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Abstract—Bayesian transfer learning typically relies on a
complete stochastic dependence specification between source and
target learners. We advocate a solution to the Bayesian transfer
learning paradigm which adopts Fully Probabilistic Design (FPD)
to search for an optimal choice of distribution constrained
by probabilistic source knowledge. Using this optimal decision-
making strategy, an algorithm for accepting source knowledge
is identified but is found to be effectively insensitive to source
uncertainty. Therefore, we propose an adaptation of the FPD
framework which results in a robust transfer learning algorithm.

Experimental evidence gathered via synthetic data shows
enhanced performance when employing both optimal algorithms
in a low source data predictor variance regime. In a high source
data predictor variance setting, only our adapted FPD-optimal
algorithm achieves robustness.

Index Terms—Autoregressive (AR) model, Bayesian transfer
learning, data-predictive transfer, FPD, robust transfer.

I. INTRODUCTION

Transfer learning (multi-task learning) [1] [2] is the process
of adopting knowledge from a set of source learning tasks
to increase the learning rate of a given target task [3]. This
paper is concerned with transfer learning in a Bayesian context
and proposes two algorithms for knowledge transfer between
a source and target autoregressive (AR) inference task via the
sharing of a one-step-ahead data predictor or a conditional
one-step-ahead mean data predictor (probability distributions).
The objective of Bayesian Transfer Learning (BTL) is to
identify an optimal target distribution M◦, describing the
targets beliefs in its generative parameters θ, conditioned on
provided source knowledge FS and n locally observed data
zn. We are further concerned with the robustness property,
i.e. positive knowledge transfer when quality source data is
available and mitigating negative transfer otherwise.

BTL in literature is typically approached by the design of a
prior for the target via knowledge provided by source learners
[4], or by the assumption/design of a joint model between
the target and source learners [5] which provides the setting
for Bayesian conditioning. Prior design for knowledge transfer
can prove effective but is restrictive due to its inability to
incorporate synchronous, on-line learning. We advocate that
any requirement for the design or assumption of a full model
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Fig. 1. Source and target inference tasks process their local data zS,n and zn to
learn AR parameters aS, rS and a, r respectively. At each time step the source
makes available a distribution FS to the target. The target elicits an FPD-
optimal, FS-conditioned, posterior predictive distribution which improves its
parameter inference performance on a and r.

between target and sources is a restrictive form of transfer
learning.

This paper avoids the specification of a complete model
between target and source by adopting principles of Fully
Probabilistic Design (FPD) [6] [7] to elicit a source knowledge
conditioned distribution on the target’s parameters. FPD is
as an axiomatically justified [8] optimal distribution design
framework which is rooted in the minimum cross-entropy
principle. FPD has previously been applied to transfer learning
applications such as Gaussian process regression [9], Kalman
filtering [10] and Student-t filtering [11].

This paper extends the application of FPD-based transfer
learning to an AR setting. The AR model is favoured for its
ability to describe relationships between lagged realisations
of temporal data. AR models are frequently adopted in the
domains of speech analysis [12] and finance [13].

The remainder of this paper is organised as follows. Section
II gives an overview of Bayesian parameter inference for
an isolated AR setting. Sections III and IV describe the
principles of FPD and applies them to the AR model to achieve
knowledge transfer between a source and target inference
task. Section V identifies an alternative FPD-optimal robust
algorithm for the AR transfer learning paradigm. Sections VI
and VII outline the experimental setting for validations of the
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algorithms and provides a discussion of the findings. Section
VIII concludes the paper.

II. REVIEW OF BAYESIAN PARAMETER INFERENCE FOR
THE AUTOREGRESSION MODEL

The objective when adopting an AR model of order p
(AR(p)) to describe n signal data zn, is the inference of
unknown static generative parameters θ = {a, r}. Adopting in-
ferences on the parameters, any desired moments or marginals
on objects of interest can be derived (e.g. data predictors).

