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Abstract

This research report investigates an approach to the design of an Ockham prior penalising parametric

complexity in the Hierarchical Fully Probabilistic Design (HFPD) [1] setting. We identify a term which

penalises the introduction of an additional parameter in the Wold decomposition. We also derive the

objective Ockham Parameter Prior (OPI) in this context, based on earlier work [2], and we show that

the two are, in fact, closely related. This confers validity on the HFPD Ockham term.

1 Ockham’s Razor in Parametric Inference

The desire to model a piece of data better pushes modellers to increase the complexity of their archi-

tectures and introduce additional explanatory variables. Beyond a certain point, this complexity does

not correspond to the data generating process and begins to model the non-systematic (unpredictable or

noise) portion of the data, to the detriment of its predictive ability. This phenomenon, called overfitting,

is a significant and pervasive problem in the context of machine learning, signal processing, and related

fields [3].

To address the parsimony-vs-prediction trade-off [2, 4], Ockham’s Razor (i.e. the Desideratum of

Simplicity) must be followed, stating that randomness must not be fitted with determinism. Importantly

geometric (Least Squares) and Maximum A Posteriori (MAP) estimation cannot inherently fulfil this

desideratum as they are conditioned on the full acceptance of the model and provide point estimates

that lack the necessary context of a measure. As alternatives, several approaches have been developed to

quantify complexity and embrace Ockham’s razor in the model-based inference. Common examples are

the Minimum Message Length (MML) criterion [5], the Minimum Description Length (MDL) criterion [6],

and the Akaike Infromation Criterion (AIC) [7]. These act as regularizers of the model by optimising an

ad hoc statistic associated with the model’s complexity. In contrast, Quinn [2, 4] derives the axiomatically

justified Ockham Parameter Inference (OPI) simply by using the probability calculus (i.e. the calculus

of belief in the Bayesian perspective). This approach has been shown [8] to accurately assess whether

there is sufficient evidence for increased model complexity in very general signal processing settings.

Furthermore, it facilitates the simultaneous estimation of model order and parameters.

More recently, Fully Probabilistic Design (FPD) [9] and its generalisation, Hierarchical Fully Prob-

abilistic Design (HFPD) [1] have been developed. These extend the paradigm of stochastic modelling to

scenarios where establishing a joint model of the entire system may not be desirable or feasible. They

describe an axiomatically justified approach to optimally designing probability models of uncertainty.

(H)FPD has been successfully used in various scenarios, such as optimal control system design [10] and

transfer learning [11, 12]. To date, however, the Desideratum of Simplicity has not been investigated

from a (H)FPD point of view.

In this research report, we examine Ockham’s Razor in the context of HFPD. We do this by adopting

a simple parametric model for inference, and we use HFPD to assess it against an Ockham model, chosen

as the ‘ideal’. A term penalising the increase of complexity in adopting the parametric model emerges.

We show that this term is proportional to the one derived through OPI theory [1, 9]. The Ockham term

is evaluated in a simple signal processing context.

This report is laid out as follows: Section 2 specifies the parametric model setup used. It also specifies

the notational conventions. Section 3 briefly reviews the Ockham Parameter Inference (OPI), instantiates

it in the context of this report’s parametric modelling, and shows explicitly how this OPI is a function of

the model’s complexity. Section 4 similarly introduces Hierarchical Fully Probabilistic Design (HFPD)

and applies it to the modelling context of this report. It provides the main results by detailing an approach

to eliciting Ockham’s Razor via HFPD, and deriving an explicit HFPD-optimal function of complexity
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for the parametric signal modelling example in this report. Furthermore, it compares the functions of

model complexity derived through HFPD and OPI theory. Section 5 concludes the report and lays out

future directions for this research.

2 Parametric signal modelling in the additive noise setting

Consider two observers, the systematic observer and the Ockham observer, denoted as I1 and I0, respect-

ively. They both observe and model the same data source, x. I1 believes that the data are a realisation of

a signal-plus-additive-white-Gaussian-noise (AWGN) process, with signal aψ and noise variance r. Here,

ψ is a known regressor, specific to the hypothesised signal, while a (the amplitude) and r are unknown

probabilistic parameters. In contrast, I0 believes that the data are simply white Gaussian noise, with

the same variance r. Thus, I0 acts as the Ockham observer in the context of the a parameter of I1.

