t}} := {{1, 2, . . .}}. The posterior (conditional) pd pt−1(p)
quantifies the agent’s knowledge about the unknown parameter p ∈ {{p}} gained up to
time t− 1. Having data dt := (ot, rt), the pd pt−1(p) updates by Bayes’ rule, [24], to

pt(p) =
m(ot|rt, p)pt−1(p)

m(ot|rt,pt−1)
, mt(o|r,p) :=

∫

{{p}}
mt(o|r, p)p(p) dp, t ∈ {{t}}. (1)

The normalising pd mt(o|r,p) models the observation o for the given regressors r and
the knowledge about unknown parameter p ∈ {{p}} stored in the pd p(p). It is agent’s
forecasting model. A subjective prior pd p0, [29], starts the recursion (1).

In the inspected knowledge sharing, a neighbour provides to the agent its forecaster
f t(o) of the observations ot ∈ {{o}}. This non-normalised pd should reflect the situation
with the same regressors rt as those used by the agent for forecasting of ot. The number
νt :=

∫
{{o}} f t(o) do ∈ (0,∞) enhances the knowledge stored in the pd f t(o)/νt. It

declares the amount of data items used for creating the forecaster.
The neighbour forecasts using other knowledge resources than the agent. It means

other models, theories, data sets, processing ways, expert’s opinions, simulations, etc.

2 Pd means Radon-Nikodým derivative, [28], i.e. both a probability density and mass function.
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The theory we rely on, see Prop. 3 in [14], exploits the forecaster f t by the extended
Bayes’ rule. It corrects the posterior pd pt−1(p) to the pd denoted p(p|wt, f t)

p(p|wt, f t) ∝ pt−1(p) exp

[
wt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]
, where (2)

wt ∈ [0, 1] is the agent’s trust weight assigned to the neighbour’s forecaster f t. The pd
p(p|wt, f t) is conditioned on the knowledge entering pt−1 enriched by the forecaster f t
weighted bywt. The relation (2) indeed extends Bayes’ rule as a fully trustable,wt = 1,
single, νt = 1, crisp observation ot is modelled by Kronecker’s (Dirac’s) pd

δ(o, ot) :=

{
1 if o = ot
0 otherwise and reduces (2) to (1) as p(p|wt := 1, δt)

(2)︷︸︸︷∝

pt−1(p) exp
[
1×

∫

{{o}}
δ(o, ot) ln[m(o|rt, p)] do

]
= pt−1(p)[m(ot|rt, p)]1

(1)︷︸︸︷∝ pt(p).

It is practically important that for parametric models from exponential f amily (EF,
[4]), the functional rule (2) reduces to an algebraic updating of values of a sufficient
statistic. EF consists of the parametric models of the form

mt(o|r, p) := exp 〈at(d),b(p)〉 , d := (o, r). (3)

They are instantiated by multivariate functions at,b with their values entering the scalar
product 〈·, ·〉. In thought cases, the scalar product has the simple form

〈at(d),b(p)〉 :=
∑

i∈{{i}}
ati(d)bi(p), i <∞, t ∈ {{t}}, (4)

where ati, bi are known real-valued functions.
The used posterior pd pt, conjugated to the model (3), [5], is given by the value of

the i -dimensional statistic σt = (σti)i∈{{i}} with real-valued σti. The pd reads

pt(p) := c(p|σt) :=
exp 〈σt,b(p)〉

n(σt)
, n(σ) :=

∫

{{p}}
exp 〈σ,b(p)〉 dp <∞. (5)

Updating by the extended Bayes’ rule (2) preserves the form (5). It holds

pt−1(p) = c(p|σt−1)
(2)︷︸︸︷⇒ p(p|wt, f t) = c(p|σ(wt, f t))

σi(wt, f t) = σ(t−1)i + wtai(f t, r)δ(r, rt) (6)

ai(f t, r) :=
∫

{{o}}
f t(o)ati(o, r) do, t ∈ {{t}}, i ∈ {{i}}, r ∈ {{r}}.