Data is typically made available to the model at discrete
steps indexed by i = 1, 2, 3, ... Equations (1) describe a uni-
variate time-invariant AR(p) model where en is the Gaussian
innovation at step n, zn ∈ R is the scalar observation and
ψn ∈ Rp is the autoregression vector (p previous observa-
tions). This paper adopts T to denote the transposition operator.

zn = µzn + ren = ψT
n a + ren,

a ∈ Rp, r ∈ R+,

en ∼ Ne(0, 1),

ψn =
[
zn−1 . . . zn−p

]T (1)

AR(p) parameter estimation is classically solved via the
normal equations which adopt the Wiener criterion [15]. In the
Bayesian setting, we adopt a distribution to describe stochastic
belief in {a, r} which can be subsequently updated after each
datum observation. A key advantage of the Bayesian method
is that parameter (or other moments) estimates come equipped
with a first principled measure of uncertainty.

We will now identify a solution for the processing of data zn
in both an online and offline inference setting with respect to
maintaining computational tractability (i.e. adopting conjugate
priors on the model parameters).

F(zn | a, r, zn−1) ≡ Nzn(µzn , r) = Nzn(ψ
T
n a, r) (2)

F(a, r | zn) = F(a, r | Vn, νn) = N iGa,r(Vn, νn),

Vn =

[
v11,n vT

a1,n

va1,n Vaa,n

]
(3)

The Gaussian AR generative model (2) is a member of
the exponential family [14] and therefore is guaranteed to
have a conjugate prior distribution and sufficient statistics.
The conjugate prior for (2) is identified as the Normal inverse-
Gamma (N iG) (4) distribution [14]. Conjugacy is important in
signal processing applications as it facilitates a fully tractable,
recursive, and online computational inference flow [18].

N iGa,r(Vn, νn) = K−1
n r−

νn
2 exp

[
− 1

2r

[
−1 aT

]
Vn

[
−1
a

]]
,

(4)
λn = v11,n − vT

a1,nV−1aa,nva1,n

Kn = Γ
(νn

2

)
λ
− νn

2
n |Vaa,n|−

1
2 (2π)

1
2 .

Equation (4) describes the sufficient statistic parameterisation
of N iG which is adopted in this paper. Vn ∈ R(p+1)×(p+1) is
the Extended Information Matrix (EIM), νn ∈ R+ is the de-
grees of freedom parameter, Γ(·) denotes the gamma function

and Kn is the normalisation constant. A requirement of the
EIM is that it must be symmetric and positive semi-definite.
Equation (3) shows the partitioning of the EIM into its sub-
components, isolating the scalar v11,n, the vector va1,n ∈ Rp

and the matrix Vaa,n ∈ Rp×p. The degrees of freedom param-
eter νn can be interpreted informally as a counter of observed
data (note νn can be any positive, non-zero, real value). λn
is the total Bayesian squared error. Provided in (5) below are
some important moments of N iG.

E[a | zn] = E[a | r, zn] = V−1
aa,nva1,n,

E[r | zn] =
λn

νn − p + 2
, νn > p− 2

(5)

It can be shown that the following are the fixed and
finite dimensional updates of the Bayesian sufficient statistics
prescribed by (2) and (3) after observing zn [15].

Vn = Vn−1 +

[
zn
ψn

] [
zn ψT

n

]
= V0 +

n∑
i=1

[
zi
ψi

] [
zi ψT

i

]
νn = νn−1 + 1 = ν0 + n

(6)
The EIM Vn−1 is updated by the accumulation of the outer
product of the vector zn extended by ψn. Of particular note is
that this isolated update procedure reappears in similar forms
in both sections IV and V when conducting transfer learning.
V0 and ν0 in (6) represent the prior belief in the parameters
before any data is considered. If no preference is provided, a
diffuse distribution is typically adopted (i.e. V0 = εIp+1, ν0 =
ε, where ε is a small positive real number).