I1’s beliefs in the parameters a and r are described through hyperparameters V and ν of their normal-

inverse-Gamma (NiG) prior for {a, r} [13], where V is a 2× 2 symmetric positive-definite matrix and ν

is a positive scalar. Both are recursively computable statistics of the data [13]. The two observers agree

in respect of their inverse-Gamma prior for their shared parameter, r. I1’s belief in a is then described

by a Gaussian distribution conditional on r, resulting in I1’s NiG joint prior distribution for {a, r}. To

summarise:

I1 I0
(x | a, ψ, r, I1) ∼ Nx(aψ, r) (x | r, I0) ∼ Nx(0, r)

(a, r | V, ν, I1) ∼ N iGa,r(V, ν) (r | v11, ν, I0) ∼ iGr
(
ν − 3

2
,
v11
2

) (1)

I0’s prior for r is therefore equal to I1’s marginal prior for r [14].

I1’s conjugate update rules for computing the hyperparameters, V and ν, given a length-n ≥ 1

realisation, {x1, . . . , xn}, of the data source, are

Vn = V +

n∑
i=1

[
xi

ψi

][
xi ψi

]
(2)

νn = ν + n.

2.1 Notation

The following notational conventions are used in this document:

• xi, ψi, νi, and Vi are time series data/statistics. However, the time index, i, is omitted where

feasible.

• The 2× 2 matrix, Vi, has elements

[
vi,11 vi,1a

vi,a1 vi,aa

]
where vi,a1 = vi,1a

• Dx(P ‖ Q) denotes the Kullback-Leibler divergence from P (x) to Q(x) over x, where these are

probability distribution functions with respect to the Lebesgue measure, and have common support

in x:

Dx(P ‖ Q) =

∫
x

P (x) ln

(
P (x)

Q(x)

)
dx (3)
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3 Ockham Parameter Inference (OPI)

The Ockham parameter inference (OPI) [2, 4, 8] asserts an additive noise setting — as explained above —,

with the same noise model for both the systematic and the Ockham observer. It yields I0’s non-heuristic

distribution over I1’s hypothesis space and is a monotonically decreasing function of the complexity of

the latter. Effectively, it is I0’s distribution of the signals expected by I1:

ps(s|I0) (4)

Being a distribution (4), the OPI can be focused, via marginalisation, thereby quantifying the evidence

for inclusion of only a subset of I1’s signal parameters.

The observers of this document are defined as in Eq. (1), with I1’s model for additive noise, e, in

their Wold model being adopted also by I0. Specifically:

I1 I0

(x | a, ψ, r, I1)
d
=s(a, ψ) + (e | r)

≡ aψ + (e | r)

(x | r, I0)
d
= (e | r)

(5)

(e | r) ∼ Ne(0, r) ≡ pe(e | r)

(r | v11, ν) ∼ iGr
(
ν − 3

2
,
v11
2

) (6)

In Eq. (5),
d
= denotes equality in distribution.

If the noise variance, r, is assumed known by I1 and I0 — as in the original setting for the OPI in

[4, 8] — then the OPI (complexity prior) is given by

ps(s(a, ψ) | ψ, r, I0) = pe(aψ | r, ψ)

= Na
(

0,
r

ψ2

)

∝ exp

(
(aψ)2

r

)
(7)

However, if the variance is only known probabilistically, as in Eq. (6), then I0’s the complexity prior

for a — being the local, systematic parameter adopted by I1 but rejected by I0 — is deduced via
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Figure 1: Plots of the Ockham Parameter Inference Eq. (8) at various combinations of v11 and ν and
keeping the known regressor ψ constant (specifically, v11 ∈ {1, 10, 100}, ν ∈ {3, 10, 30}, and ψ = 1).

marginalisation:

ps(s(a, ψ) | ψ, v11, ν, I0) =

∫
r

Na
(

0,
r

ψ2

)
iGr
(
ν − 3

2
,
v11
2

)
dr

= St
(

0,
v11

ψ2(ν − 3)
, ν − 3

)
if ν > 3

=
Γ
(
ν−2
2

)√
π v11ψ2 Γ

(
ν−3
2

) ( v11
(aψ)2 + v11

) ν−2
2

if ν > 3

∝
(

v11
(aψ)2 + v11

) ν−2
2

if ν > 3

(8)

Eqs. (7) and (8) are symmetric around their mode at a = 0. Additionally, Eq. (8), illustrated in Fig. 1

concentrates as ν increases and relaxes as v11
ψ2 increases. These distributions express I0’s preference for

the rejection of complexity via choices close to a = 0, unless there is sufficient evidence otherwise.

4 Fully Probabilistic Design (FPD)

Fully probabilistic Design [9], in contrast with OPI, uses decision-theoretic arguments in settings where

no joint model is posited. Through the works of [15] and [16], it asserts that knowledge processing is to
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be performed through the optimisation of a Bayes’ risk, which it derives to be the Kullback-Leibler (KL)

divergence 3. Hierarchical FPD (HFPD) [1] allows FPD-based knowledge processing in scenarios where

the distributions themselves may not be known exactly, but only up to a distribution.

