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Abstract—This paper outlines a selective transfer approach
for Bayesian estimation of patient-specific levels of radioiodine
activity in the thyroid during the treatment of differentiated
thyroid carcinoma. The work addresses some limitations of previ-
ous approaches which involved generic, non-selective transfer of
archival data. It is proposed that improvements in patient-specific
inferences may be achieved via transferring external population
knowledge selectively. This involves matching the patient to a
similar sub-population based on available metadata and formally
transferring a feature-space-conditioned, probabilistic data pre-
dictor from the sub-population to the specific patient. In addition,
the transfer times are chosen to complement the patient’s own
data. Currently the proposed method yields positive transfer, with
stable performance improvements up to 34%. Although this is
found to be 9% below the performance of the current state-of-the-
art, the proposed method is significant in that it can be applied
to other transfer learning applications where inhomogeneous
parameter knowledge is available in the source feature space.

Index Terms—Bioinformatics, Decision support systems, Nu-
clear medicine, Bayesian Transfer learning

I. INTRODUCTION

When a patient undergoes 131I radioiodine (RAI) therapy for
treatment of differentiated thyroid cancer (DTC), a key phar-
macokinetic quantity of interest is the time-dependent activity
of 131I [1]. This may be used to estimate the net radiation dose
delivered to the thyroid, the inference of which is essential
in patient prognosis and planning of further treatment [2].
However, measurements of 131I activity for a specific patient
are typically of low quantity and quality, due to the economics
and the nature of the measurement process respectively. A
Bayesian approach is thus adopted, here and previously in
[1], [3], due to the nature of the patient data and to enable
incorporation of externally available knowledge.

In [1], Jirsa et al. introduce a biphasic (uptake-clearance)
linear-regression model for 131I activity in a specific patient,
specified as the target. It is then shown that transferring
externally available knowledge to a patient-specific model is
effective in predicting 131I activity. This external knowledge
is in the form of archives of patient measurement records, and
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the same knowledge, namely a data-predictor in the form of
a Gaussian Mixture Model (GMM), is transferred indiscrimi-
nately to a given patient. This paper utilises the same biphasic
model, but proposes a more nuanced transfer of external
knowledge. This involves using available patient metadata to
identify a sub-population of similar patients within the archive.
From this an associated GMM in the sub-population feature
space (i.e. the estimated regression parameters) is optimally
processed as a GMM data-predictor and transferred to the
target, supplementing its local parameter estimation. This is
done based on the notion of complementary knowledge, in
which knowledge is transferred to the target in regions where
the target’s data is sparse.

As in [1], the transfer is performed optimally via fully
probabilistic design (FPD) [4], which outlines axioms on how
we process the source knowledge while transferring to the
target via a mean-field approach.

The layout of the paper as follows: in Section II we
summarise the log-normal linear regression model for thy-
roid activity estimation first proposed in [1]. In Section III
we propose to model the source knowledge in the feature
space, conditioned on available metadata, and processed to
complement the observed target data. Section IV outlines the
optimal Bayesian transfer technique for processing this source
knowledge, which is expressed as a parameter update with
the virtue of not disrupting the recursive activity estimation.
A performance evaluation is carried out in Section V.

II. PARAMETRIC MODEL FOR THYROID ACTIVITY
ESTIMATION

A. Biphasic Model for Thyroid Gland Activity
A model for thyroid gland activity during RAI treatment

for DTC is presented by Jirsa et al. in [1]. It is an uptake-
clearance (biphasic) log-normal linear regression model for
thyroid activity, At (MBq), at time t (days), given by

ln(At) = a1 + a2 ln(ct) + a3(ct)2/3 ln(ct)− αt
= ψ′ta− αt. (1)

The biphasic model is parameterised by three shaping param-
eters a ∈ R3 and one variance estimate, r, where ′ denotes
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transposition. The explanatory variables and constant, c, are
grouped in the term ψt ∈ R3. The parameter-independent
term, −αt, accounts for the radioactive decay of the 131I
isotope.