The one-step-ahead data predictor for the N iG model is
identified in (7) as the 3 parameter Student-t distribution.

F(zn+1 | zn) =

∫
a,r

F(zn+1 | a, r,ψn+1)F(a, r | zn)dadr

= St−tzn+1

(
ψT

n+1V−1aa,nva1,n,λn
1 +ψT

n+1V
−1
aa,nψn+1

νn
, νn

)
(7)

We will now provide a description of the FPD distribution
design framework in the context of transfer learning which we
will adopt to optimally choose a source knowledge conditioned
object.

III. FPD-OPTIMAL BAYESIAN TRANSFER LEARNING

This paper is concerned with BTL in an incompletely
modeled setting (i.e. where no explicit relationship between
source and target is assumed or designed). This incompletely
modeled setting is shown in figure 1 where both source and
target inference machines conduct independent modelling of
local parameters with no explicit association. We desire a
distribution on the target’s parameters M ∈M that is con-
ditioned on source knowledge FS. The choice of M is not
uniquely defined and is a decision making task. In this paper
we adopt an optimal choice of distribution M◦ via the Bayesian
minimum risk decision making strategy known as FPD [7].

Adoption of FPD design principles require the specifica-
tions of two key elements: 1) a user-specified choice of
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an ideal, zero-loss choice distribution MI, 2) a description
of how knowledge constrains the set of possible candidate
distributions M ∈M. Note that this paper adopts M and F as
variational (i.e. to be designed) and fixed-form distributions
respectively.

M◦ ≡ arg min
M∈M

D (M||MI) (8)

FPD dictates that the optimal distribution choice M◦ should
be chosen as the candidate M ∈M which minimises the
Kullback-Leibler divergence to the user-specified ideal MI.
When no restrictions are placed on M, the optimal zero-
loss choice in distribution is always MI. The Kullback-Leibler
divergence is defined in (9) as the expected log-odds between
the candidate and ideal distributions [18].

D (M||MI) = EM

[
log

(
M

MI

)]
(9)

We will now instantiate equations (8) and (9) for the N iG-
AR tasks (2) and (3) where the object being transferred is the
source’s one-step-ahead data predictor transfer (7).

IV. FPD-OPTIMAL BTL BETWEEN AR INFERENCE TASKS

Equation (10) outlines the choice in ideal distribution as the
joint model of a, r and the next unknown datum zn+1. This joint
model expressed in terms of the target’s fixed-form generative
model (2) and the posterior predictive distribution of the
parameters (3). This choice in ideal distribution is motivated
by its complete description of the state of the inference task
in the absence of external knowledge.

MI(a, r, zn+1 | zn) ≡ F(zn+1 | a, r,ψn+1)F (a, r | zn) (10)

M(a, r, zn+1 | FS, zn) ≡ FS(zn+1 | zS,n)M (a, r | FS, zn) (11)

The variational candidate distribution (11) is a conditional
on the source’s one-step-ahead data predictor FS (described
in (7)). (11) is presumed unavailable, i.e. unknown functional
form. We desire to find an optimal choice of this variational
object which has been constrained by source knowledge FS.

We assert in (11) that FS is descriptive of the target’s next
datum zn+1. Moreover, a conditional independence assumption
between {a, r} and zS,n+1 given FS is assumed. Equation (12)
illustrates the conditional independence assumption made in
(11).

M(zn+1 | FS, a, r, zn) ≡ M(zn+1 | FS,ψn+1) ≡
FS(zn+1 | ψn+1, zS,n)

(12)

M ∈M ≡ {models (11) with FS(zn+1)

fixed and M (a, r | FS, zn) variational}
(13)

With regards to brevity, ψn+1 will be omitted for the rest of
this paper. We now wish to solve the FPD optimisation task
(8) instantiated with (10), (11) and (13).

