
Akademie věd České republiky
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Abstract

Existing frameworks for multi-task learning [1],[2] often rely on completely modelled relationships

between tasks, which may not be available. Recent work [3], [4] has been undertaken on approaches

to fully probabilistic methods for transfer learning between two Gaussian Process (GP) tasks. There,

the target algorithm accepts source knowledge in the form of a probabilistic prior from a source

algorithm, without requiring the target to model their interaction with the source. These strategies

have offered robust improvements on current state of the art algorithms, such as the Intrinsic Core-

gionalization Model.

The Bayesian Transfer Learning algorithm proposed in [4], was found to provide robust, positive

transfer. This algorithm was then extended to accommodate knowledge transfer from multiple source

modellers [5]. Improved predictive performance was observed from increases in the number of sources.

This report reviews the multi-source transfer findings in [5] and applies it to a real world problem

of pollution modelling in India, using public-domain data.
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1 Introduction

The purpose of this report is to explore multi-source Bayesian Transfer Learning (BTL), using expert

source knowledge to improve the performance of a non-parametric target. The source and target learning

tasks adopt the Gaussian Process Regression model [6]. We apply this to a pollution modelling problem

where the target task of estimating PM2.5 levels at hold-out locations in India are to be improved by

knowledge from expert source modellers of other pollutants, namely CO, NO2, and SO2.

In the BTL framework, the target becomes a global modeller of both the source and target processes.

Complete modelling approaches process raw, source observations or their statistics. Conversely, the tar-

get global modeller in the BTL framework takes an incompletely modelled form which is conditioned on

probabilistic source knowledge, computed and transferred from the locally modelled source. This condi-

tioning on the source’s probability distribution, rather than on the source’s observations, is intrinsic to

the Bayesian Transfer Learning approach.

We can define an expert model very loosely as one which can consistently provide a high predictive

performance under varying conditions and has some knowledge of the nature of the underlying synthesis

model or some privileged access to the local data. We will first explore a common parametric machine

learning approach, the k-Nearest Neighbours (kNN)[7] algorithm, and then we will look at how we can

construct an expert Gaussian Process Regression model through exploration of various covariance kernel

structures.

Once we have built our expert models for each source pollutant, CO, NO2, and SO2, we want to see

how best to transfer knowledge from these source tasks to the target PM2.5 task. We will evaluate

both the Intrinsic Coregionalization Model (ICM)[8], which represents the state of the art, as well as the

Bayesian Transfer Learning approach. The success of these two approaches will be judged on their ability

to provide increased predictive performance over the isolated PM2.5 target model.

In this application, ICM processes four raw data channels, (CO, NO2, SO2, and PM2.5), being a standard

multivariate inference approach. In the BTL framework, however, the target only processes its own

raw data channel, PM2.5, while processing probabilistic knowledge representations of the three source

channels. The BTL approach does not require transfer and processing of the raw source data. Despite

this compression, we will show that BTL provides positive and robust transfer, outperforming ICM.
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2 Literature Review: Transfer Learning for multi-output obser-

vation processes

Transfer learning is a powerful tool in machine learning and is an evolving area of research [9]. In isolated

learning, data (i.e. observations) from several processes are jointly modelled to make future predictions.

With transfer learning, however, knowledge obtained in disparate domains, for disparate learning tasks,

are processed to inform the beliefs (learning) of the target task [10].

In the multi-task learning context, multiple tasks are trained in parallel, while using a shared represent-

ation, i.e. they are assumed to share a mutual structure. The appeal of multi-task learning is that each

model can generalize (i.e. avoid over-fitting) better than tasks that are learnt in isolation [1],[2].

As noted in [1], however, incorrect or ill-informed assumptions about the relationships between tasks

can have detrimental effects on the performance of multi-task inference. This is referred to as negat-

ive transfer, whereby the knowledge learnt in a source task reduces the model performance when it is

transferred to the target task. It is, of course, desirable that knowledge transfer improves target model

performance under favourable conditions, while avoiding transfer under unfavourable conditions, i.e. that

it achieves positive, robust transfer. It is, therefore, a very relevant issue to build a robust framework for

the specification of the relationship between tasks.

Gaussian Processes (GPs) are flexible, non-parametric processes, which provide a probabilistic approach

to learning, able to capture complex dependencies. They provide a well founded framework for learning

and model selection [6]. They been have successfully implemented in a range of applications, such as

medical time-series analysis [11] and terrain modelling [12]. Gaussian Processes have been effective in

modelling dependencies between tasks in the multi-task context, often able to outperform baseline models

[13], [14].

In [2], [15], a GP prior is placed over the latent functions, so that correlations are induced between the

tasks with fixed or input-dependent, varying coefficients . These complete modelling approaches require

that the relationships between the source and target tasks be known and specified when inference is

carried out. However, a complete model of the relationships between nodes is often not available and so

sensitivity to model choice is a problem for completely modelled approaches.