The patient measured activity, dt, is log-normal, and it
follows that the Wold observation model of the log-scaled
activity measurements, ln(dt), at time t, is normally distributed
[1]. Given the observations expressed as xt = ln(dt) + αt,
from [1], a target patient’s parametric observation model is as
follows:

xt = ψ′ta+ et, et
ciid∼ N (0, r), (2)

f(xt|a, r) ∝ Nxt(ψ′ta, r). (3)

B. Normal-Inverse-Gamma Conjugate Update of a and r

The adopted conjugate form for estimation of a and r (4) is
the standard-form multivariate normal-inverse-gamma (NiG)
distribution [1], parameterised by the extended information
matrix (EIM), Vi ∈ R4×4, and the degree-of-freedom, νi ∈
R+. These parameters respectively serve as an accumulator
and counter of the outer products of the extended data (5),
initialised with V0, ν0, which specify prior belief.

f(a, r|V0, ν0) ≡ N iGa,r(V0, ν0) ∈ R3 × R+ (4)

In the vector ϕti , the i-th observations of shifted log-activities
xti are stacked on the explanatory variables ψti , denoted as
the extended datum. The outer product of the extended datum,
ϕtiϕ

′
ti , provides the prescribed memory-less data projection

for inference of the normal linear regression parameters.

ϕti =

(
xti
ψti

)
(5)

The conjugate batch update of these parameters is expressed
in Equations (6) and (7) and the sequentially-processed on-line
update is shown in Equations (8) and (9).

Vn = V0 +

n∑
i=1

ϕtiϕ
′
ti (6)

νn = ν0 + n (7)

Vi = Vi−1 + ϕtiϕ
′
ti (8)

νi = νi−1 + 1 (9)

A diffuse NiG prior is elicited using a small positive constant
ε ≈ 0.001. This is because, for NiG propriety, V ∈ R4×4 must
be symmetric and positive definite, and ν > 9. Following [1],
as the minimum number of measurements of a patient within
the database is n = 2, we therefore adopt the prior parameters

V0 = ε · I4, (10)
ν0 = 7.05. (11)

For the NiG posterior, the marginals of a and r are distributed
as Student-t and inverse-gamma respectively, with respective
first moments [5] given by

E[a] = V −1
xx vx1, E[r] =

λ

νn − 7
, (12)

where

Vn =

(
v11 v′x1

vx1 Vxx

)
, λ = v11 − v′x1V

−1
xx vx1. (13)

C. Physiological Hard Constraints Imposed on a

To encode the known metabolic behaviour of 131I in the
body, a number of hard constraints are imposed on the
inference of a. The hard constraints confine the shaping
parameters a to a convex domain A, defined by a matrix of
linear inequalities in [1]. Knowledge of the hard-constraints,
IH , is introduced to the prior via an indicator function
χA(a) ∈ {0, 1}. The resulting constrained posterior, following
Dn ≡ {(ti, dti)}ni=1 time-activity measurement pairs taken
from a target patient, is

f(a, r|IH , Dn) ≡ N iGa,r(Vn, νn)χA(a). (14)

The marginal first moments (12) are therefore unavailable in
closed form. In previous work, these values were estimated
via stochastic sampling methods, whereas here we adopt a
grid-based deterministic scheme for estimation.

III. EXTERNAL DATA CLASSIFICATION AND ANALYSIS

The data for this research is made available from the
Clinic Nuclear Medicine (KNM), Motol Hospital, Prague.
Each treatment record consists of a number (2 < n ≤ 9)
of serial time-activity measurement pairs. We denote this data
as Dn ≡ {(ti, dti)}ni=1, where i is the discrete time index. As
noted in [1], the measurement data across all 3876 treatment
records within the KNM dataset is heterogeneous, indicating
that transferring knowledge naively from the entire database
may neglect potential covariates that would be informative
to the target patient. In this paper, we seek to nuance this
previously “unselective” transfer.

A. Metadata Conditioning of External Data

Using this available metadata, we associate a target patient
with a sub-population of similar archive records, based on the
equivalent administration type (diagnostic or therapeutic) and
the number of lesions (1-5). This partition scheme instantiates
10 possible classes of archive sub-populations to which a
target patient may be identified.