Proposition 1. The unknown model belongs to the knowledge
constrained set, M ∈M (13), and the ideal model MI is (10).
Then the FPD-optimal model is

M◦(a, r, zn+1|FS, zn) ∝FS(zn+1)M◦(a, r|FS, zn) (14)

where

M◦(a, r | FS, zn) ∝

F(a, r|zn) exp

[∫
zn+1

ln(F(zn+1|a, r))FS(zn+1)dzn+1

]
(15)

Proof. See Appendix A.

The result achieved in proposition 1 is the canonical solution
as reported in literature. A full description of a recursive and
computationally tractable algorithm for the AR(p) model is
identified in proposition 2.

Proposition 2. At step n, the FPD-optimal source knowledge
conditioned model is (15) and the conjugate prior is of
the form (4). Then the appropriate recursive hyperparameter
update is

V◦n =Vn+

[
mS,n+1

ψn+1

] [
mS,n+1 ψT

n+1

]

+


wS,n+1 0 · · · 0

0 0
...

...
. . .

...
0 · · · · · · 0


(16)

ν◦n = νn + 1 (17)

Where conjugacy between the prior and posterior is conserved
and, the first and seconds moments of FS, mS,n+1 and wS,n+1

respectively, are given in (7).

Proof. See Appendix B.

The resulting computational flow adopts equations (6) for
the data-step update procedure with the replacement of Vn−1
and νn−1 with the optimal posterior V◦n−1 and ν◦

n−1 at step
n− 1. The source knowledge transfer step adopts equations
(16) and (17).

Remark 1. The source distribution acceptance procedure
outlined in proposition 2 processes both the first and second
moments of FS. This is an unexpected result as the second
order moment transfer does not happen in similar FPD in-
stantiations in literature [10]. Despite this, the expected values
of the parameters a and future data realisations are invariant
to the source predictor’s uncertainty wS,n+1, although it does
have an effect on the target’s confidence in these objects.

We will now investigate an alternative algorithm for the
transfer of knowledge with motivations to ensure robustness
to source knowledge uncertainty.

V. ROBUST FPD-OPTIMAL BTL

A new specification of ideal distribution MI is defined in
(18). Similar to (10), it is a joint model on the parameters
{a, r} and the target’s next datum zn+1. In contrast to (10),
we choose to design our ideal model MI as a conditional
on the source provided object FS where we define FS as
the source’s conditional one-step ahead mean data predictor
FS(µzn+1 |zS,n, rCE,n) (20). µzn+1 is the first parameter (mean) of
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the AR(p) generative model in (1). FS should not be confused
with the one step ahead data predictor described in (7) and
adopted in section IV.

MI(a, r, zn+1 | FS, zn) ≡ FS(zn+1)F (a, r | zn) (18)

M(a, r, zn+1 | FS, zn) ≡ F(zn+1 | a, r)M (a, r | FS, zn) (19)

FS(µzn+1
| zS,n, rCE,n) =

Nµzn+1
(ψT

n+1V−1
aa,nva1,n,

λn
νn − p + 2

ψT
n+1V−1

aaψn+1)
(20)

We constrain our beliefs in M by asserting that zn+1 is
described by the target’s generative model only. When com-
paring (18) and (19) to (10) and (11), the effective difference is
swapping the role of FS and the generative model respectively.

M ∈M ≡ {models (19) with F(zn+1 | a, r)

fixed and M (a, r | FS, zn) variational}
(21)

The objective is to once again optimally choose M◦ from
the set of distributions (21) via the minimisation of (8) with
the user-specified ideal (18).

Proposition 3. The unknown model belongs to the knowledge
constrained set, M ∈M (21), and the ideal model MI is (18).
Then the FPD-optimal model is

M◦(a, r, zn+1| FS, zn) ∝FS(zn+1)M◦(a, r | FS, zn) (22)

where

M◦(a, r | FS, zn) ∝

F(a, r | zn) exp

[
−D
(

F(zn+1 | a, r)
∥∥∥FS(zn+1)

)] (23)

Proof. See Appendix C.

