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Abstract. We investigate sensor network nodes that sequentially infer
states with bounded values, and affected by noise that is also bounded.
The transfer of knowledge between such nodes is the principal focus of
this chapter. A fully Bayesian framework is adopted, in which the source
knowledge is represented by a bounded data predictor, the specifica-
tion of a formal conditioning mechanism between the filtering nodes is
avoided, and the optimal knowledge-conditioned target state predictor
is designed via optimal Bayesian decision-making (fully probabilistic de-
sign). We call this framework Bayesian transfer learning, and derive a
sequential algorithm for pairs of interacting, bounded filters. To achieve
a tractable, finite-dimensional flow, the outputs of the time step, trans-
fer step and data step are locally projected onto parallelotopic supports.
An informal variant of the transfer algorithm demonstrates both strongly
positive transfer of high-quality (low variance) source knowledge—improv-
ing on a former orthotopically supported variant—as well as rejection of
low-quality (high variance) source knowledge, which we call robust trans-
fer.

Keywords: Bayesian transfer learning · fully probabilistic design · Bayesian
filtering · uniform noise · parallelotopic bounds · robust transfer.

1 Introduction

Transfer learning relates to contexts where a computer-based learning task un-
dertaken by a processing node—called the target node—is enhanced in perfor-
mance and/or efficiency if the results of a related task—undertaken by a distinct
source task—are made available to it. Within this generic formulation, there is
significant current interest in the defining and implementation of transfer learn-
ing schemes for a range of machine intelligence [34] and big data problems [42].
One such important focus is in distributed knowledge representation and pro-
cessing in sensor networks, addressing IoT and Industry 4.0 priorities [6]. Local
inferences, driven by data in the individual sensors, are merged or fused in order
to design a global inference [21]. Applications range from health monitoring [38]
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and environmental sensing [43], to cooperative systems for indoor tracking [5]
and urban vehicular localization [26]. A multi-disciplinary literature on multi-
modal and multi-sensor data fusion has evolved, with overviews available in [23]
and [13], for example. Many of those methods and applications can be well char-
acterized as transfer learning for data-driven inference tasks.

The technical approaches adopted for problems of data-driven knowledge
transfer and fusion are as diverse as the applications themselves. Wiener-type
moment estimation for knowledge representation is adopted in the measurement
vector fusion method of [39], as well as in sequential Kalman filter variants for
fusion of measurements [7] and states [41]. A Dempster-Shafer evidence-based
approach to data fusion has recently been outlined [40]. Traditional machine
learning and artificial intelligence tools have, of course, also been deployed, such
as support vector machines and neural networks [35], clustering methods [38],
functional regression [32], and expert system approaches [25].

Our focus in this chapter is on the Bayesian framework for data-driven knowl-
edge representation and decision-making for transfer learning in sensor networks.
In this context, sensors convert local data harvests into probability distributions
of quantities of interest, and the computed distributions are transferred from
source to target tasks (i.e. sensor nodes), to improve inference in the latter.
This objective is related to distributional pooling [1], insofar as local knowledge
representations are probabilistic, although pooling criteria are not generally de-
ducible from formal Bayesian-theoretic principles. More recently, fully Bayesian
approaches to distributional pooling have been derived, for instance in the con-
text of centralized pooling [2]. A Bayesian transfer learning strategy has been
reported for static [10] and dynamic [28] transfer between Kalman filters. In those
works, the transfer step is induced between the time- and data-steps of isolated
Kalman filtering. Our aim in this chapter is to make progress with the exten-
sion of these methods—which we call fully probabilistic design (FPD) [30]—to
important classes of filtering tasks beyond the linear-Gaussian case.

In particular, there is considerable motivation in sensor network contexts in
investigating bounded innovations and/or observation processes [11, 14, 36]. Un-
der Gaussian distributional assumptions, one approach has been to project state
estimates onto the constraint surface [9], or to truncate the distribution [33].
Using sequential Monte-Carlo sampling methods, constraints are imposed via
the accept/reject steps of the algorithm [24]. Meanwhile, non-probabilistic tech-
niques for handling “unknown-but-bounded errors” seek to design an approxi-
mate set containing the state estimates [3, 4].

The current authors have adopted a strictly Bayesian framework for linear
state filtering with uniform stochastic drivers (LSU filtering). Specifically, in [29],
the filtering distribution is derived via local distributional approximations which
sequentially project the output of the data step and time step into the class of
uniform distributions on orthotopic supports (UOS). We will recall this setting
in Section 2. In recent work, we have developed a Bayesian knowledge transfer
mechanism between pairs of these UOS filters, adopting the axiomatically op-
timal approach of fully probabilistic design (FPD) [30], as already mentioned
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above. An important characteristic of this approach is that it does not require
specification of a complete stochastic dependence model between the source and
target tasks. While complete modelling is the conventional approach, allowing
knowledge transfer via standard Bayesian conditioning [18], it can be difficult
to elicit a complete (hierarchical) model of inter-task dependence, leading to
model robustness issues. Instead, in our work, the source-knowledge-conditional
model is designed in an optimal Bayesian decision-theoretic sense. We refer to
this FPD-optimal approach to conditioning for knowledge transfer as Bayesian
transfer learning [27].