In [3][4] transfer learning between two Gaussian Process Regression tasks makes use of Fully Probab-

ilistic Design (FPD), whereby the stochastic dependence between the source and target tasks does not

need to be specified. This has been shown to provide better performance than ICM. FPD conditions

the unknown target quantities on the knowledge source, in the form of a probability distribution. This

method optimizes the target posterior predictor of unlabelled function evaluations conditioned on the

source posterior predictor of unlabelled outputs.

While this FPD approach has been able to achieve robust, positive transfer with improvements on more

traditional methods, it has been done in the single-source, single-target context. In this report, it is

adapted to accommodate for multiple sources of knowledge [5], and this multi-source framework is shown

to provide increased performance over the single-source framework.
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3 Modelling PM2.5

The Indian pollution data set [16] contains hourly readings of multiple pollutants (in µg/m3), including

PM2.5, from 172 data gathering stations across the country, for the year 2019. In this work, however,

we will focus on the geo-spatial data in a fixed temporal snapshot. PM2.5 are airborne particles with a

diameter less than 2.5 microns.They constitute an extremely harmful pollutant which can cause serious

health issues in a population. However, due to their small size, they are difficult to measure and meas-

uring instruments are extremely sensitive and prone to error [17],[18].

Readings of PM2.5 levels, y, at some location, x = (xi, xj), can be expressed as the realization of some

underlying function output, f , in the presence of additive noise, ε. This noise is assumed to be additive

white Gaussian noise (AWGN) with zero mean, such that:

y(x) = f(x) + ε (1)

where

ε ∼ N (o, σ2) (2)

Figure 1: Noiseless and noisy observation processes, y(x), at location x.

Due to the limitations involved in recording PM2.5 concentrations, stations may be gathering inaccurate

measurements. Some stations may not have PM2.5 reading capabilities at all (i.e. missing data). Another

issue is that the pollution measurement stations tend to be located in cities, leaving people living in more

rural settings without knowledge of pollution in their area, inhibiting them from making decisions that

could protect their health. Pollution in India leads to over 2 million estimated early deaths every year [19].

What we would like to do is construct an appropriate inference model which can be used to accurately

predict PM2.5 concentrations at hold out locations. A successful model could also be expected to provide

some de-noising capabilities, should a reading be an outlier, ie. greatly outside of the inference confidence

interval.

A model will be assessed on its ability to predict accurately the PM2.5 snapshot concentration at hold-out

stations, using a standard measurement of error, the root mean squared error (RMSE). The error for

predictions, ŷ, of N hold-out values, y, is expressed as follows:

RMSE =

√∑N
n=1(ŷn − yn)2

N
(3)

In order to address the different scales of the longitude and latitude inputs, xi and xj , respectively, they

are both scaled by the same factor to [0,1]. A more general approach to this is Automatic Relevance
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Determination (ARD)[20] but our simple approach here will achieve satisfactory results. When working

with longitude and latitude, area is treated as a flat surface; the curvature of the earth is not accounted for.

Prior inspection showed that the data towards the end of the year were more rich than those earlier in

the year. As such, the first half of the year was pruned from the data. Hourly readings of each pollutant

were averaged to yield an output for the day. When querying the data for missing entries, it was found

that measurements for PM10, NH3, and O3 were sparse. As such, these pollutants were dropped from the

data. Days with missing measurements for PM2.5, CO, NO2, or SO2 were then dropped. The days were

ranked in order of the number of stations providing full data. Models were then tested independently on

the top 10 days of data.

Figure 2 shows the readings for the PM2.5 concentration at the pollution monitoring stations across India

on the 4th November, 2019, as well as the splitting of the stations into training and test sets.

(a) PM2.5 concentrations at the pollution monitoring stations (b) Locations of the pollution monitoring stations illus-
tratively split into training and hold-out points.

Figure 2: (a): Average PM2.5 concentrations recorded on 4th November, 2019. Higher concentrations of
PM2.5 are denoted by larger bubble size and by the colour gradient. (b): The split of the data-gathering
stations into those providing training and test, i.e. hold-out data. Latitude and Longitude are normalised
to unity in these plots.

3.1 k-Nearest Neighbours (kNN)

A common machine learning approach to the problem of inferring values at locations across a 2-dimensional

spatial plane with non-uniform sampling is the kNN regression model [7]. We use this model to attempt

to infer the PM2.5 concentrations at the hold-out locations. Figure 3 shows the RMSE (3) obtained for

a distance-weighted kNN regression model for varying number of neighbours, i.e. the number of nearest

data gathering stations included in the regression model. It is evaluated several times with random initial

values for the hyperparameters and for several selections of hold-out locations, as well as for several of

the day-average snapshots.
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Figure 3: k-Nearest Neighbours regression: varying k, the number of neighbours

We can see that taking 10 as the number of neighbours minimizes error in our simulations, with a RMSE

(3) of 52.5± 3.6. As such, we will move forward with k = 10 for our optimized kNN model. However, we

will explore some other approaches to reducing predictive error in the following sections.