Proposition 3 outlines a conical solution for transfer learning
problem where both the ideal and candidate distributions are
conditioned on the source knowledge FS. The next task is
to identify a computationally tractable inference flow for the
updating of belief at each data step. Unfortunately, proposition
3 does not result in a conjugate updating procedure when using
the N iG distribution. We now propose the use of an extended
N iG distribution to model belief in the parameters as follows.

M(a, r | V, B, ν, k) ∝r− ν
2 exp

[
− 1

2r

[
−1 aT

]
V

[
−1
a

]
−1

2

[
−1aT

]
B

[
−1
a

]
−rk

] (24)

A full investigation of (24) is out of scope of this paper.
Regardless, it possess a number of key properties.

1) When diffuse choices of hyper-parameters B and k are
adopted (εIp and ε respectively, where ε is a small
positive real number), the extended N iG is equivalent
to a standard N iG with hyper parameters V, ν.

2) When conditioning on a known r, the extended N iG
reduces to a multivariate Normal distribution.

3) The hyper-parameter update procedure when processing
local data zn is unchanged (see (6)).

Considering Property 1 and Property 3, if the extended N iG
is adopted in sequential updating in an isolated learner when
diffuse priors are adopted, the inference task is identical to
traditional inference described in section II.

For the purposes of deriving a robust transfer learning
algorithm, we are predominately concerned with producing
a marginal distribution on a. Unfortunately, this object is
believed to be analytically intractable. This issue is addressed
via the adoption of a certainty equivalent choice of r (i.e.
rCE) which adopts E[r] (5) as a known parameter. Considering
Property 2, we can derive a rCE conditional on a and is
provided in (25) where V̄n=Vn + rCEBn.

M(a | rCE, V̄n, Bn, νn, kn) = N (V̄
−1
aa,nva1,n, rCEV̄

−1
aa,n)

E[zn+1 | rCE] = ψT
n+1V̄

−1
aa,nva1,n

VAR[zn+1 | rCE] = rCEψ
T
n+1V̄

−1
aa,nψn+1

(25)

Note that rCE must be generated at each step using isolated
target knowledge only. Equation (25) is not a complete solu-
tion as it does not provide a description on r but is sufficient
for making inferences on the parameters a and generating the
expected values of future data. We now propose a recursive and
tractable update procedure for the extended N iG distribution.

Proposition 4. At step n, the optimal source knowledge
conditioned model is (23) and the conjugate prior is (24).
Then the appropriate recursive hyper-parameter update is

ν◦n = νn + 2

k◦n = kn +
1

wS,n+1

V◦n = Vn

B◦n = Bn +
1

wS,n+1

[
mS,n+1

ψn+1

] [
mS,n+1 ψT

n+1

]
(26)

Where mS,n+1 and wS,n+1 are the first and second moments of
(20) respectively.

Proof. See Appendix D.

Adopting Property 1 of the extended N iG model, the
resulting computational flow is defined in (6) for the data-step
update with the replacement of Vn−1 and νn−1 with the optimal
posterior V◦n−1 and ν◦

n−1. Equation (26) describes the source
knowledge update. (25) is adopted for deducing moments.

VI. EXPERIMENTATION

To illustrate the performance of the hitherto described FPD-
optimal BTL algorithms, we design an experimental setting
with a target AR(8) inference machine and a single source
making available a distribution on the targets next datum at
every step. We compare the following methods: No Transfer
(NT); FPD-Optimal BTL (FPD-BTL); Robust FPD-Optimal
BTL (RFPD-BTL). n = 30 local target data are produced
using the AR(8) parameters below with a driving Gaussian
innovation with variance r = 5.

a =
[0.175, −0.126, 0.067, −0.035,

...0.014, −0.007, 0.003, −0.0001]
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Fig. 2. Mean Absolute Prediction Error of the target AR(8) inference machine
over the last 10 data with varying source prediction accuracy ρS. Methods
compared: No Transfer (NT), FPD optimal BTL (FPD-BTL) and Robust FPD
optimal BTL (RFPD-BTL). 30 target data considered with variance r = 5.