The knowledge transferred from the source to target filters is represented via
the one-step-ahead (data) predictor [31]. This was derived for the UOS filter in
[15]. The derivation of the approximate sequential statistics, and the performance
of the FPD-optimal transfer algorithm, between UOS filters has recently been
reported [17].

In this chapter, we report the following progress with FPD-optimal Bayesian
transfer learning between LSU filtering nodes:

(i) The local projections into the UOS class (after each data and time step)
have no guarantees bounding the sequential model approximation error. In
particular, the projection of the filtering distribution and the state predictor
into the orthotopic support is loose. We have recently derived an algorithm
for closure of the isolated LSU distributions (state filtering and prediction)
within the class of uniform distributions on (more flexible) parallelotopic
supports (UPS), which we will also review in Section 2. In this chapter,
we will extend the UOS-closed Bayesian transfer learning algorithm of [17]
to UPS-closure. We anticipate tighter modelling approximations and corre-
spondingly improved filtering performance.

(ii) For the purpose of (i), we must derive the one-step-ahead data predictor via
which the UPS-closed (source) filter transfers its knowledge sequentially to
the target filter. We therefore adapt the (scalar) data predictor derived for
the UOS-closed filter [15] to this more flexible class.

(iii) In [17], our simulations indicated only very modest improvements in filter-
ing (tracking) accuracy of the UOS-closed target filter under FPD-optimal
transfer from the UOS source filter. By examining the geometric nature of
this data-predictive transfer, we were able to propose an informal transfer
method involving intersections between the interval supports of the (scalar)
source and target data predictors [17]. In this chapter, we will again develop
this alternative—now in the context of the UPS-closed filters—as a variant
for comparison with the formal (FPD-optimal) transfer method. In Section 5,
we will present simulation evidence of the comparative performance of these
transfer learning algorithms.

The paper is organised as follows. In Section 2, the UOS and UPS classes
are introduced. Then, the optimal local distributional projections (i.e. approx-
imations) within both the UOS and UPS class of data and time updates are
presented, as well as the relevant predictors. Section 3 defines the problem of
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transfer learning in a pair of Bayesian filters and proposes a tractable (i.e. finite-
dimensional and recursive) framework for FPD-optimal knowledge transfer of the
source data predictor. This framework is then applied to (i) a pair of UOS filters
and (ii) a pair of UPS filters. In Section 3.2, the informal knowledge transfer
method between a pair of UOS filters—inspired by a support-intersection prop-
erty of FPD [17]—is recalled, and deployed here, too, to transfer between a pair
of UPS filters. Section 5 reports the comparative performances of the proposed
transfer learning algorithms in the context of UOS and UPS filter pairs.

The following notation is used: zt is the value of a column vector, z, at
a discrete time instant, t ∈ t? ≡ {1, 2, . . . , t}; zt;i is the i-th entry of zt;
z(t) ≡ {zt, zt−1, . . . , z1, z0}; ≡ denotes equality by definition; ∝ denotes equality
up to a constant factor. Matrices are capitalized (e.g. A), vectors and scalars are
lowercase (e.g. b). Aij is the element of matrix A in the i-th row and j-th column.
Ai denotes the i-th row of A. `z denotes the length of a (column) vector, z, and
Z denotes the defined set of z. I is the identity matrix. χz(Z) is the set indicator,

which equals 1 if z ∈ Z and 0 otherwise. The p-norm ‖z‖p =

(
`z∑
i=1

zpi

)1/p

, partic-

ularly, ‖z‖2 is an Euclidean norm and ‖z‖∞ = max
i

(|zi|). No formal distinction

is made between a random variable and its realisation.

2 Bayesian filtering and prediction with uniformly
distributed noise processes

In this section, Bayesian filtering and prediction are introduced and applied to
a state-space model with uniformly distributed noises (which we call the LSU
model). Two cases are distinguished: projection of the states into (i) the class
of uniform distributions on an orthotopic support (i.e. the UOS class); and into
(ii) the class of uniform distributions on a parallelotopic support (i.e. the UPS
class), respectively.

2.1 UOS and UPS class definition

We consider a finite-dimensional vector random variable z with realisations
in a bounded subset of R`z . We now define appropriate support sets in a `z-
dimensional space.

A polytope is a bounded set defined (bounded) by a finite number of flat
facets. In this paper, we specialise this to the following types of convex polytope.

A zonotope ZZ is a convex polytope formed by the intersection of k strips,
k ≥ `z. It can be expressed as

ZZ = {z : a ≤ V z ≤ b}, (1)

where a and b are vectors of length k, of lower and upper bounds, respectively,
which are meant entry-wise; V is a matrix of size k × `z with rank `z. The i-th
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strip is therefore given by the inequality

ZSi = {z : ai ≤ Viz ≤ bi}. (2)

A parallelotope ZP is a special case of a zonotope (1) with k = `z, so that V
is a square invertible matrix.