3.2 Gaussian Process Regression (GPR)

Gaussian Process Regression [6] is a principled non-parametric approach to probabilistic modelling of

functions observed under noisy conditions. The flexibility of GPRs means that they can provide robust

predictive performance in a range of environments and for a multitude of data synthesis contexts.

In GPR models, the Bayesian predictor of y∗ at a hold-out location (i.e. domain value), x∗, given noisy

observations, y, at training locations, x, has a Gaussian distribution,

F (y∗|y) = N (m∗, v∗) (4)

with mean and variance, respectively,

m∗ = µ∗ +K(x∗, x)(K(x, x) + σ2I)−1(y − µ) (5)

v∗ = (K(x∗, x∗) + σ2I)−K(x∗, x)(K(x, x) + σ2I)−1K(x, x∗). (6)

Here, the observation model is (1), where f(x) ∼ GP (µ(x), k(x, x′)) is the Gaussian Process (GP) prior

[6] for the noiseless, unobserved state process, F(x), and e ∼ N (0, σ2) is the additive white Gaussian

noise (AWGN) of known variance, σ2.

It is expected that for two domain values, xi and xj , which are close together, the GP values, f(xi) and

f(xj), will have similar values. For the GP, the known covariance function, k(xi, xj) specifies the cov-

ariance between f(xi) and f(xj), i.e. the dependence between the underlying GP samples as a function

of domain seperation. In (5) and (6), K(xi, xj) is the matrix of evaluations of k(x, x′) at all hold-out

domain values, xi (rows), and all training domain values, xj (columns). Finally, µ∗ is the vector of the

known mean function, µ(x), of the GP, F(x), evaluated at hold-out domain values, x∗i .

The GP covariance kernel function, k(x, x′) > 0, x, x′ ∈ R+ can be flexibly defined by the researcher.
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Choosing an appropriate covariance function is extremely important as it is the key factor which dictates

how predictor values can relate to each other. As such, we will evaluate the following kernel functions [6]

for their ability to perform the task of predicting PM2.5 readings in the India pollution data set:

Squared-Exponential(SE):

k(x, x′) = σ2 exp(−1

2

|x− x′|2

l2
) (7)

Rational Quadratic (RQ):

k(x, x′) = σ2(1 +
|x− x′|2

2αl2
)−α (8)

Matern 3/2 (MA3H):

k(x, x′) = σ2(1 +

√
3|x− x′|
l

) exp(−
√

3|x− x′|
l

) (9)

Matern 5/2 (MA5H):

k(x, x′) = σ2(1 +

√
5|x− x′|
l

+
5(|x− x′|)2

3l2
) exp(−

√
5|x− x′|
l

) (10)

Here, σ2 > 0 is the variance of the GP, l > 0 is the length scale, and α > 0 is the scale mixture rate.

These are the hyperparameters of the covariance function and need to be optimised using training data

in order to fit the GPR model with a sufficient degree of accuracy. A common and practical approach

is to use some method of gradient descent in the hyperparameter space. Adam optimization [21] is a

commonly adopted approach. It provides robust, accurate results, and is computationally efficient. As

such, it will be the method of optimization, going forward.

GPR models using each covariance kernel function listed above, after the hyperparameters of which have

been optimised, are assessed on their performance in predicting the PM2.5 concentrations at 20 hold-out

locations, having made observations at 152 training points. This is the same arrangement under which

the kNN model was assessed (Figure 3). The following results were obtained.

Kernel Function RMSE Standard Deviation

Squared Exponential 56.94 19.3

Rational Quadratic 51.47 17.7

Matern 3/2 53.56 18.5

Matern 5/2 54.56 18.9

From the results, we can see that the RQ kernel function (8) outperforms the other functions which

were tested, having a significantly lower prediction RMSE for hold-out locations than the other three

which were tested. It also has a slightly lower RMSE than the optimal value (52.5) obtained from the

kNN(k=10) model (Figure 3).

The idea of an expert kernel can be pursued through the construction of mixture kernels and non-

stationary kernels, as explained further in [22] and [5]. For the India pollution data, however, these

more complex constructions were found to provide no benefit over the single, stationary RQ kernel (8),

as shown in the table below. It appears that the learning generalization that the single, stationary RQ

kernel achieves gives better performance than these flexible, but more complex, kernel structures. The
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latter are likely over-fitting the training data.

Kernel Function RMSE Standard Deviation

Stationary RQ 51.47 17.7

RQ + RQ 52.69 18.9

RQ × RQ 52.44 18.8

Non-Stationary RQ 56.18 20.4

For further details of these kernel combinations, see [22], [5]. For the hyperparameter-randomized runs,

the initial hyperparameter values were drawn from a gamma distribution [23] with a high degree of uncer-

tainty. We can reduce further the mean and variance of the prediction error through better initialization

of the hyperparameter values. This can be done through repeated simulation and cross validation [24] to

concentrate the gamma distribution around optimum values.