At each step the target processes its local datum, then
accepts a distribution FS = N (µzn+1 , ρS) from the source
(simulating the one-step-ahead data predictor and conditional
one-step-ahead mean data predictor as appropriate). µzn+1

is
sampled at each step from N (ψT

n+1a, ρS). ρS is the operating
condition which determines the source predictor variance
and a substitute for the second parameter of the transferred
distribution (20) and the second moment of (7). ρS dictates
the quality of the source knowledge being transferred.

For each value of ρS, we plot in figure 1 the Mean Absolute
Prediction Error (MAPE) of the target’s one-step-ahead data
predictor on the last 10 data points, over 5000 Monte-Carlo
trials. The MAPE for a single experiment is defined in equation
(27) where ẑi+1 is the predicted value of the next datum by
the model at step i and zi+1 is the true realisation.

MAPE =
1

10

n∑
i=n−10

|ẑi+1 − zi+1| (27)

VII. DISCUSSION

The isolated NT AR task acts a baseline for accessing
the performance of the BTL algorithms. Unsurprisingly, its
MAPE is invariant with ρS. In the low source data predictor
variance regime (ρS < 20), both FPD algorithms perform
well and provide positive knowledge transfer. For (ρS < r),
RFPD-BTL outperforms FPD-BTL due to its ability to ac-
cept source knowledge weighted above locally sourced data.
For ρS ≈ r, FPD-BTL marginally outperforms RFPD-BTL.
This is because the two algorithms are effectively equivalent
when ρS = r (with respect to expected data prediction) except
RBTL-FPD has the added overhead of estimating rCE (directly
proportional to source knowledge acceptance weight). In the
stressful regime of ρS > 20, RFPD-BTL achieves good levels
of robustness while FPD-BTL does not.

The RFPD-BTL algorithm accepts the expected value of
the source mean data predictor as a locally observed datum
weighted by rCE

wS
. When rCE � wS, we assign little weight to

the source knowledge. When rCE > wS, we accept the source
knowledge with a weight greater than 1 (i.e. weighting it
higher than a locally observed datum). A key disadvantage
to RFPD-BTL is the believed analytical intractability of the
extended N iG which omits the possibility for a full analytical
Bayesian description of the source conditioned posterior.

The BTL technique presented in this paper has potentially
widespread application in contexts of distributed and/or multi-
output filtering and prediction, assuming that individual ob-
servation channels are amenable to all-pole modelling [16].
This includes microphone arrays and other networks of sensors
in (low-noise) acoustic and vibrational fields. Recall that
our framework involves knowledge transfer between local
AR tasks where the interaction model does not need to be
specified. It can be replace and robustify complete-modelling
approaches to multi-output AR processing, such as the con-
ventional vector-AR [17] process. More work will be required
to assess the performance of our BTL framework for transfer
from multiple AR sources. It will be interesting to test whether
BTL can avoid sensitivity to (spatial) model mismatch.

VIII. CONCLUSION

This paper has presented an investigation of Bayesian Trans-
fer Learning (BTL) in an incompletely modelled scenario.
BTL is typically approached via the assumption or design of
a complete model, allowing Bayesian conditioning between
learners. We focus on the incomplete model scenario where
this complete model is not designed or assumed. Two algo-
rithms are derived for the AR BTL task via FPD principles,
for the transfer of source data predictive knowledge. FPD-BTL
adopts a standard FPD setting but is found to be effectively
invariant to source uncertainty. We propose the RFPD-BTL in-
stantiation which results in a robust algorithm and is validated
in Monte-Carlo simulations. In future work, a formalisation of
the RFPD-BTL algorithm will be investigated which does not
require the adoption of a certainty equivalent, rCE, in (25).