An orthotope ZO is a special case of the parallelotope with adjacent facets
orthogonal. It then holds that V = I in (1). Furthermore, z ≡ a and z ≡ b, being
the lower and upper bounds of z, respectively. Then, the orthotope is specified
by

ZO = {z : z ≤ z ≤ z}. (3)

Table 1. The degrees of freedom (dof) and Lebesgue measure, i.e. volume, V, of various
convex polytope specialisations.

dof volume V

orthotope 2`z
`z∏
i=1

(zi − zi)

parallelotope `z(`z + 2) | detV |−1
`z∏
i=1

(bi − ai), see [29]

zonotope k(k + 2), the sum of the Vs of its
k > `z generating parallelotopes, see [12]

Table 1 presents volumes —equivalent to Lebesgue measure—and degrees-
of-freedom (dof) for the above defined support sets. The dof corresponds to
the minimal number of geometric parameters that unambiguously defines the
mentioned set.

Besides the standard form (1), we introduce another two equivalent descrip-
tions of a parallelotope ZP that will be used further. The [−1,1]-form of paral-
lelotope, equivalent to standard form (1), is defined as

ZP = {z : −1(`z) ≤Wz − c ≤ 1(`z)}, (4)

where 1(`z) is a unit vector of length `z and Wij = 2Vij/(bi − ai), ci = (bi +
ai)/(bi− ai), i, j = 1, . . . , `z. We can transform it back to the standard form (1)
using a = c− 1(`z), b = c+ 1(`z), V = W.

An expression for the parallelotope (4) in terms of its centroid ẑ is [37]

ZP = {z : z = ẑ + Tξ}, (5)

where T = W−1, ẑ = Tc, ∀ξ s.t. ‖ξ‖∞ ≤ 1.

UPS class — A uniform distribution of z on a parallelotopic support (1), i.e.
the UPS distribution, is defined as

Uz(a, b, V ) ≡ V−1
P χz (a ≤ V z ≤ b) (6)
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where V is given in the second row of Table 1.
The first moment (mean value) of the UPS distribution (6) is

E[z|a, b, V ] ≡ ẑ = V −1 b+ a

2
. (7)

The second central moment (covariance) of the UPS is

cov[z|a, b, V ] =
1

3
V −1GG′

(
V −1

)′
, (8)

where Gii = bi−ai
2 and Gij = 0, i 6= j, i, j = 1, . . . , `z.

UOS class — A uniform distribution of z on an orthotopic support (3), i.e. the
UOS distribution, is defined as

Uz(z, z) ≡ Uz(a, b, I) = V−1
O χz (z ≤ z ≤ z) (9)

z=a, z=b are the lower and upper bound on z, respectively, and V is given in
the first row of Table 1.

The first moment (mean value) of the UOS distribution (9) is

E[z|a, b, I] ≡ ẑ =
b+ a

2
≡ z + z

2
. (10)

The second central moment (covariance) of the UPS is

cov[z|a, b, I] =
1

3
GG′, (11)

where Gii = bi−ai
2 and Gij = 0, i 6= j, i, j = 1, . . . , `z.

2.2 Bayesian filtering and the LSU model

In the Bayesian framework [10, 19], the state-space system is expressed stochas-
tically, via the following pdfs:

prior pdf: f (x1) (12)

observation model: f (yt|xt)
time evolution model: f (xt+1|xt, ut) .

Here, yt is a scalar observable output, ut is a known system input (optional, for
generality), and xt is an `-dimensional unobservable system state, t ∈ t∗.

We assume that (i) hidden process xt satisfies the Markov property, (ii) no
direct relationship between input and output exists in the observation model,
and (iii) the inputs consist of a known sequence u1, . . . , ut.

Bayesian filtering, i.e., state estimation consists of the evolution of the poste-
rior pdf f(xt|d(t)) where d(t) is a sequence of observed data records dt = (yt, ut),
t ∈ t∗. The evolution of f(xt|d(t)) is described by a two-steps recursion that
starts from the prior pdf f(x1)) and ends by data update at the final time t = t:
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– Data update (Bayes rule)

f(xt|d(t)) =
f(yt|xt)f(xt|d(t− 1))∫

x?
t

f(yt|xt)f(xt|d(t− 1))dxt
, (13)

– Time update

f(xt+1|d(t)) =

∫
x?
t

f(xt+1|ut, xt)f(xt|d(t)) dxt. (14)

We introduce a linear state space model with a uniform noise (LSU model)
in the form

f(yt|xt) = Uy(ỹt − r, ỹt + r) (15)

f(xt+1|xt, ut) = Ux(x̃t+1 − ρ, x̃t+1 + ρ)

where ỹt = Cxt, x̃t+1 = Axt +But, A, B, C are the known model matri-
ces/vectors of appropriate dimensions, νt ∈ (−ρ, ρ) is the uniform state noise
with known parameter ρ, nt ∈ (−r, r) is the uniform observation noise with
known parameter r.