This important case exemplifies the influence of the trust weight wt ∈ [0, 1].
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Markov’s chain as a member of EF: Markov’s chain models the evolution of data with
a finite number of possible values. Its parametrisation takes all transition probabilities
as the unknown parameter. The next expression uses Kronecker’s δ and d = (o, r)

pot|rt := m(ot|rt, p) =
∏

d∈{{d}}
p
δ(d,dt)
o|r = exp

[ 〈a(dt),b(p)〉︷ ︸︸ ︷∑

d∈{{d}}
δ(d, dt)︸ ︷︷ ︸
ao|r(dt)

ln(po|r)︸ ︷︷ ︸
bo|r(p)

]
. (7)

This is an EF member (3), (4) with i := o|r. Its conjugated pd (5) is Dirichlet’s pd
c(p|σ)∝∏r∈{{r}}

∏
o∈{{o}} p

σo|r−1
o|r . The positive values of the statisticσ := (σo|r)o∈{{o}},r∈{{r}}

describe this pd. They enter the normalisation n(σ) (5), [13],

n(σ) =
∏

r∈{{r}}

∏
o∈{{o}} Γ(σo|r)

Γ
(∑

o∈{{o}} σo|r
) , Γ(v) :=

∫ ∞

0

zv−1 exp(−z) dz, v > 0. (8)

The agent’s forecasting model mt(o|r,p) (1), found by (8) and Γ(v + 1) = vΓ(v), [1], is

m(o|r,p) = m(o|r,σ) = σo|r∑
õ∈{{o}} σõ|r

.

For wt ∈ [0, 1], i = o|r, r, rt ∈ {{r}}, o ∈ {{o}}, the rule (6) gives the sufficient statistic

σo|r(wt, f t) = σ(t−1)o|r + wtf t(o)δ(r, rt), o ∈ {{o}}, r ∈ {{r}}.

3 Estimation of the Trust Weight

The unknown trust weight wt in (2) is a hidden variable. Non-linear stochastic filter-
ing, [10], estimates it optimally. It needs, however, the rarely-available time-evolution
model and quite complex evaluations. This makes us to use local modelling, typical for
adaptive systems. The inspected case of the invariant trust, w = wt, ∀t ∈ {{t}}, prepares
the general solution. Sec. 5 comments the volatile case.

The invariant w extends the parameter p ∈ {{p}} to unknowns (p,w) ∈ ({{p}}, [0, 1])
entering the parametric model and the knowledge processing. A joint pd

pt−1(p,w) = pt−1(p|w)βt−1(w) (9)

describes the knowledge about (p,w) after time t−1 and before t ∈ {{t}}. The factorisa-
tion in (9) is the chain rule for pds, [24]. The conditional pd pt−1(p|w) accumulates the
knowledge about the unknown p ∈ {{p}} when assigning the fixed trust weight w to the
knowledge provided by the neighbour through forecasters offered before time t. The pd
βt−1(w) expresses the agent’s belief that w is the proper trust weight for the neighbour.
The neighbour’s forecaster f t(o) enters the conditional version of (2)

p(p|w, f t) ∝ pt−1(p|w) exp
[
wζt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]

ζt :=

{
1 if the forecaster f t is available
0 otherwise . (10)
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The introduced indicator ζt allows us to respect irregularity of processing of neigh-
bour’s forecasters without making the notation too complex. The agent’s forecasting
model, normalising (1) for the given pt−1(p|w), is

m(o|r,pt−1,w) :=
∫

{{p}}
mt(o|r, p)pt−1(p|w) dp. (11)

In (10), (11), the weight w concerns the neighbour and thus it enters the posterior pds
pt−1(p|w) but not the agent’s parametric model m(o|r, p).

The data-based updating of the belief βt−1(w) (9) into trust weights w ∈ [0, 1]
may realise after observing how much the neighbour’s knowledge has contributed to
the forecasting quality. The standard Bayes’ rule gives, cf. (11),

βt(w) ∝ m(ot|rt,pt−1,w)βt−1(w). (12)

The implementation of the recursion (10), (11), (12) is generally hard. It is simple
for the discretised trust weight, [19]. The next proposition summarises such updating.

Proposition 1 (Parameter and Trust-Weight Estimation). Let imminent trust weights
bew ∈ (wk)k∈{{k}}, {{k}} := {{1, . . . , k }}, k <∞. They condition pds

(
pt−1(p|wk)

)
k∈{{k}}

quantifying the knowledge about the unknown parameter p ∈ {{p}} of the pd m(ot|rt, p).
The knowledge includes past data collected up to and including time t − 1. It is

enriched by irregularly available neighbour’s forecasters with weights (wk)k∈{{k}}.
The values (wk)k∈{{k}} express the neighbour’s, supposedly invariant, credibility.