APPENDIX
A. Proof Proposition 1

D(M‖MI) =∫
FS (zn+1 | zS,n) M (a, r | FS, zn)

× ln

(
FS (zn+1 | zS,n) M (a, r | FS, zn)

F (zn+1 | a, r) F (a, r | zn)

)
dzn+1dadr

=

∫
M (a, r | FS, zn)

× ln

(
M (a, r | FS, zn)

M◦ (a, r | FS, zn)

)
dadr −HFS

− ln cM◦

with differential entropy of FS and normalising constant cM◦

HFS
= −

∫
FS (zn+1 | zS,n) ln FS (zn+1 | zS,n) dzn+1
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cM◦=

∫
F (a, r | zn)

× exp

{∫
ln F (zn+1 | a, r) FS (zn+1 | zS,n) dzn+1

}
dadr

B. Proof Proposition 2

M◦(a, rFS,zn) ∝ N iGa,r(Vn, νn)

exp

[∫
zn+1

lnNzn+1
(ψT

n+1a, r)Stzn+1
(·)dzn+1

]
(28)

Considering the Boltzmann modulation term.∫
zn+1

(
ln

1√
2πr
− 1

2r
(zn+1 −ψT

n+1a)2
)

Stzn+1(·)dzn+1

= ln
1√
2πr
− 1

2r

(
ψT

n+1aaTψn+1−2ψT
n+1amS,n+1

+

∫
zn+1

z2n+1Stzn+1(·)dzn+1

)
= ln

1√
2πr
− 1

2r

(
(ψT

n+1a−mS,n+1)2+wS,n+1

)
(29)

Adopting (28), (29) and (4) where mS,n+1 and wS,n+1 are
moments of Stzn+1 and can be generated via (7).

M◦(a, r| FS, zn)∝ r−
νn+1

2 exp

(
− 1

2r

[
−1 aT

]
Vn

[
−1
a

]

− 1

2r

(
(ψT

n+1a−mS,n)
2 + wS,n+1

))

C. Proof of Proposition 3

D(M‖MI) =

∫
F (zn+1 | a, r) M (a, r | FS, zn)

× ln

(
F (zn+1 | a, r) M (a, r | FS, zn)

FS (zn+1 | zS,n) F (a, r | zn)

)
dzn+1dadr

=

∫
M (a, r | FS, zn)

[
ln

(
M (a, r | FS, zn)

F (a, r | zn)

)

+

∫
zn+1

F (zn+1 | a, r) ln
F (zn+1 | a, r)

FS (zn+1 | zS,n)
dzn+1

]
dadr

=

∫
M (a, r | FS, zn)ln

(
M (a, r | FS, zn)

F (a, r | zn) exp{−D(F‖FS)}

)
dadr

D. Proof of Proposition 4

M◦(a, r | FS, zn) ∝

F(a, r | zn) exp

[
−D

(
F(zn+1 | a, r)‖FS(zn+1)

)] (30)

Considering the exponential modulation term only.

exp

[
− 1

2wS,n+1

(
r + (ψT

n+1a−mS,n+1)2
)
− ln(r)

]
= r−1 exp

[
− 1

2

(
r

1

wS,n+1
+

[
−1 aT

] 1

wS,n+1

[
mS,n+1

ψn+1

] [
mS,n+1 ψT

n+1

] [−1
a

])]
Adopting (24) and (30).

M◦(a, r | FS, zn) ∝

r−
ν+2
2 exp

[
− 1

2r

[
−1 aT

]
Vn

[
−1
a

]
− 1

2

[
−1 aT

]
Bn

[
−1
a

]
−1

2

[
−1 aT

] 1

wS,n+1

[
mS,n+1

ψn+1

] [
mS,n+1 ψT

n+1

] [−1
a

]
− 1

wS,n+1
r

]
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