To conclude, the unmixed, stationary RQ covariance function (8), with hyperparameters optimized

through Adam optimization [21], will be adopted in the GPR modelling of the PM2.5 data layer go-

ing forward. As we will see next, this PM2.5 GPR learning task will constitute the source task in our

Bayesian transfer learning scheme.
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4 Transfer Learning from a Single PM2.5 GPR Source Task

Now that we have explored the way in which, ‘expert’ (i.e. well chosen) kernel structures positively influ-

ence the performance of predictive inference for well-trained GPR learning tasks, we want to explore how

these expert GPR learning tasks can be used to improve the performance of a poorly designed model.

This is a task in Bayesian transfer learning (BTL).

Transfer learning is the use of knowledge gained from one learning task (source task) and applying the

knowledge to a similar task (target task) to improve its predictive performance. The time that the target

task spends learning and the amount of data needed for generalization can be greatly reduced via trans-

fer learning. A good framework will improve the target’s performance for fixed time and data budgets.

This is referred to as positive transfer, while a source task which decreases the target’s performance is

said to induce negative transfer. Our aim, indeed is for robust transfer learning in which the target can

isolate itself from deleterious source transfer, while also being able to accept a transfer which improves

performance.

Returning to the Indian pollution data introduced in Section 3, we hypothesise that measurements of

other pollutants, such as CO, NO2, and SO2 which can more easily be measured, may be used in trans-

fer learning to build an accurate predictive inference model of PM2.5 levels, outperforming an isolated

PM2.5 learner. The intuition is that these other, easily measured pollutants are positively correlated

with PM2.5, but we do not explicitly model this correlation. In this sense, BTL is an approach to infer-

ence with incomplete models.

We will first assess this approach using a state-of-the-art multi-task learning method, the Intrinsic Core-

gionalization model (ICM)[8]. Then, we will adopt the Bayesian transfer learning (BTL) algorithm

described in [4] for a single source task transfer. Finally, the BTL approach, which has been used to

date for probabilistic knowledge transfer from a single source to a single target, will be extrapolated to

account for multiple sources of knowledge in Section 5. This will allow us to explore transfer from three

knowledge sources, i.e. the GPR learners for CO, NO2, and SO2 in the India pollution data context.

4.1 Intrinsic Coregionalization Model (ICM)

ICM [8] is a distributed inference scheme, which assumes that the source and target share the same

underlying GP structure, u(x), but one is a scaled version of the other. The observation noises of the

source and target tasks are also assumed to be independent and on the shared domain, x. The outputs

of the source and target are therefore modelled as follows:

yS ∼ N (aSu(x), σ2
S) (11)

yT ∼ N (aTu(x), σ2
T ) (12)

where aS and aT are the known (or estimated) source and target scaling factors, respectively, for the

common GP, u(x) ∼ GP (µu(x), ku(x, x′). For example, if we take aS = aT = 1, the target treats the

observations made by the source as observations pertaining to its own task, but with potentially different

known additive noise variances, σ2
T and σ2

S . The target’s GPR model can thus be trained on a larger

pool of data, now augmented by the source data, yS(xS). This idea is depicted in Figure 4.
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(a) Target function with noisy observations (b) GPR-based target learning task

(c) Source and target tasks with noisy observations (d) ICM GPR learning using source and target data

Figure 4: In the top row, the target modeller makes observations of its own underlying process, yT (xT )
and then attempts to fit a GPR model to the data. Here, fT (x) ≡ aTu(x) denotes the true underlying
function and m denotes the inferred mean via GPR. In the bottom row, observations of another, similar
process, the source task, are introduced. These observations from the source task, with fS(x) ≡ aSu(x)
are processed in the the target’s GPR model, via the ICM method, with aS = aT = 1. Improved
performance is evident.

4.2 Bayesian Transfer Learning (BTL)

Here, the BTL algorithm described in [4] is briefly summarised. In this framework, the target becomes a

global GPR modeller of both the source and target processes. A complete modelling scheme would take

the form, F (fS , fT |yS , yT ), which processes (i.e. conditions on) the raw source data, yS , as well as the

target’s, yT (i.e. it is the joint a posteriori probability model of the source and target GPs). Conversely,

the target global modeller in our transfer learning framework does not require access to yS , but instead,

receives an appropriate probabilistic inference, FS , that is computed and transferred in the source. The

objective of BTL is for the target to update its knowledge of the source-target system by conditioning on

FS in an optimal manner, and without requiring a complete model of the (fS , fT , FS) system. We call this

incomplete modelling, a property that confers robustness on BTL. This scheme is illustrated in Figure 5,

showing, as output, the optimal design of the source-knowledge-conditional inference, Mo(fS , fT |yT , FS).