Exact state estimation for the LSU model (15)—following (13) and (14)—
leads to an intractable form of posterior pdf, with the dimension of the sufficient
statistics unbounded with the number, t, of processed data. In [15, 29], approx-
imate Bayesian state estimation (filtering) within the UOS class is proposed.
Recently, [16] has relaxed the orthotopic geometry of the distributional sup-
ports, instead proposing an approximate Bayesian filtering flow via sequential
local projections of the state predictive and filtering distributions into paral-
lelotopic supports. In both cases, the algorithms are based on projections via
minimization of Kullback-Leibler divergence (KLD) [22], achieving closure of
the filtering distribution, f(xt|d(t)), within the respective class, at each step of
filtering.

2.3 Bayesian filtering and prediction within the UOS class

This section summarizes the results of the filtering and prediction within UOS
class as presented in [15, 29].

Data update The data update (13) processes f(xt|d(t − 1)) together with the
f(yt|xt) (15) according to the Bayes rule. It starts in t = 1 with f(x1) =
Ux(x+

1 , x
+
1 ). The exact pdf is uniformly distributed on a zonotopic support that

results from the intersection of an orthotope (9) obtained during previous time
update—or f(x1) in the first step—and strips given by new data

f(xt|d(t)) ∝ χ(mt − ρ ≤ xt ≤ mt + ρ)χ(Cxt − r ≤ yt ≤ Cxt + r) =

= χ

([
mt − ρ
yt − r

]
≤
[
I
C

]
xt ≤

[
mt + ρ
yt + r

])
. (16)
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In [15], the following approximation is proposed

f(xt|d(t)) ≈ Uxt(at, Vt, bt). (17)

The resulting pdf belongs to UPS class. Nevertheless, the subsequent time update
requires pdf from UOS class. Therefore, the support of (17) is circumscribed by
the orthotope so that

f(xt|d(t)) ≈ Uxt(xt, xt), (18)

Time update The time update (14) processes f(xt|d(t)) (18) together with
f(xt+1|xt, ut) (15). The exact pdf f(xt+1|d(t)) is non-uniformly distributed on
a zonotopic support. In [15], the following approximation is proposed

f(xt|d(t− 1)) ≈
∏̀
i=1

χ(mt;i − ρi ≤ xt;i ≤ mt;i + ρi)

mt;i −mt;i + 2ρi
=

=
∏̀
i=1

Uxt;i
(mt;i − ρi,mt;i + ρi) = Uxt

(mt − ρ,mt + ρ), (19)

where mt = [mt;1, . . . , mt;`]
′, mt = [mt;1, . . . , mt;`]

′,

mt;i =
∑̀
j=1

min(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1), (20)

mt;i =
∑̀
j=1

max(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1).

Predictive pdf for LSU model The data predictor of a linear state-space model is
the denominator of (13), where f(yt|xt) is given by (15) and f(xt|d(t−1)) is the
result of the approximate time update (19). The approximate uniform predictor
as proposed in [15] is

f(yt|d(t− 1)) ≈
χ
(
y
t
≤ yt ≤ yt

)
(
yt − yt

) , (21)

where

y
t

= Cx̂+
t −

(
r + |C|

[
mt −mt

2
+ ρ

])
(22)

yt = Cx̂+
t +

(
r + |C|

[
mt −mt

2
+ ρ

])
, (23)

where x̂+
t = Ax̂t−1 +But−1 ≡ E [xt|d(t− 1)] and |C| is absolute value by items.

This predictive pdf is conditioned by mt and mt considered as statistics,
provided the parameters A and B be known.
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Mean value ŷt ≡ E [yt|d(t− 1)] of (21) is

E [yt|d(t− 1)] =
yt + y

t

2
= C

(
mt +mt

2

)
︸ ︷︷ ︸

E[xt|d(t−1)]

. (24)

2.4 Bayesian filtering and prediction within the UPS class

This section summarizes the results of the filtering within the UPS class, as
presented in [16], and deduces the relevant data predictor.

Data update The data update (13) processes f(xt|d(t − 1)) together with the
f(yt|xt) (15) according to the Bayes rule. It starts in t = 1 with f(x1) =
Ux(a+

1 , b
+
1 , V

+
1 ). The exact pdf is uniformly distributed on a zonotopic support

that results from the intersection of a parallelotope (27) obtained during previous
time update—or f(x1) in the first step—and strips (9) given by new data

f(xt|d(t)) ∝ Ux(a+
t , b

+
t , V

+
t )Uyt(Cxt − r, Cxt + r) ∝

∝ χ
([

a+
t

yt − r

]
≤
[
V +
t

C

]
xt ≤

[
b+t

yt + r

])
. (25)

We approximate (25) by a pdf uniformly distributed on a parallelotopic sup-
port [16]. Then, the approximate pdf takes the form

f(xt|d(t)) ≈ Ux(at, bt, Vt). (26)

Note that the data update step for UPS class is identical to the data update
step for UOS class except that last step, i.e, the circumscribing by an orthotope.