B. Modelling Domains and Transfer of External Knowledge

For each treatment record within a class, the parameters
of the associated biphasic model may be estimated via the
parametric update proposed previously. Given that estimates
of model parameters may be obtained for all archive records,
we propose modelling external class knowledge in the feature-
space because this is ultimately the domain of interest, encap-
sulating all knowledge that is relevant to the learning task.
This includes the benefit that this external knowledge may be
pre-processed ahead of time.

In modelling the source knowledge for each class, we
propose here to neglect a1 and transfer a distribution in the
Θ∗ ≡ (a2, a3) domain only. We propose this as: (i) (a2, a3)
is the primary domain where inhomogeneity is identified in

Authorized licensed use limited to: UTIA. Downloaded on November 29,2021 at 13:14:28 UTC from IEEE Xplore.  Restrictions apply. 



the feature-space; and (ii) a1 is a scaling term of a patient’s
biphasic activity model. This scaling term is dominantly
influenced by the administered activity, A0, which differs by
patient with a large variance: it is intrinsic to a given patient
and thus we argue that it is not appropriate to transfer it to
the new patient.

In summary - for each class - each archived patient is
represented by a length-2 feature vector in Θ∗-space, being
the Bayesian (a2, a3)-estimate (12). The inhomogeneity of
the distribution of these features is modelled in this paper
via the GMM universal model. The number of components,
K, is chosen via the Rissanen MDL algorithm [6]. Thus,
using available metadata, a target patient may be identified
with a GMM associated with one of 10 classes. Each GMM
summarises the available archival knowledge, IS , within a
particular class. It is represented as a source pdf, fS , on the
parameters of interest, Θ∗:

fS(Θ∗|IS) =

K∑
k=1

fS(Θ∗|L = k, IS) Pr[L = k|Is] (15)

=

K∑
k=1

α̂kNΘ∗(m̂k, Σ̂k). (16)

Here, α̂k represents the weight of the k-th component
in the GMM. m̂k and Σ̂k represent the k-th component
mean and covariance matrix respectively, estimated using the
Expectation-Maximisation (EM) algorithm (easily done via the
fitgmdist function1 in MATLAB) [7]. Note that indexing
into each of the 10 possible class GMMs is suppressed, for
convenience, in (15), (16), and in the sequel. The augmented
form (15) expresses α̂k as a probability mass function with
discrete label variable L = k. The source GMM conditioned
on the label L = k is simply the k-th bivariate Gaussian
component.

IV. PROPOSED EXTERNAL PARAMETER UPDATE

The following section presents the proposed external pa-
rameter update of a novel selective external data-predictive
distribution, within the FPD-optimal transfer framework [1],
[8].

A. Target One-Step-Ahead Predictor

Given Θ ≡ a, the target’s likelihood estimation and one-
step-ahead predictor are defined in the standard Bayesian
learning format [9],

Θ ∼ f(Θ) (17)
xi|Θ ∼ f(xi|Θ) ≡ L(Θ|xi) (18)
xi,Θ ∼ f(xi,Θ) (19)

f(Θ|
xn︷ ︸︸ ︷

x1, . . . , xn) ∝ f(Θ) ·
n∏
i=1

L(Θ|xi) (20)

f(xt|xn) ∝
∫
f(xt|Θ)f(Θ|xn) dΘ. (21)

1https://www.mathworks.com/help/stats/fitgmdist.html

In formulating externally-driven, “fictitious” data predictions,
any positive time-value may be chosen by the modeller. Thus,
we adopt the target data-predictor X(t) = x(t), ∀ t ∈ R+,
denoted as a static predictor Xt = xt for notational conve-
nience.