They enter the updating of pt−1(p|wk) by the neighbour’s forecaster f t

p(p|wk, f t) ∝ pt−1(p|wk) exp
[
wkζt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]
, p ∈ {{p}}, k ∈ {{k}},

with ζt = 1 if f t is available and zero otherwise, cf. (10).
Let beliefs into trust weights wk be βt−1(wk), k ∈ {{k}}, see (9). Then, the updating

of the pds βt−1, pt−1 by data dt = (ot, rt) via the standard Bayes’ rule reads, cf. (11),

βt(wk) =
m(ot|rt,pt−1,wk)

m(ot|rt,pt−1,βt−1)
βt−1(wk)

m(o|r,pt−1,wk) :=
∫

{{p}}
mt(o|r, p)pt−1(p|wk) dp (13)

m(o|r,pt−1,βt−1) :=
∑

k∈{{k}}
m(o|r,pt−1,wk)βt−1(wk)

pt(p|wk) ∝ m(ot|rt, p)p(p|wk, f t).

Prop. 1 applied to EF (3) maps both Bayes’ functional recursions to algebraic han-
dling of the finite-dimensional statistic.

Proposition 2 (Estimation of Parameter and Trust Weight in Exponential Family).
Let trust weights (wk)k∈{{k}} condition conjugated pds pt−1(p|wk) = c(p|σt−1(wk)),
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(5). Let (βt−1(wk))k∈{{k}} be beliefs assigned to the trust weights. Their updating by the
forecaster f t(o), preserves the conjugated form (5) and reads

p(p|wk, f t) = c(p|σ(wk, f t)) =
exp 〈σ(wk, f t),β(p)〉

n(σ(wk, f t))
, n(σ) =

∫

{{p}}
exp 〈σ,b(p)〉 dp

σi(wk, f t) = σ(t−1)i(wk) + wkζtai(f t, r)δ(r, rt) (14)

ai(f t, r) :=
∫

{{o}}
f t(o)ai(o, r)do, r ∈ {{r}}, i ∈ {{i}}, k ∈ {{k}},

with ζt (10) respecting irregular availability of forecasters. The updating by the stan-
dard Bayes’ rule, after having data dt = (ot, rt), see (6) and (14), reads

σti(wk) = σi(wk, f t) + ai(dt), βt(wk) ∝
n(σ(wk, f t))
n(σt−1(wk))

βt−1(wk), k ∈ {{k}}. (15)

Thus, we have to store values of statistics (σ(wk),β(wk))k∈{{k}}. The increments a(f t, rt)
(14) and a(dt) = a(δt, rt) (15) are evaluated once.

Trust estimation for Markov’s chain: Specialisation of Prop. 2 and Sec. 2 imply that
Dirichlet’s pd is conjugated to the Markov’s chain (7). Its degrees of freedom and beliefs
into respective trust weights evolve, for i = o|r, as follows

σo|r(wk, f t) = σ(t−1)o|r(wk) + wkζtf t(o)δ(r, rt)
σ(t)o|r(wk) = σo|r(wk, f t) + δ((o, r), (ot, rt)) (16)

βt(wk) ∝
σ(t)ot|rt(wk)∑
o∈{{o}} σ(t)o|rt(wk)

βt−1(wk), (o, r) = d ∈ {{d}}, k ∈ {{k}},

where ζt (10) respects irregular offers of f t.

Formulae (16) have strong intuitive appeal:
I the forecaster distributes its mass over possible observations o ∈ {{o}} according to

the probabilities f t(o) it assigns them, cf. quasi-Bayes techniques, [31];
I the agent attenuates f t by the trust weight wk ∈ [0, 1] (discarding it for wk = 0);
I the beliefs to weights reflect the neighbour’s contribution to the forecasting quality.

The exploitation of the gained posterior pds depends on the DM task. For instance:
I a point estimate of the trust weight can be constructed, say, ŵt :=

∑
k∈{{k}} wkβt(wk);

IBayesian averaging may estimate parameter p ∈ {{p}}, say, via the marginal pd pt(p)
:=
∑
k∈{{k}} pt(p|wk)βt(wk) or similarly to forecast the observation ot ∈ {{o}}

without specifying a point estimate of the weight;
I the trust estimate may serve to other, neighbour-related, inference or DM tasks.