Time update The time update (14) processes f(xt|d(t)) (26) together with
f(xt+1|xt, ut) (15). The exact pdf f(xt+1|d(t)) is non-uniformly distributed on
a zonotopic support. It has a linear piecewise shape with shaping parameters
ρ, at and bt. It is approximated by the uniform pdf, see [16]. The support of
f(xt+1|d(t)) is computed in two steps. At first, the support Xt of f(xt|d(t)) (26)
is transformed according to the deterministic part, i.e. x̃t+1, of (15). For this,
the parallelotope Xt of form (1) is converted into the form (5) and then the
linear transformation x̃t+1 = Axt +But is performed as presented in [16]. The
resulting support, X̃t+1, is then transformed back to the form (1). Secondly,
the parallelotope X̃t+1 is expanded by the set [−ρ, ρ] which corresponds to the
stochastic part of (15). The resulting support corresponds to the Minkowski sum
of X̃t+1 and the set [−ρ, ρ] which is a zonotope (1).

The projection of the above mentioned uniform pdf into UPS class is ex-
plained in Appendix A, giving

f(xt+1|d(t)) ≈ Ux(a+
t+1, b

+
t+1, V

+
t+1). (27)
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Predictor The observation predictor of a linear state-space model is the denom-
inator of (13), where f(yt|xt) is given by (15) and f(xt|d(t− 1)) is the result of
the approximate time update (27). Then, equivalently,

f(yt|d(t− 1))∝
∫
x?
t

χ(yt − r ≤ Cxt ≤ yt + r)︸ ︷︷ ︸
a strip in the xt-space

χ(a+
t ≤ V +

t xt ≤ b+t )︸ ︷︷ ︸
a parallelotope in the xt-space

dxt. (28)

The integral (28) is positive, if the intersection of the strip and the parallelotope
is nonempty, otherwise zero. Its value, i.e. volume of the intersection, is influenced
by yt. Changing yt will shift the strip in (28) across the parallelotope, therefore
f(yt|d(t−1)) is trapezoidal. Its functional form can be approximated optimally in
Bayesian sense by a uniform pdf on the support of the trapezoidal f(yt|d(t−1)),
as shown in [29]. Therefore, we need the values y

t
and yt, for which the strip

touches the parallelotope from either side. These values will be the bounds of
the uniform predictive pdf.

Let the parallelotope χ(a+
t ≤ V +

t xt ≤ b+t ) be expressed in the direct form (5).
According to [37], T+

t must be adjusted so that CT+
t;i ≥ 0, i = 1, . . . , `, by

multiplication of corresponding columns by −1. Such an adjustment does not
change the set described by T+

t . Then, using analysis in [37],

y
t

= Cx̂+
t −

(
r +

∑̀
i=1

CT+
t;i

)
, (29)

yt = Cx̂+
t +

(
r +

∑̀
i=1

CT+
t;i

)
. (30)

and the predictive pdf, approximated by a uniform distribution, is

f(yt|d(t− 1)) ≈ U(y
t
, yt). (31)

Note that if V +
t is an identity matrix, i.e. the support of f(xt|d(t− 1)) is an

orthotope then the formulae (29) and (30) correspond to (22) and (23).

3 FPD-optimal transfer learning between Bayesian filters

We consider a pair of Bayesian filters, and distinguish between the primary
filter—which we call the target filter or node [34]—and the secondary filter, which
we call the source filter or node. In the latter, all sequences and distributions
are subscripted by “s”. Each filter processes a local observation sequence, yt and
ys,t, t ∈ t?, respectively, informative of their local, hidden (state) process, xt and
xs,t, respectively.

If transfer learning from the source to the target filter is to be effective (the
case known as positive transfer [34]), then we must assume that ys(t) is infor-
mative of x(t). The core technical problems to be addressed are (i) that there
is no complete model relating x(t) and xs(t), and, therefore, (ii) the standard
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Bayesian conditioning does not prescribe the required target distribution con-
ditioned on the transferred knowledge, since it yields this prescription only in
the case of complete modelling [18]. However, an insistence on specification of
a complete model of inter-filter dependence can be highly restrictive, and incur
model sensitivity in applications.

Instead, we acknowledge that the required conditional target state predictor,
f̆(xt|d(t − 1), fs), after transfer of the source data predictor, fs(ys,t|ds(t − 1)),
is non-unique. Therefore, we solve the incurred decision problem optimally via
the fully probabilistic design (FPD) principle [30], choosing between all cases

of f̆(xt|d(t− 1), fs) consistent with the knowledge constraint introduced by the
transfer of fs(ys,t|ds(t−1)) [31]. FPD axiomatically prescribes an optimal choice,

fo, as a minimizer of the Kullback-Leibler divergence (KLD) from f̆ to an ideal
distribution, f I , chosen by the designer [20]:

fo(xt|d(t− 1), fs) ≡ arg
f̆∈F

minD(f̆ ||fI). (32)