This is the defining characteristic of Bayesian transfer learning, as defined in [4]: the target processes the

sufficient statistics of yS , projected into the transferred source predictor, FS(y∗S |yS). It does not require

the transfer and target-processing of the raw source data, yS , as required in conventional multi-task /

distributed inference schemes, such as ICM, as noted in Section 4.1.
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Figure 5: The source isolated modeller transfers its posterior predictive distribution, FS(y∗S |yS), which
the global target modeller uses to build the FS-conditional joint model, Mo(fS , fT |yT , FS), given its local
data, yT . Grey nodes represent unobserved quantities, while white nodes represent observed quantities.

The target GPR task must, therefore, elicit its auto-covariance structure for fS(xS) and fT (xT ), via

the kernel functions, kSS(xS , xS) and kTT (xT , xT ), respectively (see Section 3.2). It must also specify

the cross-covariance kernel function, kST (xS , xT ) = kTS(xT , xS), eliciting the cross-covariance structure

between fS(xS) and fT (xT ). When these are evaluated at domain values (i.e. locations) xS and xT ,

respectively, the covariance matrix, K, has the following block structure:

K =

[
KSS KST

KT
ST KTT

]
(13)

KSS and KTT are the auto-covariance matrices of the source and target GPs respectively, as modelled

by the global target, via kSS and kTT , respectively. KST is the covariance matrix between the source

and target. Here, also, KT
ST denotes the transpose of KST . In this work, the target adopts the ICM

complete model as described in Section 4.1. In this case, the block covariance matrix (13) specializes to

the following simpler structure:

K = B ⊗ ku(x,x) (14)

B =

[
aS

aT

][
aS

aT

]T
=

[
bSS bST

bTS bTT

]
(15)

i.e. bSS = a2S , bTT = a2T and bST = bTS = aSaT (11),(12), and ⊗ denotes the Kronecker product. ku(x, x)

is the target’s covariance function for u(x), and it is further assumed that xS = xT ≡ x, i.e. the N source

and target domain values (locations) are coincident. The values for aS and aT , the ICM coefficients, need

to be set a priori, requiring (in real data contexts, such as ours) their optimization as hyperparameters

with respect to the data, yS and yT , to optimise the performance of the algorithm.

In BTL [4], as stated above, the source independently models its local data, yS , and transfers its data

predictor, (4),

FS(y∗S |yS) = N (mS , RS), (16)

to the target. A key feature of this multiple modeller approach is that the source’s covariance function

for fS(xS) can be different (indeed, more expert) in modelling its local data, yS . The statistics, mS and

RS in (16) are therefore evaluated as in (5),(6), via this local (source) expert knowledge.

Recall that the target must now condition on FS (16), in this incompletely modelled context. The resulting

FS-conditional target inference of u(x) is not uniquely specified in the absence of a complete model of
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dependence between the target and FS . Fully probabilistic design (FPD) [25], [26] chooses the optimum,

Mo(u|yT , FS), via an appropriate Kullback-Leibler divergence (i.e. Bayesian risk) minimization, yielding:

Mo(u(x)|yT , FS) = N (
1

aT
mo
T ,

1

a2T
koTT ) (17)

mo
T = kT (K + blkdiag(RS , σ

2
T IN ))−1

[
mS

yT

]
(18)

koTT (x, x′) = kTT (x, x′)− kT (K + blkdiag(RS , σ
2
T IN ))−1kTT . (19)

Here, kT is the length-2N row vector of cross-covariances between the target’s points of interest, x (i.e.

the test points where u(x) is to be inferred), and the source predictive transfer points, xS , concatenated

with the target’s auto-covariances between x and xT = xS ∈ RN :

kT = [kTS(x,xS) kTT (x,xT )]. (20)

kTS and kTT are the joint (ICM) target’s cross-covariance and auto-covariance functions (14).
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5 Multi-Source Transfer

The algorithm described in Section 4.2 can readily be extended to the multiple task case. Here we focus

on the multiple source, single target case relevant to the BTL from multiple pollutant (source) learning

tasks to the PM2.5 (target) learning task.

5.1 Constructing the multiple source, single target BTL Algorithm

We assume the same ICM structure that has been imposed upon the source and target models in the single

source and target case. Extending (11) to n ≥ 1 sources, Sq ∈ (S1, S2, ...Sn), the target’s conditionally

independent, identically distributed models for these are:

ySq
∼ N (aSq

u(x), σ2
Sq

), q = 1, ..., n (21)

Define f̄S = (fS1
, fS1

, ...fSn
) to be the vector of function values of each source and compute FSq

(y∗Sq
|ySq

),

q = 1, ..., n, the posterior predictive distribution of each isolated, transferred source in turn (16). We seek

the target’s joint model of the latent functions, conditioned on these n transferred predictors and on the

target’s local data, yT :

M(f̄S , fT |F̄S , yT ) (22)

In common with the FPD-optimal BTL framework [4], the target does not specify a joint model for fT

and FSq , and so the conditional (22) is non-unique. Its Bayesian minimum risk design (i.e. FPD-optimal

design) is the one which minimizes the Kullback-Leibler Divergence from FSq -constrained candidates (22)

to an ideal (i.e. zero-loss) choice specified by the FPD-optimal target. The details are available in [4],

and lead to the following n ≥ 1 generalization of (17), (18), (19):

Mo(f̄S , fT |F̄S , yT ) = N (mo, ko) (23)

where

mo =

[
m̄o
S(x)

mo
T (x)

]
, ko =

[
k̄oSS(x, x′) k̄oST (x, x′)

k̄oTS(x, x′) koTT (x, x′)

]
.