4 Illustrative Experiments

Experiments illustrate the presented theory and show the sensitivity of the found estima-
tor to the key assumption that the credibility of the neighbour’s forecasters is invariant.
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4.1 Simulation and Evaluation Conditions

The modelled environment was simulated by a discretised version of 2nd order auto-
regressive-regressive Gaussian model

yt = 1.9600yt−1 − 0.9604yt−2 + 0.0004at + 0.0004εt,

where εt was white zero-mean noise with unit variance; εt was independent of the past
values yτ−1, aτ , τ ≤ t. The dynamics corresponds with the double real pole 0.98 and
the unit static gains of actions and of the noise, [3]. Five-valued, integer, uniformly
distributed, independent actions at were used, a = 5. A realisation of 105 samples,
initiated by y0 = y1 = 1, was linearly mapped on positive values and discretised to
ten-valued integer observations ot, o = 10. The sequence (ot, at)

105

t=2 was used for the
choice of the simulated transition probability p(ot|ot−1, ot−2, at). The point estimate of
this pd from the said realisation was used. Work [25] inspired this choice. The 2nd order
Markov model was gained. The agent estimated 1st order model p(ot|ot−1, at, p) =
pot|ot−1,at , rt = (ot−1, at), (7), i.e. the realistic mismodelling error was faced.

The neighbour’s forecaster used the simulated transition probability with the in-
serted condition ot−1, ot−2, at. In the sensitivity-oriented experiments, this ideal fore-
caster was partially replaced by a randomly generated one, see below.

The trust-weight values (wk)k∈{{k}} := {{0, 0.5, 1}}, k = 3, Prop. 1, were inspected.
Prior statistics σ0 (15) had randomly and independently assigned values 1 or 2.
Evaluations used 1000 Monte Carlo (MC) runs each lasting t = 500 steps, giving:

IHistograms of beliefs βt(wk) (9) and of the estimates

ŵt :=
∑

k∈{{k}}
wkβt(wk) (17)

of weights at the simulation end. Figures with time courses show their medians.
IHistograms of forecast errors per step compared to the best available forecast ôit

provided by the simulated transition probability

∆ :=
1

t

∑

t∈{{t}}

∣∣∣|ot − ôt| − |ot − ôit|
∣∣∣. (18)

There, ot is the observation at the time t and judged ôt are the forecasts given by
m(o|r,pt−1,wk), ∀ k ∈ {{k}}, (11) and by m(o|r,pt−1,βt−1) (13).

ITables of basic statistics of the forecast errors (18) at the end of simulations. Their
median, mean, standard deviation (STD) and root mean square error (RMS) are shown.
RMS is taken as the primary indicator of quality when comparing the results.

4.2 Invariant Ideal and Bad Neighbour’s Forecasters

This part shows the behaviour of the proposed processing under met assumptions.

Ideal Neighbour’s Forecaster: The neighbour’s forecaster was the best possible one,
i.e. the simulated f t(o) := p(ot = o|ot−1, ot−2, at), o ∈ {{o}}, at realised ot−1, ot−2, at.
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(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 1: shows medians of: (a) the beliefs βt(w1)�, βt(w2) �, βt(w3) N. (b) the weight
estimate (17). It reflects 103 MC runs with the ideal neighbour’s forecaster.

Results: Fig. 1 shows a fast convergence of the beliefs. The median of βt(w3 = 1)
raised rapidly to 1 and stayed there. Thus, the weight estimate (17) converged to 1, too.

Fig. (2) shows histograms of forecast errors ∆ (18). They are presented for com-
pleteness only. The differences are better seen on statistic values shown in Tab. 1.

(a) Forecast errors of agent using w1 = 0.0. (b) Forecast errors of agent using w2 = 0.5.

(c) Forecast errors of agent using w3 = 1.0. (d) Forecast errors of the proposed way.

Fig. 2: has counts of errors ∆ (18) on the vertical axis and values of ∆ on the horizontal
axis. It reflects 103 MC runs with the ideal neighbour’s forecaster.

Discussion: The results confirm the desirable behaviour of the trust estimator. The high
convergence rate is plausible. As predictable, the best quality is obtained for the fixed
full weight assigned to the ideal forecaster. The proposed way is only slightly worse.
The poorer performance is the cost for the lack of the knowledge of the proper weight.