Here, the KLD is defined as

D(f̆ ||fI) = Ef̆

[
ln
f̆

fI

]
, (33)

and F in (32) denotes the set of f̆ constrained by fs [30],[31]. The ideal distri-
bution is consistently defined as

fI(xt|d(t− 1)) ≡ f(xt|d(t− 1)),

being the state predictor of the isolated target filter (27 or (19)) (i.e. in the
absence of any transfer from a source filter). In [10], the following mean-field
operator was shown to satisfy (32), and so to constitute the FPD-optimal target
state predictor after the (static) knowledge transfer specified above:

fo(xt|d(t− 1), fs) ∝ f(xt|d(t− 1))×

× exp

∫
yt∗

fs(yt|ds(t− 1)) ln f(yt|xt) dyt

 . (34)

Note that the optional input, ut, is known and constant (being a conditioning
quantity in d(t− 1)), and so plays no role in the FPD optimization (32).

3.1 FPD-optimal knowledge transfer within the UOS and UPS
classes

In [17], the KLD minimiser (34) is presented with fs(yt|ds(t − 1)) (21), and
f(yt|xt) (15) in the form

fo(xt|d(t− 1), fs) ∝ f(xt|d(t− 1))×

× exp

∫
yt∗

χ
(
y

s,t
≤ yt ≤ ys,t

)
lnχ (Cxt − r ≤ yt ≤ Cxt + r) dyt

 . (35)
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The first term in the integral indicates the integration limits are y
s,t

and ys,t. The

characteristic function in the logarithm must equal one, which sets the exponent
to zero, inducing an additional geometric constraint for xt represented by the
strip (2) in the state space3:

ys,t − r ≤ Cxt ≤ ys,t
+ r. (36)

The first term f(xt|d(t−1)) in (35) has the form (19) for the UOS class and (27)
for the UPS class.

The subsequent time update of the target filter yields a domain of the partic-
ular class in the state space. The intersection of this domain and (36) constitutes
the transfer learning between a pair of the filters. However, the subsequent data
update requires the prior pdf to be on an support of the same particular class,
too. Therefore, the constrained set is now circumscribed by another orthotope
(UOS) or parallelotope (UPS).

The designs for the UOS and UPS classes are structurally the same, differing
only in the detail of the statistics in the data predictors and in state predictive
supports. This all is true because of the scalar assumption for yt.

Note that the similarity of (36) with the observation model (15), and the sim-
ilarity of their processing flows, point to an interesting correspondence between
the constraint step and the data update step. The difference is that the knowl-
edge transfer (36) accepts the interval, i.e. the uniform distribution, Uy(y

s,t
, ys,t),

whereas the data update is driven by the realized observation, yt. The latter
can be expressed via sifting with the Dirac distribution, δy(y − yt). In this dis-
tributional sense, (34)—and its instantiation in UOS/UPS transfer learning in
(35)—is a generalized form of Bayesian conditioning in the incompletely mod-
elled context.

3.2 Informal knowledge transfer

The mechanism (35) for knowledge transfer consists of the state predictor (the
first term), modulated by the exponential term, the effect of which is to constrain
the support of the FPD-optimal state predictor. This geometric insight—that
the effect of the transferred knowledge is to impose a support restriction on the
conditional state predictor, fo(xt|d(t− 1), fs) (35)—led us to propose an infor-
mal transfer learning mechanism: the target state predictor is updated under
transfer by projecting it onto the intersection of the source and target state
predictor support sets. We reported in [17] that this informal variant achieved
more positive transfer than the (disappointing) improvement achieved under the
FPD-optimal mechanism (35). Though not interpretable as an optimal transfer
learning mechanism, the promising performance, and intuitive and computation-
ally efficient nature of this criterion, have together encouraged us to assess its
performance in transfer learning between UPS filters, as reported in Section 5.

3 Note that a typo occurred in [17], in which the lower and upper bounds, ys,t and
y

s,t
, were interchanged. The error is corrected in (36).
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Practically, having fs(xt|d(t−1)) ∝ χ
(
as

+
t ≤ Vs

+
t xt ≤ bs

+
t

)
for the source fil-

ter and f(xt|d(t− 1)) ∝ χ
(
a+
t ≤ V +

t xt ≤ b+t
)

for the target filter, both from the
UPS class, their intersection corresponds to a zonotope (1) given by the inequal-

ities

[
a+
t

as
+
t

]
≤
[
V +
t

Vs
+
t

]
xt ≤

[
b+t
bs

+
t

]
. Using [37], the zonotope is circumscribed by

a parallelotope with shaping parameters a⊕t , b⊕t and V ⊕t that form a support for
the prior pdf after the knowledge transfer.

4 Algorithmic summary

The source and target filters run their state estimation tasks in parallel. The
source filter is run in isolation. The latter sequentially transfers its one-step-
ahead data predictor, fs(ys,t|ds(t−1)) (Section 3), to the target filter. Note that
the the stochastic mechanism which generates this data-predictive sequence at
the source does not need to be specified, in line with the incomplete modelling
which characterizes this Bayesian transfer learning framework. The processing of
the source knowledge sequence occurs between the time update and data update
steps in the target filter.