The full description of a model M is given by Eq. (9), where x is the modelled quantity, A is the

probability distribution of x, and S is the hyper-distribution of A (or its parameters, if A is parametric).

K represents the complete knowledge possessed by the model:

M(x,A|S,K) = A(x|K)S(A|K) (9)

The FPD-optimal design (i.e. minimum-KLD choice) of S is given by SO (10), where AI and SI

represent the designer’s ideal beliefs. The ideal distribution may be thought of as the stochastic model

for (x,A) which the modeller would choose were it not for the belief constraints imposed by K:

SO(A|K) ∝ SI(A|K) exp
(
−Dx(A ‖ AI)

)
(10)

Here, the constant of proportionality is given by

cSO =

∫
A

SI(A|K) exp
(
−Dx(A ‖ AI)

)
dA (11)

In the current context, we are assuming that A(x) is finitely parameterised, that its optimal (hyper-)

prior measure has density, SO(·), with respect to Lebesgue measure. We instantiate the terms in (10)

consistently with respect to the agreements in Section 2 (see Eq. (1)), as follows:

FPD (variational) modeller, I1: Ideal modeller, II ≡ I0:

A(x|a, r, ψ, I1) ≡ Nx(aψ, r) AI(x|r, II) ≡ Nx(0, r)

S(a, r|V, ν, I1) ≡ N iGa,r(V, ν) SI(r|νI , vI,11, II) ≡ iGr
(
νI − 3

2
,
vI,11

2

)
(12)

In this way, we posit the designer’s ideal model to be the Ockham observer’s I0 model of Sections 2

and 3. Furthermore, the designer’s knowledge constraint, K, is precisely I1’s parametric (Wold) model

(1) with respect to the known signal, ψ. Inserting these factors into (10):

SO(r|ν, ν11, a, ψ) ∝ iGr
(
ν − 3

2
,
v11
2

)
exp

(
−Dx(Nx(0, r) ‖ Nx(aψ, r)

)
(13)

(14)

= iGr
(
ν − 3

2
,
v11
2

)
exp

(
− (aψ)2

2r

)
(15)

The normalising constant is

cSO =

(
v11

(aψ)2 + v11

) ν−2
2

, if ν > 3. (16)

Note that this normalising constant of the FPD-optimal model for the parameter of I0, i.e. r, is, itself,

an unnormalised measure of complexity for the additional parameter of I1, i.e. a (12). It exhibits the

same complexity-penalizing behaviour as the OPI (Section 3). The behaviour of cSO as a function of a

is illustrated in Fig. 2, for various settings of ν and ν11, holding the regressor constant at ψ = 1.
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Figure 2: Plots of the HFPD Ockham factor cSO at various combinations of v11 and ν and keeping the
known regressor ψ constant (specifically, v11 ∈ {1, 10, 100}, ν ∈ {3, 10, 30}, and ψ = 1).

4.1 Connection with OPI-based Ockham’s Razor

The established OPI theory evaluates the systematic model through the viewpoint of the Ockham ob-

server. Similarly in the FPD setting, the systematic modeller transfers knowledge from the ideal Ockham

modeller. The normalising constant of the resulting distribution, cSO (16) can be re-interpreted as a

function of the additional parameter of the systematic modeller, a, where it acts as a penalty on model

complexity (Fig. 2). Additionally, it is proportional to the marginalised OPI complexity measure Eq. (8),

differing only by a normalising constant. This is further indication to utility of the approach outlined in

Section 4 for penalising model complexity.

5 Conclusions and future work

This work is an initial exploration towards identifying and establishing an Ockham’s razor in the context of

Fully Probabilistic Design. We use a simple parametric signal processing context (the Wold representation

of the observation process) and demonstrate how (H)FPD can elicit Ockham-sensitive priors when the

ideal is chosen to express the designer’s simplicity objective. We also draw a connection between this

approach and Ockham Parameter Inference (OPI)-based complexity penalisation.

More work is left to be done to establish a thorough theory of simplicity in FPD. A rigorous forward-

design of the knowledge constraints and the ideals needs to be performed. The scalar parametric additive

noise (i.e. Wold) setup, which provides the context for the current paper, should be expanded to include

multivariate and multi-parameter scenarios, beyond additive noise. In particular, it should be investigated

how the ’temperature’ parameter of HFPD influences the elicitation of Ockham’s razor. Additionally,

the opportunity to relax A(x) nonparametrically, yield an optimal Ockham-regularised, nonparametric
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prior, SO(A | K), should be explored further via the hierarchical FPD (HFPD) framework [1]. Finally,

an algorithm to use the (H)FPD-optimal Ockham prior in simultaneous model order selection and para-

meter estimation must be developed. Crucially, its ability to obviate overfitting and complexity must be

validated with simulations and real-world data.
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