Bad Neighbour’s Forecaster: In this case, the neighbour’s forecaster was chosen as
useless as it was selected randomly without any relation to the simulated environment.
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Table 1: Forecast errors ∆ (18) with the ideal neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.076 2.079 0.167 2.086
Agent using w2 = 0.5 2.038 2.035 0.165 2.042
Agent using w3 = 1.0 1.992 1.996 0.159 2.002
Proposed way 1.997 1.998 0.161 2.005

Results: Fig. 3 shows that the proposed way behaves as desirable. The medians of be-
liefs into non-zero weights go quickly to 0. The point estimate ŵ (17) goes also to 0.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 3: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the bad neighbour’s forecaster.

Histograms of forecast errors are poorly informative and they are left out. Their
statistics are in Tab. 2. The best result is gained for the fixed zero weight ignoring the
bad forecaster. The proposed way is close to it. It needed some data to recognise that
the neighbour’s forecaster is useless.

Table 2: Forecast errors ∆ (18) with the bad neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.069 2.076 0.164 2.083
Agent using w2 = 0.5 2.096 2.094 0.167 2.101
Agent using w3 = 1.0 2.118 2.116 0.165 2.122
Proposed way 2.080 2.081 0.165 2.088

Fig. 4 complements the picture by presenting histograms of beliefs and the weight
estimates (17) at the ends of simulation runs. They show quite small variations.

Discussion: The results confirm the expected desirable behaviour. Similarly as with
the ideally forecasting neighbour, the poor forecasting was quickly recognised. As pre-
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(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 4: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the bad neighbour’s forecaster.

dictable, the best quality is obtained for the fixed zero weight assigned to the bad fore-
caster. The proposed way is only slightly worse. It pays for the lack of the knowledge.

4.3 Neighbour’s Forecasters of Varying Reliability

Randomly Failing Forecaster: In this experiment, the neighbour’s forecaster consists
of ideal forecasters in one half of randomly chosen time moments and of meaningless
forecasters in the remaining half. The distribution of these choices were uniform. It is
tempting to expect that the proper weight given to the forecaster will be around 0.5.
Results: Fig. 5 shows a small initial rise of the median of the belief βt(w3). Since
t = 25, it decreases to 0, which reached around t = 400. The median of the belief
βt(w2) behaves similarly. It leads to the weight estimates decreasing to 0.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 5: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the randomly failing neighbour’s forecaster.
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(a) Forecast errors of agent using w1 = 0.0. (b) Forecast errors of agent using w2 = 0.5.

(c) Forecast errors of agent using w3 = 1.0. (d) Forecast errors of the proposed way.

Fig. 6: shows counts of errors∆ (18) on the vertical axis and the values of∆ on the hor-
izontal axis. It reflects 103 MC runs with the randomly failing neighbour’s forecaster.

Fig. 6 presents forecast errors. The only visible difference in Fig. 6 seems to be in
Fig. 6d exhibiting a smaller amount of outliers. This might be a random effect so that
statistics in Tab. 3 are more informative. Fig. 7 shows beliefs in the respective weights
at the ends of simulation runs.

Table 3: Forecast errors ∆ (18) with the randomly failing neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.068 2.074 0.170 2.081
Agent using w2 = 0.5 2.086 2.094 0.181 2.102
Agent using w3 = 1.0 2.116 2.119 0.173 2.126
Proposed way 2.072 2.076 0.173 2.083

Discussion: Against the expectation, the ignoring of unreliable neighbour’s forecaster
is the optimal policy. The weight w1 = 0.0 gives the best result. The proposed way
converges to it giving the second best results.

Improving Forecaster: In this experiment, the forecaster begins with a bad quality and
slowly throughout the simulation it is improving towards ideal reliability. Again, it is
tempting to expect that the weight estimate ŵt will converge to one.

Results: Fig. 8 shows a quite volatile evolution of beliefs. They oscillate before reaching
(probably) stabilised values. The oscillations project into the weight estimate (17).

Tab. 4 summarises the forecast errors. It favourises to neglect the offered forecaster,
w1 = 0.0. The proposed way follows this and it is again the second best.
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(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 7: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the randomly failing forecaster.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 8: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the improving neighbour’s forecaster.
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Table 4: Forecast errors ∆ (18) with the improving forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.078 2.081 0.171 2.088
Agent using w2 = 0.5 2.080 2.088 0.172 2.095
Agent using w3 = 1.0 2.088 2.097 0.166 2.104
Proposed way 2.072 2.084 0.169 2.091

(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 9: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the improving neighbour’s forecaster.