Here:

mo
T = kT (K + blkdiag(RS1

, RS2
, ..., RSn

, σ2
T IN ))−1



mS1

mS2

...

mSn

yT


(24)

koTT (x, x′) = kTT (x, x′)− kT (K + blkdiag(RS1 , RS2 , ..., RSn , σ
2
T IN ))−1kTT (25)

Adopting the previously established convention of the target joint modeler assuming a complete ICM

analysis model (21) with common u(x) for sources and target, the K block-matrix (13) is constructed as

outlined in (14), using a known coefficient, aT , for the target and n, known coefficients for the source,

aS ≡ [aS1, aS2, ..., aSn]. Hence:
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K =

[
KSS KST

KT
ST KTT

]
= B ⊗ ku(x,xT ) (26)

B =

[
aS

aT

] [
aTS aT

]
=

[
aSa

T
S aSaT

aTa
T
S a2T

]
(27)

With n sources, we can expand KSS and KST block-matrices,

KSS =


KS1S1 KS1S2 ... KS1Sn

KT
S1S2

KS2S2
...

...
... ...

. . .
...

KT
S1Sn

... ... KSnSn

 (28)

KST =


kS1T (x, x)

...

kSnT (x, x)

 (29)

Finally, the row vector, kT , in (24) and (25) has the expanded form:

kT = [kTS1
(x,xTS1

) kTS2
(x,xTS2

) ... kTSn
(x,xTSn

) kTT (x,xTT ]. (30)

5.2 Transferring knowledge from CO, NO2, and SO2 to PM2.5

Our focus here will be on the implementation of the multi-source FPD-optimal BTL method (Section

5.1) for the Indian pollution data (Section 3), specifically, the transfer of n = 3 source predictors (for

CO, NO2, and SO2) to the target PM2.5 inference task, in an effort to achieve positive transfer learning

for the target task. We will detail each step of the implementation, including some pseudo-code snippets.

Note that each of the n+ 1 = 4 data channels (i.e. pollutant concentration in µg/m3) was pre-processed

to yield zero-mean channels with variance 1.

The target modeller builds their model of scaled PM2.5 concentrations using a rational quadratic kernel

(8). Then, using this target model’s covariance function, ku(x, x) (14) optimized with respect to the

target training points, along with the optimized ICM coefficients (27) for all four channels, we construct

the block matrix, K (26).

To optimize the ICM coefficients for each data channel, data from the training stations for each of several

days, with known PM2.5 concentrations were used. Gradient descent was repeatedly performed on the

coefficient of each data channel, with varying initialized values. The set of final (post gradient descent)

coefficients that minimized the predictive RMSE (3) for PM2.5 was used as the set of optimum coef-

ficients for that day. This process was repeated for several days of data and then the mean of these

optimum coefficient sets was adopted in (26) and (27). This pre-processing improves numerical stability

and takes the place of methods such as automatic relevance determination (ARD) [20]. Adopting the

ordering notation of S1 ≡ CO, S2 ≡ NO2, S3 ≡ SO2, T ≡ PM2.5, the resulting optimal settings for
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the ICM coefficients were aS1
= 0.56, aS2

= 0.52, aS3
= 0.3, aT = 1, having normalised with respect to aT .

We assess 172 pollution measurement stations, partitioned into 152 training stations and 20 randomised

hold-out stations. The experiment, along with the random allocation of measurement stations into train-

ing and hold-out sets (i.e. cross-validation) is repeated through Monte-Carlo simulations to mitigate any

bias that could arise from the partition of the stations into their respective sets. Therefore, the target’s

covariance matrix, ku(x,xT ) (26), has dimension [152×152] and so the target’s ICM block covariance

matrix, K, has dimension (26) is (4 × 152) × (4 × 152) = [608×608].

In the following snippet of pseudo-code, we build the K block matrix given the target’s covariance kernel,

kuu, and the ICM coefficients, aS and aT .

GPR PM25 training = Build GPRM( x t ra in , PM25 train )

k uu = GPR PM25 training . covar iance

B = [ as 1 , as 2 , as 3 , at ] . Transpose ∗ [ as 1 , as 2 , as 3 , at ]

K = kronecker (B, k uu )

Next, using the same split of training and test stations as the target, each of the three source modellers

builds their respective posterior predictive model (16) of CO, NO2, and SO2. Several kernel functions

are assessed in the same manner as in Section 3.2, each now trained independently on the source tasks’

respective local data, conferring expertise on these source tasks. The results are shown in the table below.