B. Source Predictor at Time t

For the one-step-ahead source predictor, we condition on
the target’s isolated estimate of a1 and r, introducing knowl-
edge of the source parameter subvector Θ∗ = (a2, a3) via
the assertion f(Θ|xn) ≡ fS(Θ∗|IS). Additionally, we note
that ψ1 = 1 and (ψ2, ψ3) are functions of t, therefore we
denote the associated time-dependent explanatory subvector
as ψ∗t = (ψ2, ψ3)′. In the K = 1 component case, the
required data predictor is available as a standard result [9].
Taking a mixture of these predictive components, the full-form
transferred data predictor (24) is, therefore, a K-component
GMM.

fS(xt|xn, a1, r)

∝
∫
f(xt|a1,Θ

∗, r)f(Θ∗|xn)dΘ∗ (22)

=

K∑
k=1

α̂k

∫
Nxt(ψ′Θ, r)NΘ∗(m̂k, Σ̂k) dΘ∗ (23)

=

K∑
k=1

α̂k Nxt(m
†
t,k, r + ψ∗

′

t Σ̂kψ
∗
t ), (24)

where m†t,k = a1 + ψ∗
′

t m̂k.

C. Complementary Prediction

As it is useful to our application, the one-step-ahead source
predictor need not predict future measurements only, but may
also be used for interpolation between the target’s observed
measurements. Although the source knowledge is matched to
the target, it is still reasonable to assume that data observed
at the target is more relevant than the source knowledge we
transfer to it. We thus choose to transfer knowledge at times
where the target’s data is scarce, termed complementary times.
This avoids adding external information at times where the
target already has data. If we choose to transfer information
at target-complementary times, tc = t1, . . . , tC , over a window
of [1,W ] days, we define for transfer the complementary data-
predictive distribution, normalised by C, as

fC(xt|xn, a1, r)

=
1

C

C∑
c=1

fS(xt|xn, a1, r) δ(t− tc) (25)

=
1

C

C∑
c=1

K∑
k=1

α̂k Nxt(m
†
t,k, r) δ(t− tc) (26)

This resulting distribution is the source knowledge object that
is processed at the target via Bayesian transfer.
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D. FPD-optimal transfer of the source predictor

The joint model for conditioning on the source knowledge,
IS , is not available in our Bayesian transfer learning setting
and so is designed optionally, using the axiomatic and optimal
FPD framework, as done in [1] and other work [8], [10].
The resulting optimal conditional design is given by the
mean-field operator (27). Thus we optimally process (26)
via (27), denoting the observed data as Dn and the transfer
weight as νS , i.e. the quantification of the target’s trust in the
source. The target distribution, f(Θ|Dn), is instantiated as the
(constrained) NiG in (14), leading to the following expression
for the posterior following FPD-optimal transfer.

f(Θ|Dn, IS)

∝ f(Θ|Dn) exp

[
νS

∫
fC(ϕt) ln (f(ϕt|Θ)) dϕt

]
(27)

∝ f(Θ|Dn)×

exp

[
νS
C

C∑
c=1

K∑
k=1

α̂k Nxt(m
†
tc,k

, r) ln (f(xtc |Θ))

]
(28)

∝ f(Θ|Dn)×
C∏
c=1

K∏
k=1

exp

[
νSα̂k
C
Nxt(m

†
tc,k

, r) ln (f(xtc |Θ))

]
(29)

= f(Θ|Dn)

C∏
c=1

K∏
k=1

f(xtc |Θ)
νSα̂k
C Nxt (m

†
tc,k

,r) (30)

This is the target (patient-specific) parameter inference, now
benefiting from, i.e. optimally conditioned on, the transfer
from the archive sub-population, as well as the target’s own
local observations.

E. NiG Parameter Update by External Predictor

In this paper, we take the same approach as in [1] by opti-
mally processing an external predictor via the NiG parameters,
but for the feature-space conditioned, complementary source
data-predictor. Along with the source knowledge of Θ∗, we
adopt the target’s isolated marginal posterior estimates of mean
a1 and r from (12) as certainty equivalents for the transfer. The
k-th component predicted extended datum, with uncertainty
quantified by r, is

ϕ†t,k =

[
m†t,k
ψt

]
. (31)

We thus define the external batch update of the NiG parameter
Vn by addition of VC as

VC = νS

 1

C

C∑
c=1

K∑
k=1

α̂kϕ
†
tc,k

ϕ†
′

tc,k
+ r


1
0
0
0

 [1 0 0 0
]

(32)