Initialisation:
– Choose final time t > 1, set initial time t = 1.
– Set prior values x1, x1, noises ρ, r, rs.

On-line:
1. Get new data ut, yt, ys,t.
2. Data update: add the data strip (15) and approximate the obtained sup-

port by a parallelotope (for details see Appendix A.2 in [29]) to obtain
the resulting form (26) for each filter.

3. Compute at, bt, Vt (26) for each filter.
4. Compute the point estimate x̂t (7) for the target filter.
5. If t = t, go to 10.
6. Time update: compute a+

t+1, b+t+1, V +
t+1 in (27) for each filter.

7. Knowledge transfer (informal): circumscribe the intersection of the par-
allelotopes (27) for the source and target state predictors by a parallelo-
tope described by a⊕t+1, b⊕t+1, V ⊕t+1 and use it as a prior pdf support for
the data update step.

8. Set t = t+ 1.
9. Go to 1.

10. End.

5 Simulation of Bayesian Transfer Learning for a
constrained position-velocity system

We consider the case where the target process is a LSU filter simulating a
position-velocity system [8] with uniform drivers, which we also investigated
in [17]. We are interested in inferring whether the Bayesian knowledge transfer
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mechanism prescribed by the formal FPD-optimal scheme (35), as well as via
the informal variant in Section 3.2, enhances the performance of the target filter,
when compared to the isolated filter. We also want to consider the influence of
the UOS-closed versus UPS-closed variants.

5.1 Simulation details

We simulate xt ∈ R2 and yt ∈ R, so that the transferred data predictor in
both the UOS and UPS cases are uniform on a line segment, differing only in
the bounds, (22) and (23) versus (29) and (30), respectively. The known model

parameters are A =

[
1 1
0 1

]
, C = [1 0], ρ = 1(2) × 10−5, where 1(2) is the unit

vector of length 2, and r = 10−3. Also, B =

[
0
0

]
and ut = 0, i.e. a system without

input/control. The estimation was run for t = 50 time steps. We investigate
the influence of the observation noise, rs, of the source filter (15) on the state
estimate precision of the target filter, quanitified by the TNSE (i.e. total norm

squared-error), defined as TNSE =
t∑
t=1
‖x̂t − xt‖22. For each combination of the

parameters, the computation was run 500 times and the TNSEs were averaged.
The simulated state processes, xt (and so the state noise variance, ρ) are

equal in the target and source filters, while the observation processes are simu-
lated conditionally independently of xt, with different noise variances, r and rs,
respectively.

5.2 Comparative performance

Holding the target observation variance constant at r = 10−3, as stated above,
we investigated the TNSE as a function of the source observation variance, rs.
In [17], we reported that positive transfer—i.e. the improved precision of filtering
under transfer of high-quality (rs < r) source knowledge—was achieved in the
UOS-closed case, for both the FPD-optimal (i.e. formal) transfer (35) and the
informal variant (Section 3.2). However, the improvement was very limited—
particularly for the formal scheme—because of the coarseness of the orthotopic
approximation of the support of fo(xt|d(t − 1), fs) (35). We speculated that a
parallelotopic approximation would yield an improved positive transfer, a hy-
pothesis we now wish to validate experimentally.

For this purpose, we investigated the performance of the informal Bayesian
transfer learning variant, comparing the UOS-closed and UPS-closed variants
with the isolated target filter performance (Fig. 1). The UOS-closed performance
has already been reported in [17], corroborating the main findings: that (i) the
informal variant achieves robust transfer when rs > r (i.e. rejection of poor-
quality source knowledge); and (ii) the positive transfer in the rs < r regime is
significant, reducing the TNSE by about an order of magnitude when rs � r,
compared to the isolated target filter. We supplement these findings with the
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performance of the UPS-closed informal transfer scheme. As anticipated in [17],
this significantly outperforms the UOS-closed informal scheme in the positive
transfer regime, reducing the TNSE by about a further 1.5 orders of magnitude
in the rs � r regime.

-8 -7 -6 -5 -4 -3 -2 -1

log
10

 r
s

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5
lo

g
1
0

 T
N

S
E

UPS and UOS transfer, r=0.001

knowledge transfer UPS

isolated filter

knowledge transfer UOS

Fig. 1. TNSE of the target LSU filter as a function of the observation noise variance rs
of the source filter. UPS-closed informal knowledge transfer compared to UOS-closed
informal knowledge transfer, and to the isolated target filter (no transfer).

5.3 Discussion and Closing Remarks

The impact on the state predictor of the geometric constraint (36) in the transfer
step (35) of the FPD-optimal (i.e. formal) scheme requires further study. Cases
may exist where higher-variance source predictors may anomalously tighten the
target state predictor support, or, indeed, where the strip (36) may not overlap
with the support of the pre-transfer target state predictor, f(xt|d(t− 1)), at all.