Fig. 9 confirms volatility of results in this scenario. It shows quite varying beliefs at
the end of respective simulations.

Discussion: The results discard the over-simplified expectation formulated above. The
estimation dynamics and the forecaster-quality changes influence the results in a quite
complex way. This confirms the need to relax the invariance assumption, see Sec. 5.

Deteriorating Forecaster: In this experiment, the neighbour’s forecaster started as the
ideal one and gradually deteriorated into the bad forecaster. The weight estimate (17)
was expected to rise rapidly to 1 and then to decline to 0.

Results: Fig. 10 confirms the expectation for the initial phase but the weight estimate
does not track the deterioration and stay close to 1 until the simulation end.
Tab. 5 evaluates the forecast errors and shows that the best results are gained when using
fully the neighbour’s forecaster all the time. The proposed way follows this pattern.
Discussion: The experiment confirmed that over-simplified expectations are violated
when the estimation dynamics and the neighbour’s forecaster with a varying reliability
are combined. This makes the further progress outlined in Sec. 5 inevitable.
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(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 10: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the deteriorating neighbour’s forecaster.

Table 5: Forecast errors ∆ (18) with the deteriorating forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.076 2.081 0.173 2.088
Agent using w2 = 0.5 2.043 2.046 0.168 2.053
Agent using w3 = 1.0 1.999 2.006 0.163 2.013
Proposed way 2.002 2.009 0.161 2.015

5 Towards Handling Volatile Credibility

The assumed invariance of the estimated parameter fits to the assumed invariant trust
weight. Adaptive systems [3] have a long tradition and experience how to cope with a
slowly varying estimated parameter. Various types of forgetting (age-weighting) were
proposed [22] and used even in connection with a trust handling [32].

The forgetting was recognised as a sort of flattening the evaluated posterior pds
[16,17,18,23]. Thus, it can be directly applied both to p and w estimation, possibly
using the idea of partial forgetting [6]. There are well-established rule of thumbs for the
choice of forgetting factor. In critical cases, it may extend the estimated parameter, but
it increases the computational complexity.

Possible abrupt changes of the estimated quantities were counteracted by adding
a detector of such changes [9]. Recently, the problem was successfully and efficiently
addressed by applying minimum expected relative principle [12]. Its tailoring to the
discussed problem will be elaborated and published elsewhere.

6 Conclusions

Done: The paper contributes to a trustable knowledge sharing in a specific but widely
applicable scenario. In it, a neighbour offers its forecaster of the observations handled
by the supported agent. It complements the recent knowledge-sharing scenario [14] by
the feasible estimation of the trust weight with which the neighbour’s forecaster should
be used. It primarily deals with the invariant weight quantifying the neighbour’s credi-
bility. The case fits the assumption that the parameter estimated by the agent is invari-
ant. The performed, partially presented, experiments illustrate that the results are not
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extremely sensitive to this assumption. The proposed solution, presented experiments
and the discussion in Sec. 5 prepare general solutions for slowly as well as abruptly
varying credibility of the neighbour’s forecaster.
A comment on related works: The used knowledge-sharing way, complemented by the
above trust learning, has unique inter-related features: I it combines pds operating on
partially overlapping domains, i.e. the agent and neighbour process the knowledge quite
freely; I the roles of the agent and the neighbour may swap, i.e. their mutual trust
may even substantially differ. Such a support of agents cooperating without a mediator
allows an unlimited scalability of the network interacting adaptive agents.
Future work: The need for the cooperation respecting credibility of the shared knowl-
edge and the positive experience with the presented results make worthwhile to:
X perform extensive experiments delimiting the applicability range of the proposed

technique, cf. no free lunch theorem, [35];
X apply the technique to important particular cases, say selected according to [11,34];
X elaborate the general solution to linear-in-unknown-parameter Gaussian model,

[24], which is an important EF member suitable for modelling of dynamic envi-
ronments with continuous-valued observations [27];

X extend the technique to other models like mixtures of EF members [20,21] requiring
an approximate recursive estimation, [2];

X tailor the technique to other knowledge-sharing scenarios, up to an algorithm com-
parison [30], requiring an estimation of the trust weight [8];

X complete solutions coping with the volatile trustability.

You are invited to contribute to this important research. We are ready to cooperate
and DK will share the relevant experimental software with you.
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16 M. Kárný, D. Karlı́k
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