This involves c = 1, 2, . . . , C < W complementary-time
outer products, each derived as a certainty equivalent from
a K-component predictor, with normalising constant C. The

transferred mean m†t,k acts like an observation, but with
its uncertainty reflected in the automatic adjustment via the
transferred variance. The degree-of-freedom NiG parameter νn
is incremented by νS in an approach similar to [1], where it
is also noted that the value νS is data-driven. Thus, in this
paper νS is left as a hyperparameter for testing. Defining
VP = Vn+VC and νP = νn+νS , the posterior conditioned on
source knowledge IS is defined in (33) and the entire update
is summarised in Algorithm 1.

f(a, r|IS , IH , Dn) ≡ N iGa,r(VP , νP )χA(a). (33)

Algorithm 1: Outline of patient-specific update
Result: Posterior conditioned on source knowledge

1 initialise prior with V0, ν0 and hard constraints IH ,
f(a, r|IH);

2 process local target data Dn to obtain the pre-posterior
f(a, r|IH , Dn);

3 select a GMM in (a2, a3) conditioned on patient
metadata as the knowledge source IS ;

4 optimally transfer a data-predictor at complementary
times c = 1, . . . , C to obtain the posterior,
f(a, r|IS , IH , Dn);

V. PERFORMANCE EVALUATION

For the benefit of investigation, many of the patient records
within the archive supplied by the KNM are enriched with
more data points than is typically obtained during RAI treat-
ment. In real practice, generally patients receive n = 3
measurement-pairs following administration. Therefore, addi-
tional measurements that are available from the data archive
(some patients have up to n = 9) can be redacted from
the observation model and used for testing instead. Such
measurement pairs will be referred to as hold-outs (H/Os).

A. Choice of Performance Metric

For comparability between transfer methods, the perfor-
mance metric adopted is the root mean square prediction error
(RMSPE) of H/O observations (35). As the performance of the
transfer method is a function of which hold-outs are taken
during testing, the aim is to show that this dependence is
insignificant or unsystematic. We take a modified approach
to that in [1], which simply evaluates the predicted error from
a H/O of the fourth measurement. The adopted approach is to
partition between measurements (typical of clinical practice)
and H/O (research) data. This is done heuristically. As the
global maximum activity must be in the range tm ∈ (4, 72)
hours and the model captures both uptake and clearance
of 131I, the observed measurements are thus chosen (where
available) as: (i) the first measurement pair; (ii) the first
measurement pair in the window of 2-6 days; and (iii) the first
measurement pair taken at greater than 6 days. For the third
measurement, while the inclination may be to maximise the
range over which a patient is measured, the issue of additive
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noise becomes more significant measurement times further
away from tm. It’s also noted that all H/Os contain additive
noise. The RMSPE is taken across all available H/Os, such
that the predictive performance of the model is evaluated over
the entire activity curve.

B. Test Hyperparameters

One of the hyperparameters used for testing is the size of
the window, W (days), over which complementary times may
be selected and hence transfer is permitted to occur. Here, the
range of transfer windows tested is W ∈ [6, 10] days. Note
that in previous work in [1], statistics are transferred at fixed
days p = 1, 2, 10, independent of W . Additionally, νS is data-
driven in previous work, therefore tests are run for a range of
values of νS here.

Algorithm 2: Performance evaluation
Result: RMSPE evaluation

1 Evaluate the parameter update of the regression model,
as prescribed by the NiG distribution, for
i = 1, . . . ,m observations;

2 For each hold-out j = 1, . . . , h find the error between
the H/O observation and that of the expected value of
the estimated log-activity, from m real observations
(as done for a single observation in [1]):

εj = Ef(dt|Vm,νm)

[
ln(dtj )

]
− ln(dtj ) (34)

3 For the RMSPE, take the average of Euclidean norm
error per sample j, between the extrapolated activity
model and the h hold-out points:

RMSPE =

√∑h
j=1 ε

2
j

h
=
|ε|√
h

(35)

C. Test Cases

1) Selective transfer: This is the proposed approach, involv-
ing a belief-weighted complementary merging of exter-
nal statistics, obtained from a selected sub-population
source modelled in the (a2, a3) feature space, processed
as a GMM data-predictor and optimally transferred at
target-complementary times;

2) Legacy transfer: The current state-of-the-art (SoTA)
method employed in the work that formed the basis for
this paper [1], involving a non-selective source modelled
in the data-space over the entire population, transferred
as a GMM data-predictor at fixed times of k = 1, 2, 10
days;

3) Control case: No transfer is performed and performances
are taken based on estimates from the target’s isolated
regression model.