In contrast, the informal variant of the transfer learning scheme (Section 3.2)
avoids these anomalies, and—as demonstrated in the simulations above—shows
promise in achieving strongly positive transfer for high-quality source knowledge,
and rejection of low-quality knowledge (robust transfer). It is inspired by the
behaviour of the formal transfer in this bounded support setting (i.e. support
intersection), but a formal justification is required. Another issue is that the
informal variant transfers the source state predictor, rather than the source
data predictor, implying that this sequential knowledge is made available by a
source LSU filter (as in the simulation setting above), an assumption that is not
required in the formal scheme.
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The isolated LSU target filter performance (TNSE) acts as a reference/datum
for assessing all the (informal) transfer algorithms (Fig. 1). It confirms that trans-
fer of a high-quality source predictor reduces the sequential state estimation er-
ror in the target LSU filter (i.e. positive transfer). Conversely, low-quality source
predictors are rejected by the schemes (i.e. robust transfer), and the target filter
performance reverts to that of the isolated filter in this regime. Furthermore, the
findings support the hypothesis that the projection of the output of the transfer
step (35) into the UPS class is a closer local approximation than projection into
the UOS class, owing to the greater number of degrees of freedom in the paral-
lelotopic versus orthotopic support. A similar finding was reported in [16], in the
context of isolated UPS-closed LSU filtering, where improved filtering accuracy
was reported in comparison to the UOS-closed variant.

Perhaps the most significant finding is the robustness of the informal trans-
fer scheme in the context of LSU filtering with bounded knowledge transfer.
Our earlier experience with FPD-optimal conditioning on source data predictors
for incompletely modelled pairs of Kalman filters indicated that high-variance
(Gaussian) source predictors were not rejected, and that performance can de-
teriorate relative to the isolated Kalman filter in this regime (i.e. non-robust
transfer). This is caused by the loss of the second moment of the Gaussian
source predictor under the mean-field operator in (34). The problem was over-
come via an informal adaptation of the prescribed algorithm in [10, 28], and via
a formal scheme involving a hierarchical model relaxation in [27]. While further
work is needed to understand the formal scheme in the current LSU setting,
there is clear evidence that robustness is intrinsic in this setting, and that no
such moment loss occurs.

Future work will focus on formal understanding of the conditions under which
the FPD-optimal Bayesian transfer learning scheme achieves robust transfer,
both in interacting LSU filtering pairs, and for more generally specified sensor
nodes. As already implied above, the informal transfer scheme may be formally
justifiable as an FPD-optimal transfer learning scheme for adapted settings, but
this has yet to be demonstrated. Finally, we plan further investigation of the
influence of the geometric supports of the local distributional approximations on
the quality of positive transfer in the LSU filtering case, seeking (i) to reduce the
number of local approximations per step of the algorithm, and (ii) investigating
more flexible geometries, particularly low-order zonotopes.

A Appendix

Stochastic expansion of a parallelotope

After the deterministic transformation of the support Xt, according to (15),
within the time update, its expansion corresponding to the stochastic effect
must be preformed.

For the i-th facet of the parallelotope to be expanded, we define these vectors:

– ωi′, which is the i-th row of W̃t+1, orthogonal to the facet. Define si = ωi

‖ωi‖2
a unit vector orthogonal to the i-th facet,
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– τ i, which is the i-th column of the matrix T̃t+1. It points from the centre

of the parallelotope to the centre of the i-th facet. Define vi = τ i

‖τ i‖2 a unit

vector parallel to τ i,
– %i =

[
αi1ρ1, α

i
2ρ2, . . . , αi`ρ`

]′
, where ρ1, . . . , ρ` are the components of the

state noise parameter ρ and αi1, . . . , α
i
` = ±1 so that its j-th element of the

i-th vector αij ≡ sign(%ij) = sign(sij). This arrangement guarantees si and %i

point to the same half-space given by the i-th facet.

Assume the orthotopic set (box) [−ρ, ρ] with its centre on the i-th facet. Then,
di = si′%i is the distance of the most distant vertex of the box and the i-th facet
of the parallelotope.

Let ‖∆τ i‖2 ≡ ∆τ i′vi be a length increment of the vector τ i pointing to the
centre of the i-th facet shifted by the Minkowski sum. Then, (∆τ i′vi)′si = di,
i.e.

∆τ i =
di

vi′si
=
si′%i

si′vi
=
ωi′%i

ωi′vi
. (37)

The i-th column τ i
+

of the new matrix T+
t+1 is

τ i
+

= τ i
‖τ i‖2 + ‖∆τ i‖2

‖τ i‖2
. (38)

The expanded circumscribing paralelotope is then described as xt+1 = x̂+
t+1 +

T+
t+1ξ, where x̂+

t+1 = ˆ̃xt+1 (its centre is preserved). Transforming the shaping

parameters T+
t+1 and x̂+

t+1 to the form (1), we get the approximate pdf

f(xt+1|d(t)) ≈ Ux(a+
t+1, b

+
t+1, V

+
t+1). (39)
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