CO:

Kernel Function RMSE Standard Deviation

Squared Exponential 21.32 3.5

Rational Quadratic 19.8 3.5

Matern 3/2 20.39 3.6

Matern 5/2 20.72 3.6

NO2:

Kernel Function RMSE Standard Deviation

Squared Exponential 31.88 9.5

Rational Quadratic 30.85 10.1

Matern 3/2 31.27 9.9

Matern 5/2 31.47 10

SO2:

Kernel Function RMSE Standard Deviation

Squared Exponential 14.38 5.9

Rational Quadratic 14.57 5.8

Matern 3/2 14.54 5.8

Matern 5/2 14.49 5.9

Now that each source has constructed its own isolated model, it transfers its own mean function, mSq
,

and covariance, RSq
, of the posterior predictor at the transfer points.

m s1 = GPR CO training . mean funct ion

m s2 = GPR NO2 training . mean funct ion

m s3 = GPR SO2 training . mean funct ion

R s1 = GPR CO training . covar iance

17



R s2 = GPR NO2 training . covar iance

R s3 = GPR SO2 training . covar iance

We will focus first on constructing the FPD-optimal target mean (a scalar), mo
T (24), at a single target

domain value, x, after multi-source transfer. It is rewritten here for our specific case of n = 3 sources:

mo
T = kT (K + blkdiag(RS1 , RS2 , RS3 , σ

2
T IN ))−1


mS1

mS2

mS3

yT


Using each source’s predictive covariance matrix, RSq

, and the target model’s estimate of its noise vari-

ance, σ2
T , we can construct the block-diagonal term above. σ2

T was treated in the same way as the GPR

covariance kernel hyperparameters, i.e. its MLE was found via Adam optimization. Each block-matrix

has dimension [152 × 152], resulting in a [608 × 608] block diagonal matrix. With the mean function of

each source, mSq
and the target’s observations, yT , each of length N = 152, we can construct the column

vector of length 4 × 152 = 608 . We build the block-diagonal matrix and mo
T here:

t a r g e t n o i s e v a r m a t r i x = sigma T ∗ i d e n t i t y m a t r i x (152)

b l o ck d i agona l = blkd iag ( R s1 , R s1 , R s1 , t a r g e t n o i s e v a r m a t r i x )

v e r t i c a l b l o c k = [ m s1 , m s2 , m s3 , y t ] . Transpose

For kT (30), we need to consider at what predictive points (i.e. locations) we want to infer y∗, the PM2.5

readings. We could assess only the hold-out points, x∗, or we could assess both the hold-out and training

points, xT , together. Assessing both would allow us not only to infer at the unobserved points but also

attempt to denoise at the training locations. It is important to realise, however, that we do not have

access to any noise-free measurements, and so we cannot quantify the accuracy of filtering. Nonetheless,

we will move forward with including both the hold-out and the training points, from which inference at

the hold-out points can be ascertained. Rewriting (30) for n = 3 sources:

kT = [kTS1
(x,xTS1

) kTS2
(x,xTS2

) kTS3
(x,xTS3

) kTT (x,xTT )] (31)

First, we need to construct the K block-matrix (26) again, using the same ICM coefficients, and once

again assuming xSq
= xT = x, each of length N = 152. As such, the u-kernel sub-matrix, ku(x,xT ), has

dimensions [152×152]. This then yields the covariance structure between all xSq
, q ∈ {1, 2, 3}, and xT ,

via the same Kronecker product form in (26). The corresponding K block-matrix is thus [608×608]:

K =


KS1S1

KS1S2
KS1S3

KS1T

KS2S1
KS2S2

KS2S3
KS2T

KS3S1
KS3S2

KS3S3
KS3T

KTS1
KTS2

KTS3
KTT


The FPD-optimal mean (column) vector, mo

T (x∗), of fT (x∗) (23), at all 20 hold-out domain values (i.e.

points), x∗, in the target is formed by stacking mo
T (24) for each hold-out point, x∗i , i = 1, . . . , 20:

mo
T (x∗) = KT (K + blkdiag(RS1

, RS2
, ..., RSn

, σ2
T IN ))−1



mS1

mS2

...

mSn

yT


, (32)
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where

KT ≡


kT (x∗1)

...

kT (x∗20)

 ,
and where kT (x∗i ), i = 1, . . . , 20, are each given by (31), evaluated at the respective hold-out point,

x = x∗i .