D. Results

The results of Algorithm 2 are shown in Figure 1 for a
sample of class-1 patients. Note that some archive classes do

not contain enough patients with n ≥ 4 observations for which
H/Os may be taken. As there are 387 class-1 patients who fulfil
this criterion, class-1 is chosen for the following performance
evaluation.

Fig. 1. Performance for a sample of patients in class-1 of the proposed transfer
(triangles) versus the isolated patient (crosses) and SoTA transfer of Jirsa et
al. [1] (discs), plotted for a range of W and transfer weight νS .

As expected the results for the control case and SoTA
transfer are invariant to the window size W , this parameter
being relevant only for complementary transfer. We note that
both the proposed transfer and the SoTA transfer depend on
the transfer weight νS . Figure 1 relates to a sample of class-1
patients, and performance might also be tested for other classes
which have an adequate amount of data. In the performance
study above, the average RMSPE for the proposed transfer
approach is minimised at a transfer window size of W = 10
and a transfer weight of νS = 0.0075. The performance
additivity achieved for the proposed transfer is 34% versus
an improvement of 43% for the SoTA.

VI. DISCUSSION

This paper presents a methodology for Bayesian transfer
of external knowledge to a target regression model, based on
feature-space conditioning of source knowledge, partitioned
and selected with respect to available metadata, and invoking
the notion of complementary data transfer.

For transfer to the target, the source (one-step-ahead) prob-
abilistic data-predictor is inferred from the source parameter
distribution. This gives access to the same calculus employed
in the seminal work for this investigation [1], [4] for FPD-
optimal transfer of source knowledge to the target. The dis-
tinction in this work is that the probabilistic data-predictor is
derived from selected source parameter knowledge, instead
of a fixed source data set, and knowledge is transferred to
complement the target’s local data.

While the performance does not rival the SoTA [1] yet,
the proposed approach is nevertheless a positive transfer
algorithm, reducing the predictive error in the local target
patient by 34%, on average, in the class-1 population. This
performance improvement is sustained across values of the
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test parameter W . A key benefit over [1] is that we model
in the feature space (i.e. in the parameter estimate space),
and thus the proposed algorithm is less application-specific:
it may be generalised and used in Bayesian transfer learning
contexts where source knowledge of the feature space exists,
rather than direct observational knowledge. Also novel is
the notion of selectivity, where features or metadata of the
target learning task may be conditioned on to identify relevant
source knowledge. These additions can be achieved without
disrupting the recursive data processing at the target.

In order to achieve performance additivity beyond [1], we
note the following for future work:
• There is significant sensitivity to the transfer weight νS ,

for which positive transfer is yielded for low values
compared to the pre-posterior νn ≥ 9.05. This value was
data-driven previously [1] but left as a hyperparameter
here. It would benefit from formal specification, for
example based on quantified uncertainty in the source
knowledge domain.

• There is a large variance in the RMSPE, indicating
heterogeneity is still present in the transfer. No additivity
in performance was found for k = 1 versus k = K
components in the source GMMs. When the source
distribution is processed through the FPD mean-field
operator (27), second-order moments fail to transfer. This
intrinsic limitation of FPD in the Gaussian context has
recently been overcome by proposing a valid reversal of
the underlying KLD objective [11]. It will be interesting
to introduce this reversal here, since it has the potential
to robustify the transfer from the source GMMs.

• Data are sparse in some classes. It would be beneficial for
clinics to have access to more of these class-conditioned
data or to harvest them. There are also alternative ways
to partition metadata, for example since each patient is
assigned a unique ID, a patient’s regression model may be
conditioned on their administration history, which reflects
how therapy is designed in practice [1].
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