Correspondingly, the 20× 20 FPD-optimal covariance matrix of fT (x∗) (23) at x∗ is the matricized form

of (25), as follows:

Ko
TT (x∗,x∗T ) = KTT (x∗,x∗T )−KT (K + blkdiag(RS1 , RS2 , ..., RSn , σ

2
T IN ))−1KT

T . (33)

The target’s FPD-optimal mean, mo
T (x∗i ) (24), and variance, koTT (x∗i , x

∗
i ) (25) (being the ith element of

mo
T (32), and the (i, i)th element of Ko

TT (33), respectively) constitute the uncertainty-equipped estimate

of the PM2.5 concentration at each of the 20 hold-out locations, x∗i , i = 1, . . . , 20.
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6 Comparative Performance with India Pollution Data

In these simulations, we assess the performance of our standard inference model, k-Nearest Neighbours

Regression (3.1) against our two transfer learning approaches; the state of the art, ICM and the multi-

source Bayesian Transfer Learning framework. An isolated GPR model of PM2.5, the target task is also

used as a benchmark against which to judge our transfer learning approaches. All pollutants go through

standard scaling, where their mean is scaled to zero and a variance of one is induced. Errors are averaged

over several sets of training and hold-out locations. The RMSE(3) is used for our error measure. The

results for 5 days and their average are given below.

Model Day 1 Day 2 Day 3 Day 4 Day 5 Avg.

kNN 0.48±0.06 0.63±0.20 0.43± 0.06 0.42±0.14 0.47±0.04 0.49±0.1

TNT 0.51±0.09 0.50±0.07 0.61± 0.12 0.54±0.08 0.44±0.07 0.52±0.09

ICM 0.61±0.05 0.57±0.05 0.75± 0.08 0.71±0.07 0.5±0.05 0.63±0.06

BTL 0.43±0.12 0.43±0.09 0.55± 0.15 0.49±0.09 0.41±0.09 0.46±0.11

We note the following

• Our Bayesian Transfer Learning (BTL) algorithm, which makes use of transferred predictive probab-

ilistic knowledge from multiple sources, consistently outperforms the isolated target model (TNT).

It also vastly outperforms ICM under these settings and marginally outperforms the kNN model.

• Our Bayesian Transfer Learning (BTL) algorithm is robust, meaning it has the ability to reject

poor-quality source data, while the ICM approach does not exhibit this robustness. In general,

transfer that results in reduced performance is referred to as negative transfer, while improved

trasnfer-based performance is referred to as positive transfer. As such, BTL consistently delivers

positive transfer in this application, while the performance of ICM is heavily reliant on the quality

of source knowledge.
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7 Final Remarks

Throughout these experiments, Monte Carlo runs were carried out to randomize for some of the settings.

However, due to the computational complexity of working with, and optimizing, GPR models and the

number of GPR models involved in these experiments, a large number of Monte Carlo runs was often

not feasible. Efforts were made to allocate large amounts of time to running simulations, but ultimately,

many simulations involved only about 100-200 runs. This undermined, somewhat, the estimation of the

underlying performance errors. Nevertheless, the main comparative properties of the algorithm were

revealed.

If measurements of other pollutants that were dropped in early analysis (PM10, NH3, and O3) were avail-

able, they could readily be incorporated into our BTL framework and used as supplementary knowledge

sources, prospectively improving further the BTL target performance. As shown with the simulated data

in [5], as the number of sources increases, positive transfer improves if the sources are correlated with (i.e.

are predictive of) the target. If they are not, they are rejected, without undermining the isolated target

learner, a core feature of our robust transfer scheme. In this way, increasing the number of source learners

can be a way to converge to the target performance one would obtain from using optimally chosen source

analysis models.

The India pollution data provides both geo-spatial and temporal data. For this experiment, only geo-

spatial information was considered on individual days, without any inter-day dynamic modelling. We

expect that exploiting temporal knowledge (dynamics) would induce more accurate performance of the

BTL-optimized PM2.5 target learner.

7.1 Conclusion

The multi-source Bayesian Transfer Learning (BTL) algorithm is a robust transfer learning algorithm,

consistently providing significant positive transfer compared to the isolated PM2.5 target learner (i.e. the

isolated target GPR task).

It overcomes the fragilitiy of the common, GP-based, state-of-the-art, the Intrinsic Coregionalization

Model (ICM) approach and it provides marginally better results than the standard kNN approach. The

BTL algorithm is readily extensible to n > 3 sources, and we expect further improved performance in

this case, as well as in the case where the source and target learners adopt temporal dynamics across

multiple days of data.

In future work, focus could be put on investigating mismatch of the joint interaction model between

the sources and target, which inevitably affects complete modelling approaches such as ICM. We accept

that the dominant factor explaining the improved performance of BTL over ICM in the experiments

reported here is the multi-model feature of BTL and its ability to transfer local source modelling expertise.

However, even when higher-rank ICM modelling is adopted [1], with locally optimized GP state processes,

fSq
(x), for each source - thereby emulating BTL (Figure 5) - ICM must still instantiate a joint prior

interaction model between these GPs, something our BTL approach avoids.

Work is ongoing in BTL to allow optimal inference of the transfer weights between the sources and the

target. The current framework sets these at unity a priori. Recall that it is the induced dependence

of the FPD-optimal target inference (24),(25) on the source covariance matrices, RSq
, that allows poor-

quality sources to be rejected (i.e. robust transfer). We expect this rejection (robustness) property to be

enhanced once the transfer weights are included as inference parameters of our BTL scheme.
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